Modeling of hydrogen production by serpentinization in ultramafic-hosted hydrothermal systems: Application to the Rainbow field

Mügler C. 1,*, Jean-Baptiste P. 1, Perez Florian 1,2, Charlou Jean-Luc 2

1 Laboratoire des Sciences du Climat et de l'Environnement; UMR 8212 CEA-CNRS-UVSQ, Orme des Merisiers; 91191 Gif-sur-Yvette Cedex France
2 IFREMER Brest; Département Géosciences Marines; 29280 Plouzané France

* Corresponding author: C. Mügler, Tel: +33 1 69089363; Fax: +33 1 69087716; email address: claude.mugler@cea.fr

Abstract:

The production of hydrogen by serpentinization in ultramafic-hosted hydrothermal systems is simulated by coupling thermodynamic and dynamic modeling in the framework of a thermo-hydraulic single-pass model where a high-temperature hydrothermal fluid moves preferentially through a main canal of high permeability. The alteration of ultramafic rocks is modeled with a first-order kinetic formulation, wherein the serpentinization rate coefficient, Kr, takes the form: Kr = A exp(−α(T − T0)2). In this formulation, α determines the temperature range of the reaction and T0 is the temperature at which the serpentinization rate reaches its maximum. This model is applied to the Rainbow hydrothermal system, which is situated on the Mid-Atlantic Ridge, and characterized by a high temperature, a high mass flux, and a very high hydrogen concentration. The results show that a first-order kinetic law gives a useful representation of the kinetics of serpentinization. The estimated value for the parameter A in the temperature-dependent formulation of the serpentinization rate coefficient lies in the range (1–5) × 10−11 s−1. This effective parameter is several orders of magnitude lower than the values obtained from small grain-size experiments, but in agreement with other published modeling studies of natural systems. Numerical simulations show that the venting site is able to produce the observed high concentration of hydrogen during the whole continuous lifetime of the Rainbow site.

Keywords: first-order kinetic law, hydrothermal system, Rainbow vent site, reaction rate, serpentinization
INTRODUCTION

Hydrothermal activity along the axes of Mid-Ocean Ridges (MOR) is a key driver of energy and matter transfer from the interior of the Earth to the ocean floor. Seawater penetrates the permeable young crust, warms at depth, and reacts with the surrounding mantle rocks. At slow spreading MOR, this interaction can produce large volumes of serpentinized peridotite. Serpenitization of peridotite is an exothermic hydration process in which an assemblage of olivines \((\text{MgFe})_2\text{SiO}_4\) and pyroxenes (both orthopyroxenes \((\text{MgFe})(\text{SiO}_3)\) and clinopyroxenes \(\text{Ca(Fe,Mg)}\text{Si}_2\text{O}_5\)) undergoes hydration to hydrous silicates (e.g., serpentine \((\text{MgFe})_3\text{Si}_2\text{O}_5(\text{OH})_4\)), iron oxides (magnetite \(\text{Fe}_3\text{O}_4\)), and other alteration products such as brucite \((\text{MgFe})(\text{OH})_2\) and talc \((\text{MgFe})_3\text{Si}_4\text{O}_{10}(\text{OH})_2\) (Moody 1976, Frost 1985, MacDonald & Fyfe 1985, Janecky & Seyfried Jr. 1986). The extreme reducing conditions that prevail during the hydrothermal alteration of ultramafic rocks promote the formation of hydrogen through the reaction of water with ferrous iron-rich minerals contained in the rocks, primarily olivine and pyroxene: Ferrous iron \((\text{Fe}^{2+})\) is oxidized by the water to ferric iron \((\text{Fe}^{3+})\), which typically precipitates as magnetite; while \(\text{H}_2\text{O}\) is reduced to \(\text{H}_2\). \(\text{H}_2\) generation during serpentinization of olivine (the main mineral in most ultramafic rocks) can be represented by the general reaction (Klein et al. 2013):

