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Abstract Current global inventories of ammonia emissions identify the ocean as the largest natural
source. This source depends on seawater pH, temperature, and the concentration of total seawater
ammonia (NHx(sw)), which reflects a balance between remineralization of organic matter, uptake by
plankton, and nitrification. Here we compare [NHx(sw)] from two global ocean biogeochemical models
(BEC and COBALT) against extensive ocean observations. Simulated [NHx(sw)] are generally biased high.
Improved simulation can be achieved in COBALT by increasing the plankton affinity for NHx within observed
ranges. The resulting global ocean emissions is 2.5 TgN a−1, much lower than current literature values
(7–23 TgN a−1), including the widely used Global Emissions InitiAtive (GEIA) inventory (8 TgN a−1). Such
a weak ocean source implies that continental sources contribute more than half of atmospheric NHx over
most of the ocean in the Northern Hemisphere. Ammonia emitted from oceanic sources is insufficient to
neutralize sulfate aerosol acidity, consistent with observations. There is evidence over the Equatorial Pacific
for a missing source of atmospheric ammonia that could be due to photolysis of marine organic nitrogen at
the ocean surface or in the atmosphere. Accommodating this possible missing source yields a global ocean
emission of ammonia in the range 2–5 TgN a−1, comparable in magnitude to other natural sources from
open fires and soils.

1. Introduction

Anthropogenic nitrogen fixation is estimated to contribute over 50% of present-day global nitrogen fixation
[Fowler et al., 2013]. One of the consequences of greater anthropogenic nitrogen fixation is an increase of
ammonia (NH3) emissions to the atmosphere, with recent estimates suggesting that anthropogenic sources,
primarily agriculture, account for over 70% of global NH3 emissions (65 TgN a−1) [Sutton et al., 2013]. Quantify-
ing the implications of this increase for air quality or nitrogen deposition depends in part on our knowledge of
natural sources. Previous studies suggest that the ocean is the largest natural source of NH3 to the atmosphere,
accounting for over 40% of all natural NH3 emissions (Table 1) and 15% of global NH3 emissions [Bouwman
et al., 1997; Paulot et al., 2014].

Observations have shown that the ocean could act as a net source of NH3 to the atmosphere locally [Quinn
et al., 1992, 1996; Gibb et al., 1999; Jickells et al., 2003; Johnson et al., 2008] depending on the concentration of
NH3 in seawater (NHx(sw) ≡ NH3(sw)+NH+

4 (sw)) as well as physical parameters such as temperature, pH, and
salinity [Bouwman et al., 1997; Johnson et al., 2008]. [NHx(sw)] is generally low relative to other dissolved nitro-
gen species [Gruber, 2008], and to our knowledge, no global survey exists unlike for other nutrients [e.g., Garcia
et al., 2014]. As a result, the magnitude of global oceanic NH3 emissions remains highly uncertain (Table 1).

A large marine source of NH3 could exert an important influence on the pH of marine aerosols by neutralizing
sulfuric acid produced from atmospheric oxidation of marine dimethylsulfide (DMS). NH3 has also been shown
to lower the vapor pressure of sulfuric acid and may thus contribute to new particle formation in the marine
atmosphere [Ball et al., 1999; Berndt et al., 2010; Benson et al., 2011; Zhang et al., 2011; Almeida et al., 2013],
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Table 1. Present-Day Natural NH3 Emissionsa

Ocean Open Fires Natural Soils Wildlife Volcanoes Total

Clarke and Porter [1993] 23 - - - - -

Schlesinger and Hartley [1992] 13 5 10 - - 28

Dentener and Crutzen [1994] 7 - 5.1 2.5 - 20.5b

Bouwman et al. [1997] 8.2 5.9 2.4 0.1 - 16.5

Sutton et al. [2013] 8.2 5 2.4 2.5 0.4 18.5

This work 2–5 3.5 2.4 0.3 0.9 9.5–12.5
aTgN a−1. Anthropogenic emissions in our work are 38 TgN a−1 and 30–46 TgN a−1 in the literature [Paulot et al., 2014;

Sutton et al., 2013]. Ocean and soils are gross sources, not accounting for atmospheric deposition.
bAdding 5 TgN a−1 from open fires.

although the growth of clusters may be inhibited by the large surface area of primary marine aerosol over the
ocean [Quinn and Bates, 2011].

Here we use simulated monthly concentrations of NHx(sw) from two ocean biogeochemistry models (BEC)
[Moore et al., 2001, 2004] and (COBALT) [Stock et al., 2014a] to simulate ocean emissions of ammonia in a global
atmospheric chemistry model (GEOS-Chem). We use both seawater and atmospheric observations to evaluate
the simulations and derive an estimate of the ocean source of ammonia to the atmosphere.

