FN Archimer Export Format PT J TI Assembly of HE800 exopolysaccharide produced by a deep-sea hydrothermal bacterium into microgels for protein delivery applications BT AF ZYKWINSKA, Agata MARQUIS, Melanie SINQUIN, Corinne CUENOT, Stephane COLLIEC-JOUAULT, Sylvia AS 1:1;2:2;3:1;4:3;5:1; FF 1:PDG-RBE-BRM-LEMMMB;2:;3:PDG-RBE-BRM-LEMMMB;4:;5:PDG-RBE-BRM-LEMMMB; C1 IFREMER, Lab Ecosyst Microbiens & Mol Marines Biotechnol, F-44311 Nantes, France. INRA, Biopolymeres Interact Assemblages UR1268, F-44300 Nantes, France. Univ Nantes, CNRS, Inst Mat Jean Rouxel IMN, F-44322 Nantes, France. C2 IFREMER, FRANCE INRA, FRANCE UNIV NANTES, FRANCE SI NANTES SE PDG-RBE-BRM-LEMMMB IN WOS Ifremer jusqu'en 2018 copubli-france copubli-p187 copubli-univ-france IF 4.811 TC 16 UR https://archimer.ifremer.fr/doc/00311/42175/41475.pdf LA English DT Article DE ;Marine exopolysaccharide;Microgel particles;Microfibers;Microfluidic;Microencapsulation;Protein release AB Assembly of biopolymers into microgels is an elegant strategy for bioencapsulation with various potential biomedical applications. Such biocompatible and biodegradable microassemblies are developed not only to protect the encapsulated molecule but also to ensure its sustained local delivery. The present study describes the fabrication of microassemblies from a marine HE800 exopolysaccharide (EPS), which displays a glycosaminoglycan (GAG)-like structure and biological properties. HE800 EPS was assembled, through physical cross-linking with divalent ions, into microgel particles and microfibers using microfluidics. The microparticle morphology was highly affected by the polysaccharide concentration and its molecular weight. A model protein, namely Bovine Serum Albumin (BSA) was subsequently encapsulated within HE800 microparticles in one-step process using microfluidics. The protein release was tuned by the microparticle morphology with a lower protein amount released from the most homogeneous structures. Our findings demonstrate the high potential of HE800 EPS based microassemblies as innovative protein microcarriers for further biomedical applications. PY 2016 PD MAY SO Carbohydrate Polymers SN 0144-8617 PU Elsevier Sci Ltd VL 142 UT 000370529000028 BP 213 EP 221 DI 10.1016/j.carbpol.2016.01.056 ID 42175 ER EF