FN Archimer Export Format PT J TI QuasiGeostrophic Diagnosis of Mixed-Layer Dynamics Embedded in a Mesoscale Turbulent Field BT AF CHAVANNE, Cedric P. KLEIN, Patrice AS 1:1;2:2; FF 1:;2:; C1 Univ Quebec, Inst Sci Mer Rimouski, 310 Allee Ursulines, Rimouski, PQ G5L 3A1, Canada. IFREMER CNRS UBO IRD, Lab Phys Oceans, Plouzane, France. C2 UNIV QUEBEC, CANADA CNRS, FRANCE UM LOPS IF 3.13 TC 11 UR https://archimer.ifremer.fr/doc/00309/42031/41330.pdf LA English DT Article DE ;Circulation;Dynamics;Ageostrophic circulations;Mesoscale processes;Ocean dynamics;Vertical motion;Models and modeling;Diagnostics;Quasigeostrophic models AB A quasigeostrophic model is developed to diagnose the three-dimensional circulation, including the vertical velocity, in the upper ocean from high-resolution observations of sea surface height and buoyancy. The formulation for the adiabatic component departs from the classical surface quasigeostrophic framework considered before since it takes into account the stratification within the surface mixed layer that is usually much weaker than that in the ocean interior. To achieve this, the model approximates the ocean with two constant stratification layers: a finite-thickness surface layer (or the mixed layer) and an infinitely deep interior layer. It is shown that the leading-order adiabatic circulation is entirely determined if both the surface streamfunction and buoyancy anomalies are considered. The surface layer further includes a diabatic dynamical contribution. Parameterization of diabatic vertical velocities is based on their restoring impacts of the thermal wind balance that is perturbed by turbulent vertical mixing of momentum and buoyancy. The model skill in reproducing the three-dimensional circulation in the upper ocean from surface data is checked against the output of a high-resolution primitive equation numerical simulation PY 2016 PD JAN SO Journal Of Physical Oceanography SN 0022-3670 PU Amer Meteorological Soc VL 46 IS 1 UT 000368628200001 BP 275 EP 287 DI 10.1175/JPO-D-14-0178.1 ID 42031 ER EF