2. Observations

We use observations of atmospheric NH+
4 , Cl−, Na+, SO2−

4 aerosols, NH3 gas, and seawater NHx collected
over the last 20 years (Table 2). Atmospheric NH+

4 observations provide better spatial coverage than NHx(sw)
and gas phase NH3, especially in the Atlantic Ocean, which has been extensively sampled by the Atlantic
Meridional Transect (AMT) program [Aiken and Bale, 2000]. NH+

4 , SO2−
4 , Cl−, and Na+ aerosol observations

were collected by cyclonic filter packs [Quinn et al., 1988] and cascade impactors [Keene et al., 2009; Baker
et al., 2010]. NH3 was measured using filter packs [Johnson et al., 2008] or mist chambers [Keene et al., 1989].
NHx(sw) observations originate primarily from intensive campaigns, such as the U.S. Joint Global Flux Study
(http://usjgofs.whoi.edu/), which have limited spatial coverage but sample the main ocean biomes. Depend-
ing on the technique used, (Berthelot reaction [Solorzano et al., 1969; Whitledge et al., 1981], orthopthaldealde-
hyde fluorimetry [Holmes et al., 2001], flow injection ion chromatography [Gibb et al., 1999]), detection limits
vary from 0.002 to 0.08 mmol m−3.

3. Methods

Here we describe the simulation of oceanic ammonia in GEOS-Chem including the representation of NHx(sw)
sources and sinks in BEC and COBALT, the parameterization of the exchange of NH3 between ocean and atmo-
sphere, and the processes controlling the atmospheric budget of NH3 and its partitioning between gas and
particle phase.

3.1. Ocean Model
We use two 3-D global ocean models: the biogeochemistry/ecosystem/circulation model (BEC), [Moore et al.,
2004], which is integrated in the Community Climate System Model 3 ocean circulation model, and the
Carbon, Ocean Biogeochemistry and Lower Trophics model (COBALT), [Stock et al., 2014a, 2014b], which is
integrated in the Modular Ocean Model version 4p1 [Griffies, 2012]. These ecosystem models represent the
transport and biogeochemical cycling of oceanic carbon, nitrogen, phosphate, silicate, and iron. BEC explic-
itly represents zooplankton, small phytoplankton, diatoms, and diazotrophs. COBALT includes a more detailed
planktonic food web as well as bacteria. Organisms can meet their N requirements using both NHx(sw) and
NO−

3 (sw). NHx(sw) is preferentially taken up over NO−
3 and NHx(sw) concentration is generally less than 10%

of the NO−
3 (sw) concentration [Gruber, 2008]. The uptake (v) of both NO−

3 (sw) and NHx(sw) by small and large
phytoplankton follows Michaelis-Menten kinetics when only one nitrogen form is present,

vX =
Vmax[X]
[X] + 𝜅X
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Table 2. Observations Used in This Studya

Mission Time Frame Reference

Gas Phase NH3

AMT14 Apr–Jun 2004 Johnson et al. [2008]

AMT17 Oct–Nov 2005 Johnson et al. [2008]

ANT XXI/1 Oct–Nov 2006 Keene et al. [2009]

D267 Nov–Dec 2002 Johnson et al. [2008]

JR75 Jun–Jul 2002 Johnson et al. [2008]

R/V Oceanographer Apr–May 1988 Quinn et al. [1990]

S18/01 Sep 1995 Johnson et al. [2008]

Aerosol NH+
4 , Na+ , Cl− , SO2−

4
b

ACE1 Oct–Dec 1995 Bates et al. [1998]

ACE2 Jun–Jul 1997 Raes et al. [2000]

ACEASIA Mar–Apr 2001 Huebert et al. [2003]

AEROINDO Jan–Mar 1999 Bates et al. [2001]

AMT12 May–Jun 2003 Baker et al. [2010]

AMT13 Sep–Oct 2003 Baker et al. [2010]

AMT14 Apr–Jun 2004 Baker et al. [2010]

AMT15 Sep–Oct 2004 Baker et al. [2010]

AMT16c May–Jun 2005 Baker et al. [2010]

AMT17 Oct–Nov 2005 Baker et al. [2010]

ANT XXI/1 Oct–Nov 2006 Keene et al. [2009]

ANT 23-1 Oct–Nov 2005 Baker et al. [2010]

DYNAMO Oct–Dec 2011 Yoneyama et al. [2013]

FeeP Apr–May 2004 Dixon [2008]

ICEALOT Mar–Apr 2008 http://saga.pmel.noaa.gov/

INDOEXc Feb–Mar 1998 Krishnamurti et al. [1998]

JCR Sep–Oct 2001 Baker et al. [2010]

KH02-3 Sep–Oct 2002 Nakamura et al. [2005]

M55 Oct–Nov 2002 Baker et al. [2010]

