FN Archimer Export Format PT J TI The use of multibeam backscatter and bathymetry as a means of identifying faunal assemblages in a deep-sea cold seep BT AF SEN, Arunima ONDREAS, Helene GAILLOT, Arnaud MARCON, Yann AUGUSTIN, Jean-Marie OLU, Karine AS 1:1,6;2:2;3:3;4:4;5:5;6:1; FF 1:PDG-REM-EEP-LEP;2:PDG-REM-GM-LCG;3:PDG-REM-GM-CTDI;4:;5:PDG-IMN-NSE-ASTI;6:PDG-REM-EEP-LEP; C1 IFREMER Ctr Bretagne, Inst Carnot Ifremer EDROME, Lab Environm Profond, Plouzane, France. IFREMER Ctr Bretagne, Inst Carnot Ifremer EDROME, Lab Geochim & Metallogenie, Plouzane, France. IFREMER Ctr Bretagne, Inst Carnot Ifremer EDROME, Serv Cartog Traitement Donnees & Instrumentat, Plouzane, France. Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Bremerhaven, Germany. IFREMER Ctr Bretagne, Serv Acoust Sism, Plouzane, France. UiT Arctic Univ Tromso, Dept Geol, Ctr Arct Gas Hydrate Environm & Climate CAGE, Tromso, Norway. C2 IFREMER, FRANCE IFREMER, FRANCE IFREMER, FRANCE INST A WEGENER, GERMANY IFREMER, FRANCE UNIV TROMSO, NORWAY SI BREST SE PDG-REM-EEP-LEP PDG-REM-GM-LCG PDG-REM-GM-CTDI PDG-IMN-NSE-ASTI IN WOS Ifremer jusqu'en 2018 copubli-europe IF 2.48 TC 23 UR https://archimer.ifremer.fr/doc/00312/42286/41612.pdf LA English DT Article CR WACS BO Pourquoi pas ? DE ;Mapping;Cold seeps;Multibeam;Bathymetry;Backscatter;Biogenic habitats AB Deep-sea ecosystems have attracted considerable commercial interest in recent years because of their potential to sustain a diverse range of mankind's industrial needs. If these systems are to be preserved or exploited in a sustainable manner, mapping habitats and species distributions is critical. As biodiversity at cold-seeps or other deep-sea ecosystems is driven by habitat heterogeneity, imagery is the obvious choice for characterizing these systems and has indeed proven extremely valuable towards mapping biogenic habitats formed by dense aggregations of large sized species, such as coral reefs, tubeworm bushes or bivalve beds. However, the acquisition of detailed images with resolution sufficient for reliable identification is extremely time consuming, labor intensive and highly susceptible to logistical issues. We developed a novel method for quickly mapping cold seep fauna and habitats over large areas, at the scale of squares of kilometers. Our method uses multibeam echosounder bathymetry and acoustic backscatter data, both segmented and reclassified based on topographical features and then combined to obtain a raster containing unique values incorporating both backscatter and bathymetry data. Two datasets, obtained from 30 m and 8 m above the seafloor were used and the results from the two datasets were compared. The method was applied to a cold seep community located in a pockmark in the deep Congo channel and we were able to ground truth the accuracy of our method against images of the area. The two datasets, obtained from different altitudes gave varying results: the 8 m altitude dataset reliably predicted tubeworms and carbonate rock, while the 30 m altitude dataset predicted tubeworms and vesicomyid clams. The 30 m dataset was more accurate than the 8 m altitude dataset in predicting distributions of tubeworms. Overall, all the predictions were quite accurate, with at least 90% of predictions being within 5 m of real distributions. PY 2016 PD APR SO Deep-sea Research Part I-oceanographic Research Papers SN 0967-0637 PU Pergamon-elsevier Science Ltd VL 110 UT 000373544500003 BP 33 EP 49 DI 10.1016/j.dsr.2016.01.005 ID 42286 ER EF