FN Archimer Export Format PT J TI Linking basin-scale connectivity, oceanography and population dynamics for the conservation and management of marine ecosystems BT AF DUBOIS, Melodie ROSSI, Vincent SER-GIACOMI, Enrico ARNAUD-HAOND, Sophie LOPEZ, Cristobal HERNANDEZ-GARCIA, Emilio AS 1:1,3;2:1;3:1;4:2;5:1;6:1; FF 1:;2:;3:;4:PDG-RBE-MARBEC-LHM;5:;6:; C1 CSIC UIB, IFISC Inst Cross Disciplinary Phys & Complex Syst, Palma De Mallorca 07122, Spain. IFREMER, UMR MARBEC Marine Biodivers Exploitat & Conserv, Bd Jean Monnet,BP 171, F-34203 Sete, France. EPHE CNRS UPVD, CRIOBE, USR 3278, 58 Av Paul Alduy, F-66860 Perpignan, France. C2 CSIC, SPAIN IFREMER, FRANCE EPHE, FRANCE SI SETE SE PDG-RBE-MARBEC-LHM UM MARBEC IN WOS Ifremer jusqu'en 2018 copubli-france copubli-europe IF 6.045 TC 72 UR https://archimer.ifremer.fr/doc/00311/42201/41534.pdf LA English DT Article DE ;Larval dispersal;local retention;marine connectivity;marine ecosystems;marine protected areas;Mediterranean Sea;population dynamics;population genetics;self-recruitment;source;sink dynamics AB Aim Assessing the spatial structure and dynamics of marine populations is still a major challenge in ecology. The need to manage marine resources from ecosystem and large-scale perspectives is recognized, but our partial understanding of oceanic connectivity limits the implementation of globally pertinent conservation planning. Based on a biophysical model for the entire Mediterranean Sea, this study takes an ecosystem approach to connectivity and provides a systematic characterization of broad-scale larval dispersal patterns. It builds on our knowledge of population dynamics and discusses the ecological and management implications. Location The semi-enclosed Mediterranean Sea and its marine ecosystems are used as a case study to investigate broad-scale connectivity patterns and to relate them to oceanography and population dynamics. Methods A flow network is constructed by evenly subdividing the basin into sub-regions which are interconnected through the transport of larvae by ocean currents. It allows for the computation of various connectivity metrics required to evaluate larval retention and exchange. Results Our basin-scale model predicts that retention processes are weak in the open ocean while they are significant in the coastal ocean and are favoured along certain coastlines due to specific oceanographic features. Moreover, we show that wind-driven divergent (convergent, respectively) oceanic regions are systematically characterized by larval sources (sinks, respectively). Finally, although these connectivity metrics have often been studied separately in the literature, we demonstrate they are interrelated under particular conditions. Their integrated analysis facilitates the appraisal of population dynamics, informing both genetic and demographic connectivities. Main conclusions This modelling framework helps ecologists and geneticists to formulate improved hypotheses of population structures and gene flow patterns and to design their sampling strategy accordingly. It is also useful in the implementation and assessment of future protection strategies, such as coastal and offshore marine reserves, by accounting for large-scale dispersal patterns, a missing component of current ecosystem management. PY 2016 PD MAY SO Global Ecology And Biogeography SN 1466-822X PU Wiley-blackwell VL 25 IS 5 UT 000374157700001 BP 503 EP 515 DI 10.1111/geb.12431 ID 42201 ER EF