PE203c Oct 2002 Sarthou et al. [2007]

RITS93 Mar–May 1993 http://saga.pmel.noaa.gov/

RITS94 Nov 1993 to Jan 1994 http://saga.pmel.noaa.gov/

VOCALS Oct–Nov 2008 Wood et al. [2011]

WACS2012 Aug 2012 http://saga.pmel.noaa.gov/

Seawater NHx

AMT11 Oct–Nov 2000 http://amt-uk.org/

AMT12 May–Jun 2003 http://amt-uk.org/

AMT14 Apr–Jun 2004 Johnson et al. [2008]

AMT17 Oct–Nov 2005 Johnson et al. [2008]

ANTARES Apr–May 1993 Bianchi et al. [1997]

Bermuda Sep–Apr 1992 Quinn et al. [1996]

Bonus-GoodHope Feb–Mar 2008 Joubert et al. [2011]

D253 May–Jun 2001 Popova et al. [2002]

D267 Nov–Dec 2002 Johnson et al. [2008]

EPREX May–Jun 2000 Sutka et al. [2004]

JAMSTEC Various http://www.godac.jamstec.go.jp

JR75 Jun–Jul 2002 Johnson et al. [2008]

PS211 Sep 1995 Johnson et al. [2008]
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Table 2. (continued)

Mission Time Frame Reference

RITS94 Nov 1993 to Jan 1994 http://saga.pmel.noaa.gov/

KN182-09 October 2005 Fernández et al. [2009]

R/V Oceanographer Apr–May 1988 Quinn et al. [1990]

R/V Meteor Mar–Apr 2003 Kuypers et al. [2005]

S18/01 Dec 2001 Johnson et al. [2008]

U.S. Joint Global Ocean Flux Study

– NABE Apr–July 1989 Ducklow and Harris [1993]

– EqPac Jan–Dec 1992 Murray et al. [1995]

– Arabian Sea Jan–Dec 1995 Smith et al. [1998]

– AESOPS Aug 1996 to Mar 1998 Smith et al. [2000]
aThe location of the different cruises is given in Figure S1.
bFine mode except otherwise noted.
cFine + coarse.

where X can be either NHx(sw) or NO−
3 (sw) and Vmax is the maximum uptake rate. In COBALT NO−

3 (sw) uptake

is reduced in inverse proportion to the degree of NHx(sw) saturation [Frost and Franzen, 1992], reflecting

the redox favorability of NHx(sw) for phytoplankton growth. For both NO−
3 (sw) and NHx(sw), vX is controlled

by the half saturation (𝜅X ). The stronger affinity of phytoplankton for NHx(sw) is reflected by a lower half

saturation for NHx(sw) than for NO−
3 (sw) (Table 3). COBALT and BEC use very different half saturations for

NHx(sw) but the same half saturations for NO−
3 (sw). This reflects the large range of measured ammonium

half saturations: 0.1–0.5 mmol m−3 [Eppley et al., 1969], 0.02–0.6 mmol m−3 [Shiomoto et al., 1994], and

0.01–0.08 mmol m−3 [Harrison et al., 1996]. Both BEC and COBALT include nitrification as an additional sink for

NHx(sw) and account for its postulated inhibition by light [Ward et al., 1982; Yool et al., 2007; Smith et al., 2014].

Neither model includes anammox [Gruber, 2008]. NHx sources are dominated by the biological remineraliza-

tion of organic matter (∼7 PgN a−1 and 6 PgN a−1 in the upper 100 m in COBALT and BEC, respectively). External

sources of N to the ocean include atmospheric deposition and riverine nitrogen based on Global-NEWS

(for COBALT only from Seitzinger et al. [2005]) and are much smaller (∼130 TgNa−1 [Gruber, 2004]) than

biological remineralization.

For COBALT, we use a monthly climatology of surface NHx(sw) and H+(sw) derived from the last 20 years of a

1060 year preindustrial control run of the Earth System Model ESM2M from the Geophysical Fluid Dynamics

Laboratory (GFDL), [Dunne et al., 2012, 2013; Stock et al., 2014b]. For BEC, we use results from a historical sim-

ulation of the CCSM3 ocean model for the late 20th century and early 21st century [Doney et al., 2009]. The

CCSM3 baseline simulation was spun up for approximately 800 years using a repeat annual cycle of physical

forcing and dust deposition. A 54 year hindcast was then conducted using National Centers for Environmental

Prediction atmospheric reanalysis, satellite, and climatological surface forcing beginning in year 1959. Here

we use a 12 month climatology computed from the last 10 years of the simulation for both NHx(sw)
and H+(sw).