\[
(\text{MgFe})_2\text{SiO}_4 + \alpha\text{H}_2\text{O} \rightarrow \alpha(\text{MgFe})(\text{OH})_2 + \alpha(\text{MgFe})_3\text{Fe}^{\text{II}}\text{IO}_4(\text{SiFe})_2\text{Fe}^{\text{III}}\text{O}_5(\text{OH})_4 + \alpha\text{Fe}_3\text{O}_4 + \alpha\text{H}_2
\]

olivine + water → brucite + serpentine + magnetite + hydrogen

The serpentine mineral group encompasses a variety of polymorphs such as lizardite, antigorite, chrysotile. The nature and the amount of the reaction products depend on the proportion of olivine and pyroxene in the initial peridotite, on the pressure and temperature conditions, on the ratio between the initial mass of water and the initial mass of rock (water/rock ratio, denoted \(w/r\)), and also on the fluid composition and on the evolution of the system composition. McCollom & Bach (2009) used numerical models based on chemical thermodynamics to
examine the impact of the temperature and the w/r ratio on the H₂ generation during
serpenization. Thermodynamic modeling was performed at equilibrium conditions and the
influence of kinetics was neglected. However, it is widely recognized that the kinetics of the
dissolution of olivine controls the speed of serpenization, and thus the production of

Martin & Fyfe (1970) investigated the reaction kinetics of serpenization. They performed
experiments with synthetic powders of olivine (forsterite Mg₂SiO₄) and pyroxene (enstatite
MgSiO₃), at temperatures between 100°C and 560°C, and at a pressure of 140 MPa. The initial
grain diameters were between 58 and 79 µm. The w/r ratio varied between 0.17 and 0.40. The
maximum reaction rate occurred at T~270°C, and tended to zero at T<150°C or T>375°C,
where the mineral alteration effectively stopped. The reaction rates obtained with a mixture of
olivine and pyroxene were very similar. These results were confirmed by the experiments
performed by Wegner & Ernst (1983) with a synthetic forsterite.

The w/r ratios used in these laboratory experiments were slightly lower than the w/r value
considered in the context of natural serpenization by Agrinier & Cannat (1997). However,
until 2011, the experimental results of Martin & Fyfe (1970) were the only ones available for
modeling the reaction rate of serpenization. As a consequence, they have been widely used
Iyer et al. 2010, Rudge et al. 2010). Several authors parameterized the experimental data of
Martin & Fyfe (1970) by a bell-shaped curve for the reaction rate coefficient, Kr, of the form:

\[K_r = A \exp \left(-\alpha (T - T_0)^2 \right). \]

(2)

In this equation, \(\alpha \) determines the temperature range of the reaction, and \(T_0 \) is the temperature
at which the serpenization rate reaches its maximum. Emmanuel & Berkowitz (2006)
estimated \(\alpha = 2.5 \times 10^{-4} \text{C}^{-2} \), \(T_0 = 270 \text{°C} \), and \(A = 2 \times 10^{-6} \text{ s}^{-1} \), although Kelemen & Matter (2008)
used \(\alpha = 2.09 \times 10^{-4} \text{C}^{-2} \), \(T_0 = 260 \text{°C} \), and \(A = 10^{-6} \text{ s}^{-1} \). The parameters \(\alpha \) and \(T_0 \) in Eq. (2) are
well constrained by the experimental data, but the rate parameter (i.e. \(A \)) that ultimately fixes
the magnitude of \(K_r \) in natural systems remains largely undetermined.

In a more recent experimental study, Marcaillou et al. (2011) investigated the alteration of
powdered natural peridotite (1 µm grain-size lherzolite) in pure water at 300°C and 30 MPa,
with a \(w/r\) ratio of 3/2. The reaction rate was successfully modeled by the first-order kinetic formulation Eq. (2) with \(A = 5 \times 10^{-7} \text{ s}^{-1}\) (Fig. 2, Marcaillou et al. 2011).

