FN Archimer Export Format PT J TI Peak glacial 14C ventilation ages suggest major draw-down of carbon into the abyssal ocean BT AF SARNTHEIN, M. SCHNEIDER, B. GROOTES, P. M. AS 1:1,3;2:1;3:2; FF 1:;2:;3:; C1 Univ Kiel, Inst Geowissensch, D-24098 Kiel, Germany. Univ Kiel, Inst Ecosyst Res, D-24098 Kiel, Germany. Univ Innsbruck, Inst Geol & Palaontol, A-6020 Innsbruck, Austria. C2 UNIV KIEL, GERMANY UNIV KIEL, GERMANY UNIV INNSBRUCK, AUSTRIA IN DOAJ TC 79 UR https://archimer.ifremer.fr/doc/00296/40676/39662.pdf https://archimer.ifremer.fr/doc/00296/40676/39663.pdf https://archimer.ifremer.fr/doc/00296/40676/71302.pdf https://archimer.ifremer.fr/doc/00296/40676/71303.pdf LA English DT Article CR IMAGES 4-MD111 IMAGES V LEG 1-MD114 IMAGES V LEG 4-MD114 MD 122 / WEPAMA MD 158 / LOG IPEV 2007 MD 168 / AMOCINT (IMAGES XVII) VT 90 / SOUC BO Marion Dufresne AB Ice core records demonstrate a glacial-interglacial atmospheric CO2 increase of ~ 100 ppm. A transfer of ~ 530 Gt C is required to produce the deglacial rise of carbon in the atmosphere and terrestrial biosphere. This amount is usually ascribed to oceanic carbon release, although the actual mechanisms remained elusive, since an adequately old and carbon-enriched deep-ocean reservoir seemed unlikely. Here we present a new, though still fragmentary, ocean-wide 14C dataset showing that during the Last Glacial Maximum (LGM) and Heinrich Stadial 1 (HS-1) the 14C age difference between ocean deep waters and the atmosphere exceeded the modern values by up to 1500 14C yr, in the extreme reaching 5100 yr. Below 2000 m depth the 14C ventilation age of modern ocean waters is directly linked to the concentration of dissolved inorganic carbon (DIC). We assume that the range of regression slopes of DIC vs. Δ14C remained constant for LGM times, which implies that an average LGM aging by ~ 600 14C yr corresponded to a global rise by ~ 85–115 μmol DIC kg−1 in the deep ocean. Thus, the prolonged residence time of ocean deep waters indeed made it possible to absorb an additional ~ 730–980 Gt DIC, ~ 1/3 of which transferred from intermediate waters. We infer that LGM deep-water O2 dropped to suboxic values of < 10 μmol kg−1 in the Atlantic sector of the Southern ocean, possibly also in the subpolar North Pacific. The transfer of aged deep-ocean carbon to the atmosphere and the ocean-atmosphere exchange are sufficient to account for the 190-‰ drop in atmospheric 14C during the so-called HS-1 "Mystery Interval". PY 2013 PD NOV SO Climate Of The Past SN 1814-9359 PU Copernicus Gesellschaft Mbh VL 9 IS 6 UT 000328274700012 BP 2595 EP 2614 DI 10.5194/cp-9-2595-2013 ID 40676 ER EF