Table 3. Half Saturation 𝜅X (Equation (1)) for Plankton Uptake of NO−
3 (sw) and NH+

4 (sw)a

Small Phytoplankton Large Phytoplankton

BEC COBALT COBALT-HA BEC COBALT COBALT-HA

NH+
4 0.005 0.1 0.02 0.08 0.5 0.1

NO−
3 0.5 0.5 0.5 2.5 2.5 2.5

aValue in mmol m−3 for the BEC model [Moore et al., 2004], the COBALT model [Stock et al., 2014a], and the high-affinity
COBALT model (COBALT-HA) implemented in this paper by reducing 𝜅 by a factor of 5 from the standard COBALT model.
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3.2. Atmosphere-Ocean Exchange of NH3

We follow Liss and Slater [1974] to represent the bidirectional exchange of NH3 between ocean and atmo-
sphere. The net flux F of NH3 from the ocean to the atmosphere is calculated as

F = −K
(
[NH3] − H⋆[NHx(sw)]

)
(1)

where [NH3] and [NHx(sw)] are the gas and seawater concentrations of ammonia and NHx , respectively, H⋆ is
the dimensionless effective gas-over-liquid Henry’s law constant for NHx and K is the transfer velocity between
atmosphere and ocean

H⋆ = H
1 + 10−pH+pKa

(2)

K =
[

1
kg

+ H⋆

kw

]−1

(3)

where H is the actual dimensionless Henry’s law constant for NH3, pKa is the −log10 of the acid dissociation
constant for NH+

4 ∕NH3, and kg and kw are the transfer velocities in the gas phase and water, respectively. We
use the pH simulated by BEC and COBALT in the surface layer (12 m and 10 m deep, respectively). H and pKa
are calculated following Johnson et al. [2008] and Bell et al. [2007]:

H =
(17.93T

273.15
exp

(4092
T

− 9.7
))−1

(4)

pKa = 10.04 − 3.16 × 10−2(T − 273.15) + 3.1 × 10−3S (5)

where T is the temperature (K) and S the salinity (practical salinity unit). kg(m s−1) is calculated following
Johnson [2010]:

kg = 10−3 +
u
⋆

13.3Sca + C
− 1

2
D − 5 + ln(SCa

)
2𝜅

(6)

where u
⋆

is the friction velocity (m s−1), Sca is the airside Schmidt number, CD is the drag coefficient, and 𝜅 is
the von Karman constant (𝜅 = 0.4). Following Smith [1980], we estimate CD and u

⋆
from the 10 m wind velocity

(u10 in m s−1) as CD = (u
⋆
∕u10)2 = 6.1 × 10−4 + 6.3 × 10−5u10 and u

⋆
= u10

√
6.1 × 10−4 + 6.3 × 10−5u10. kw

(cm h−1) is calculated following Nightingale et al. [2000]:

kw =
(

0.24u2
10 + 0.061u10

)√ Sc600

ScNH3

(7)

where Sc600 is the Schmidt number for CO2 in freshwater at 20∘ C (Sc600 = 600) and ScNH3
is the Schmidt

number for NH3 in water [Johnson, 2010]. Under ambient conditions (temperature, salinity, pH), K ≃ kg for
NH3 [Beale et al., 2014].

3.3. Atmospheric Model
We use the GEOS-Chem global 3-D chemical transport model v9.01–03 (www.geos-chem.org) to simulate the
fate of NHx in the atmosphere. All simulations are performed for 2006 and are preceded by a 6 month-long
spin-up. The model is driven by assimilated meteorological data from the NASA Goddard Earth Observing
System (GEOS-5) with horizontal resolution of 0.5∘ × 0.67∘and 72 vertical levels. We degrade the horizontal
resolution to 2∘ × 2.5∘for use in GEOS-Chem.

In the atmosphere, NHx can exist in the gas phase as NH3 and in the particle phase as NH+
4 . Marine observations

show that NH+
4 is primarily found in the fine mode (diameter <2.5 μm), and we neglect coarse mode NH+

4
[Fridlind and Jacobson, 2000; Baker et al., 2010]. We use ISORROPIA [Fountoukis and Nenes, 2007] to simulate
the thermodynamic equilibrium between non-sea-salt sulfate (nss − SO4T ≡ SO2−

4 + HSO−
4 + H2SO4), NO3T ≡

HNO3 + NO−
3 , ClT = HCl + Cl−, NHx ≡ NH3 + NH+

4 , and Na+.

The presence of nss-SO4T shifts the partitioning of ammonia from gas to the favored particle phase over the
gas phase. Far from coastal regions, the principal source of nss-SO4T is DMS oxidation [Chin and Jacob, 1996].

PAULOT ET AL. OCEAN AMMONIA EMISSIONS 1169
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Figure 1. Chloride depletion in fine sea salt aerosol in surface air. The figure shows the deficit in the aerosol Cl− :Na+

ratio relative to sea salt composition (0 means no depletion, 1 means total depletion). Annual mean values from
GEOS-Chem (background) are compared to the ship measurements (circles). The measurements are averaged onto a
7.5∘ × 7.5∘grid for readability.

Marine emissions of DMS are calculated using the monthly climatology of seawater DMS from Lana et al. [2011]
and kw (from equation (7)). The resulting annual flux is 22.5 TgS a−1, which falls within the range of emissions
calculated by Lana et al. [2011] (17.6–34.4 TgSa−1) and is 20% lower than their central estimate (28.1 TgS a−1).

The partitioning of NHx between gas and particle phases is also affected by the degree of mixing between
fine sea salt and nss-SO4T. In the standard GEOS-Chem model, ClT (≡ HCl + Cl−) and Na+ are not treated
explicitly but calculated based on the atmospheric concentration of fine mode sea salt [Jaeglé et al., 2011]
and the average abundance of Na+ and Cl− in seawater. In the accumulation mode, sea salt and nss-SO4T

are assumed to be completely mixed. This treatment favors gas phase NH3 and HCl since sea salt alkalin-
ity neutralizes some of the sulfate acidity (which would otherwise be neutralized by NH3 uptake) and HCl is
volatilized in the process [Fridlind and Jacobson, 2000]. Similar assumptions are made in other global chemi-
cal transport models [Feng and Penner, 2007; Luo et al., 2007]. Here we prescribe the fraction f SO4

NaCl of nss-SO4

that is internally mixed with fine sea salt and explicitly account for the volatilization of HCl. We find that
with f SO4

NaCl = 0.5, GEOS-Chem can capture the magnitude and spatial distribution of chloride depletion
(i.e., 1 − ([Cl−]∕[Na+])∕([Cl−(sw)]∕[Na+(sw)])) well away from coastal regions (Figure 1).

Global anthropogenic sources of NH3 are taken from the Global Emissions InitiAtive (GEIA), which is based
on the work of Bouwman et al. [1997]. For biofuel and other nonagricultural sources, we use emissions from
the Atmospheric Chemistry and Climate Model Intercomparison Project [Lamarque et al., 2010]. In the U.S.,
Canada, Europe, and East Asia, anthropogenic NH3 emissions are based on the National Emission Inven-
tory from the U.S. EPA (http://www.epa.gov/ttnchie1/net/2005inventory.html), the Criteria Air Contaminant
inventory (http://www.ec.gc.ca/air/default.asp?lang=En&n=7C43740B-1), the European Monitoring and Eval-
uation Programme [Centre on Emission Inventories and Projections, 2013], and Streets et al. [2003] inventories,
respectively. Open fire emissions are taken from the Global Fire Emissions Database version 3 with monthly
resolution [van der Werf et al., 2010]. Soil and wildlife emissions are taken from GEIA [Bouwman et al., 1997].
Here we also include NH3 emissions from volcanoes (0.9 TgN a−1) and sea bird colonies (0.22 TgN a−1 [Riddick
et al., 2012]). Following Sutton et al. [2008], volcanic emissions are calculated using a molar ratio of NH3 to
SO2 of 0.15 as reported by Uematsu et al. [2004]. Our estimate of the magnitude of volcanic sources is twice
as large as that of Sutton et al. [2008] reflecting larger volcanic SO2 emissions (13 TgSa−1 [Fisher et al., 2011]).
Table 1 summarizes our inventory of natural NH3 emissions. Terrestrial natural emissions are 7.1 TgN a−1, as
compared to 38 TgN a−1 for anthropogenic emissions (mainly from agriculture).

The representation of wet deposition in GEOS-Chem accounts for scavenging in convective updrafts as well
as in-cloud and below-cloud scavenging from large-scale precipitation. Aerosol NH+

4 is fully incorporated in
cloud droplets and ice crystals [Liu et al., 2001; Wang et al., 2011]. NH3 is scavenged by warm clouds and rain
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Figure 2. Surface seawater concentration (depth < 20 m) of total ammonia(NHx(sw)). Annual mean values from the
(top) BEC, (middle) COBALT, and (bottom) COBALT-HA models (background) are compared to the ship measurements
(circles). The measurements are averaged onto a 7.5∘ × 7.5∘grid for readability.

on the basis of its solubility in water [Amos et al., 2012] with a retention coefficient of 5% for riming in mixed
clouds [Wang et al., 2008]. NH3 is not scavenged by cold (ice) clouds. Fisher et al. [2011] found little sensitivity of
the GEOS-Chem simulation of NH+

4 to the assumptions made for NH3(g) scavenging in mixed and cold clouds.

4. Results and Discussion
4.1. Comparison With Seawater Observations
Figure 2 shows the observed concentrations of NHx(sw) in surface water and the simulated annual dis-
tributions in BEC and COBALT. Observations show a maximum in the Southern Ocean and a minimum in
subtropical gyres where concentrations are often below detection limit. The median observed [NHx(sw)] is
0.07 mmol m−3 with 50% of the observations between 0.02 and 0.22 mmol m−3.

COBALT generally predicts greater concentrations of NHx(sw) than BEC due to the use of a greater half
saturation constant for NHx(sw) (Table 3). Consistent with observations, both BEC and COBALT show greater

PAULOT ET AL. OCEAN AMMONIA EMISSIONS 1171
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Figure 3. Mean concentration of total surface (top) seawater ammonia NHx(sw) and (bottom) aerosol ammonium NH+
4

in different oceanic regions. Equatorial Pacific and Atlantic regions are defined as the high-chlorophyll regions (annual
average chlorophyll > 0.15 mg m−3) within 30∘of the equator. The subtropical gyres are defined as low-chlorophyll
regions (annual average chlorophyll < 0.05 mg m−3) within 40∘of the equator. The North Atlantic is defined as north of
40∘N and the Southern Ocean is defined as south of 40∘S. We exclude NH+

4 observations with modeled or observed
nss-SO4T exceeding 1 μg m−3 to limit continental influence. The bars indicate the 25th and 75th percentiles. The open
circles in Figure 3 (bottom) show the simulated atmospheric NHx . COBALT (blue), BEC (red), and COBALT-HA (green) refer
to the different ocean biogeochemical models, whose simulated distributions of [NHx(sw)] are used to calculate ocean
NH3 emissions in GEOS-Chem. Simulated [NH+

4 ] concentrations based on the GEIA ocean emissions are also shown
(purple). The simulated distribution of [NHx(sw)] and [NH+

4 ] are sampled to match the month and location of
the observations.

concentrations of NHx(sw) in the Equatorial Pacific and Southern Ocean than in the subtropical gyres. In both
models, the elevated concentration of NHx(sw) in the Equatorial Pacific and Southern Ocean is associated with
iron limitation of phytoplankton growth. In contrast, phytoplankton growth is predominately nitrogen lim-
ited in the Atlantic Ocean which leads to very low concentrations of NHx(sw). The greater contrast between
the Equatorial Atlantic and the Equatorial Pacific for [NHx(sw)] in BEC relative to COBALT may reflect different
treatments of the modulation of nitrate uptake by NHx(sw) and of multiple nutrient limitations on growth.
COBALT overestimates observed [NHx(sw)] in the Southern Pacific and Atlantic consistent with Stock et al.
[2014a], who showed that nutrient-rich waters associated with the Southern Ocean extend too far north
in COBALT.

Figure 3 (top) shows mean observed and simulated NHx(sw) concentrations in different oceanic regions.
BEC is biased high in the nutrient-rich Equatorial Pacific and Southern Ocean by over a factor of 3. In the
nutrient-poor subtropical gyres and in the Equatorial Atlantic, BEC underestimates [NHx(sw)] by over a factor
of 3. In contrast, COBALT is biased high by a factor of 2 in both nutrient-rich and nutrient-poor regions.

The heterogeneity of the biases and the very low concentrations of NHx(sw) in the Atlantic basin in BEC
(Figure 2) are indicative of uncertainties in the treatment of nutrient limitation and thus cannot be easily
reduced through a single parameter. In contrast, the spatial homogeneity of the high bias in COBALT suggests
that a simple calibration of ammonia half saturation may improve the simulations of [NHx(sw)]. The rationale
for this strategy is bolstered by the large uncertainty in the half-saturation constants for ammonia uptake,
and the fact that COBALT uses a half saturation near the high end of the observations. We thus conducted a
simulation with a “high-affinity” version of COBALT (referred to as COBALT-HA hereafter) where the ammonia
half-saturation constants for all phytoplankton groups were decreased by a factor of 5 (Table 3). These values
remain within the observed range, in particular, the results of Shiomoto et al. [1994] and Harrison et al. [1996]
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Figure 4. Annual gross oceanic emissions of NH3 calculated using simulated [NHx(sw)] from the BEC, COBALT, and COBALT-HA ocean biogeochemical models
(see equation (1)). Ocean emissions from the GEIA inventory are also shown. Total ocean gross emissions of NH3 are indicated inset. Hatches denote regions
where the ocean is a net source of reduced nitrogen to the atmosphere, i.e., where the net flux of NH3 from the ocean (equation (1)) exceeds the total deposition
of NH+

4 .

and higher than the values used in BEC. Figure 2 (bottom) shows that the simulated response of NHx(sw)
concentration to a change in 𝜅X is fairly homogeneous with a 3–4-fold decrease of surface [NHx(sw)]. Other
ecosystem properties (e.g., chlorophyll, [NO−

3 (sw)]) remain relatively constant since they are dictated by the
community response to the large-scale supply of nutrients and light that remain unchanged (Figures S2 and
S3 in the supporting information). COBALT-HA compares more favorably with the observations than either
BEC or COBALT. Basin-averaged [NHx(sw)] falls within the interquartile range of observed [NHx(sw)] in all
regions shown in Figure 3 (top).

4.2. Emissions
Figure 4 shows the spatial distribution of the gross ocean to air flux of NH3 (i.e., K H⋆[NHx(sw)] in equation (1))
calculated using [NHx(sw)] from COBALT, BEC, and COBALT-HA as well as the estimate from Bouwman et al.
[1997] (referred to as GEIA hereafter). We focus on the gross flux as it is independent of the atmospheric fate
of NHx and allows for direct comparison with previous estimates of ocean emissions (Table 1).

The simulated gross ocean source of NH3 ranges from 2 to 8 TgN a−1. In all models, simulated emissions are
maximum in the Equatorial Pacific and minimum at high latitudes. This meridional gradient is driven more
by the dependence of NH3 solubility on temperature (equations (4) and (5)) rather than by the distribution of
NHx(sw) in agreement with field data [Johnson et al., 2008]. Emissions driven by COBALT-HA, which are most
consistent with [NHx(sw)] observations (Figures 2 and 3, top), yield the lowest gross flux, almost 4 times lower
than that estimated by Bouwman et al. [1997]. Figure 4 also shows regions where the ocean is a net source of
reduced nitrogen to the atmosphere. All models show that the Equatorial and Southern Pacific are net sources
of reduced nitrogen, while the North Atlantic is a net sink. In the simulations driven by COBALT and GEIA, parts
of the North Pacific and Indian oceans are also net sources of reduced nitrogen.

Figure 5 (top left) shows that the low oceanic emissions inferred from COBALT-HA imply that continental
influences on atmospheric NHx in surface air extend over most of the ocean. The Equatorial Pacific and por-
tions of the Southern Ocean are the only regions where ocean emissions contribute over 70% of NHx in
surface air. In the North Atlantic and Pacific, ocean emissions generally contribute less than 50% of NHx . Over
the Southern Ocean, the influence of anthropogenic emissions is small but aviary emissions (0.18 TgN a−1

in the Southern Ocean) have a large regional influence, consistent with island and coastal observations
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Figure 5. Atmospheric distribution of total ammonia (NHx ) in surface air over the ocean. Annual mean values from the GEOS-Chem simulation driven by
COBALT-HA seawater [NHx(sw)] (background) are compared to ship measurements (circles). (top left) The model contribution of ocean emissions to [NHx].
(top right) The fractional neutralization of non-sea-salt sulfate by ammonia as expressed by the molar ratio of NHx to non-sea-salt total sulfate (nss-SO4T).
(bottom left) The concentrations of aerosol NH+

4 and (bottom right) gas phase NH3. The observations are averaged onto a 7.5∘ × 7.5∘grid for readability. For NH+
4 ,

we exclude observed values with nss SO4T exceeding 1 μg m−3 to limit the influence of continental sources.

[Legrand et al., 1998, 2012]. The large influence of nonmarine sources over most of the ocean limits our ability
to test the model representation of the marine source. Thus, we will focus our model evaluation on the
Equatorial Pacific and Southern Ocean where the marine source makes a major contribution.

4.3. Comparison With Atmospheric Observations
Figure 5 (top right panel) shows that when GEOS-Chem is driven by COBALT-HA the simulated molar ratio
of NHx to nss − SO4T concentrations is generally less than 2 over much of the remote ocean, consistent with
observations [see also Phinney et al., 2006; Zorn et al., 2008]. Under these conditions, aerosols are highly acidic
and most NHx is in the particulate phase, such that NH+

4 is sensitive to ocean NH3 emissions. Figure 5 also
shows simulated and observed NH+

4 concentrations (bottom left panel). Away from continental influence,
observations show a maximum in the Equatorial Pacific and a minimum in the subtropics and Southern Ocean.
This spatial distribution is broadly captured by GEOS-Chem driven by COBALT-HA [NHx(sw)].

Figure 3 compares simulated and observed NH+
4 concentrations in the same regions used for evaluating sim-

ulated [NHx(sw)]. We also include simulated NHx concentrations (open circles). In the simulations driven by
COBALT, BEC, or GEIA, NH3 can represent a large fraction of NHx , such that uncertainties in the partitioning
of NHx between gas and particle phases (e.g., from nss − SO2−

4 and the degree to which it is internally mixed
with sea salt) may obscure the relationship between [NH+

4 ] and ocean NH3 emissions. However, in COBALT-HA,
NH+

4 comprises most of NHx and simulated [NH+
4 ] is more directly related to ocean NH3 emissions.

We first focus on the Southern Ocean and Equatorial Pacific where simulated [NH+
4 ] is least impacted by

nonoceanic NH3 emissions. In the Southern Ocean, GEOS-Chem driven by COBALT-HA shows improved per-
formance compared to other model configurations (40% high bias). However, COBALT-HA [NH+

4 ] is biased
low in the Equatorial Pacific by over 50% even though it provides a good simulation of [NHx(sw)] in this
region. COBALT-HA is also biased low over the Equatorial Atlantic (−50%) and subtropical gyres (-65%). Over-
all GEOS-Chem underestimates [NH+

4 ] by 35% when driven by COBALT-HA [NHx(sw)]. GEOS-Chem predicts
that [NHx] is significantly impacted by nonoceanic sources of NH3 over many regions sampled by the research
cruises used in this study. The underestimate of [NHx] may thus be partly driven by uncertainties in the mag-
nitude of continental sources of NH3 and in the long-range transport of NHx. Isotopic measurements of [NH+

4 ]
in precipitation [Altieri et al., 2014] may provide better constraints on the contribution of continental sources
to marine atmospheric NHx .
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In the Equatorial Pacific the influence of nonoceanic sources is predicted to be small, which suggests that
additional marine sources of NH3 may exist. A possible source is the photolysis of dissolved organic nitrogen
(DON) either in seawater or in the atmosphere. In the atmosphere, NH3 may be produced by the photooxida-
tion of amines [Nielsen et al., 2011], which are important contributors to marine secondary organic aerosols
[Facchini et al., 2008]. Zhang and Anastasio [2003] also reported production of NH+

4 from the photolysis of
aerosol organic nitrogen, which may involve deamination of amino acids [Milne and Zika, 1993]. In seawater,
the production of NHx(sw) from the photolysis of DON has been demonstrated in many regions of the ocean
[Bushaw et al., 1996; Morell and Corredor, 2001; Kitidis et al., 2006; Aarnos et al., 2012; Xie et al., 2012; Rain-Franco
et al., 2014]. The vertical resolution of the [NHx(sw)] observations used here (∼10m) is not sufficient to eval-
uate any enhancement in [NHx(sw)] near the surface. Reproducing the observations of aerosol [NH+

4 ] in the
Equatorial Pacific would require a doubling of the ocean NH3 source in this region. Assuming a similar under-
estimate in other regions suggests that ocean emissions of NH3 are in the range 2–5 TgN a−1. More combined
observations of NHx(sw), NH3, and NH+

4 [e.g., Norman and Leck, 2005] in different seasons are needed to further
our understanding of the budget of atmospheric reduced nitrogen in the marine atmosphere.

5. Conclusion

Current global inventories of NH3 emissions identify the ocean as the dominant natural source and the most
important overall source of NH3 in many remote oceanic regions. We examined the constraint on that source
using a large ensemble of ship NH3/NH+

4 observations in the surface ocean and in marine air. Evaluation of two
global ocean biogeochemistry models (COBALT and BEC) indicates that they overestimate the concentrations
of total seawater ammonia concentrations (NHx(sw)). Better results are achieved in the COBALT model by
assuming higher affinity of plankton for ammonia. The resulting model (COBALT-HA) implies a much smaller
gross ocean source of ammonia to the atmosphere (2.5 TgN a−1). This estimate is much lower than the GEIA
emission inventory (8 TgN a−1) that is widely used in global atmospheric composition models.

We examined the implication of this lower ocean emission to the atmosphere in terms of atmospheric con-
centrations of NH3 and NH+

4 over the ocean simulated by the GEOS-Chem global chemical transport model.
We find that long-range transport from continental sources is the dominant source of NHx over most oceanic
regions. The ocean source dominates only over the Equatorial Pacific and parts of the Southern Ocean. Simu-
lated marine aerosols are highly acidic over most of the ocean, consistent with observations. The GEOS-Chem
model driven by COBALT-HA provides, in general, a good simulation of observed aerosol NH+

4 concentrations
over the ocean. An exception is the Equatorial Atlantic and Pacific where simulated [NH+

4 ] is biased low by
over twofold. This discrepancy suggests that other processes may contribute to the release of NH3 from the
ocean. We speculate that an additional source of NH3 may originate from the photolysis of dissolved organic
nitrogen in the surface water or in the atmosphere. Accommodating this missing source, we conclude that
the gross oceanic source of ammonia to the atmosphere is in the range of 2–5 TgN a−1, significantly lower
than current estimates. This implies that the ocean source is comparable to terrestrial natural sources from
open fires and from soils and that the anthropogenic perturbation to atmospheric reduced nitrogen may be
even greater than previously estimated [Galloway et al., 2004].
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