Based on experiments performed at 50 MPa on powders of natural olivine with a grain size of 1-150 \(\mu\)m, and a \(w/r\) ratio of 0.4, Malvoisin et al. (2012) proposed a mathematical formulation of the serpentinization kinetics which is more complicated than the first-order kinetics obtained in previous studies (Martin & Fyfe 1970, Marcaillou et al. 2011), and contains four parameters that have to be calibrated.

Ogasawara et al. (2013) also conducted serpentinization experiments at 250°C and 3.98 MPa using olivine and orthopyroxene powders with a grain-size of 25-125 \(\mu\)m. They obtained very high reaction rate coefficients, which may be due to the very high initial porosity in the experiments (~0.5). Furthermore, the reaction rate constant was one order of magnitude higher in the olivine zone \((K_r = 4.4 \times 10^{-4} \text{ s}^{-1})\) than in the orthopyroxene zone \((K_r = 2 \times 10^{-3} \text{ s}^{-1})\). In marked contrast with these results, other laboratory experiments on natural rock samples showed that orthopyroxene reacts significantly faster than olivine at a temperature of ~300°C (Klein et al. 2015). The kinetics of serpentinization were also experimentally determined by Seyfried et al. (2007) and Okamoto et al. (2011).

All these experiments have been performed with powders, raising the question of whether these results are still valid under the \textit{in situ} conditions prevailing at MOR. Malvoisin et al. (2014) showed that the serpentinization kinetics of olivine aggregates is two to three orders of magnitude slower than those measured in the same conditions on powders: \(A \sim 10^{-9} \text{ s}^{-1}\) for olivine aggregates (size~3.5 mm), and \(A \sim (0.1-1) \times 10^{-6} \text{ s}^{-1}\) for olivine powders (grain size~1-150 \(\mu\)m). We can imagine that the value of \(A\) in natural systems should be even lower, due to the much lower reactive surface area of \textit{in situ} coarse-grained ultramafic rock.

Rudge et al. (2010) slightly modified the parameterization of the rate coefficient, \(K_r\), given by Kelemen & Matter (2008), in order to introduce surface area effects:

\[
K_r = K_0 \left(\frac{a_0}{a} \right)^2 \exp \left(-\alpha (T - T_0)^2 \right), \quad (3)
\]

i.e., \(A = K_0 \times (a_0/a)^2\). In this formulation, \(a_0\) is the grain size \((58 \ \mu\text{m} \leq a_0 \leq 79 \ \mu\text{m})\) in the experiments by Martin & Fyfe (1970), and the factor \((a_0/a)^2\) reflects the scaling due to surface area effects, where \(a\) is the typical grain size controlling the reaction. As in Eq. (2), \(T_0\) is the temperature at which the serpentinization rate reaches its maximum, and \(K_0 \sim 10^{-6} \text{ s}^{-1}\) is the
corresponding peak rate for a grain size $a_0 = 70 \, \mu m$ (Kelemen & Matter 2008). Based on the assumption that the typical grain size of peridotite was around $a \sim 0.1 \, mm$, Rudge et al. (2010) adopted the value $A \sim 5 \times 10^{-7} \, s^{-1}$. This value of A is in agreement with the rates of olivine serpentinization ($A\sim(0.1-1)\times10^{-6} \, s^{-1}$) for powders with grain sizes in the range $\sim 1-150 \, \mu m$ as measured in the experiments performed by Malvoisin et al. (2012). For aggregates with a size of $\sim 3.5 \, mm$, Eq. (3) yields $A \sim 4 \times 10^{-10} \, s^{-1}$. Here again, this value is of the same order of magnitude as the value obtained from experiments, $A \sim 10^{-9} \, s^{-1}$, by Malvoisin et al. (2014).

But how can the value of this typical grain size be determined in a natural hydrothermal system? Furthermore, is this parameter meaningful? Although the data from the experiments on powders or aggregates can be used to quantitatively constrain the serpentinization rates in closed systems under constant conditions, the validity of applying these results to natural hydrothermal systems is not so evident. Indeed, these experiments were performed with a static fluid in contact with the rock, in a closed container. In oceanic hydrothermal systems, seawater flows through the rock. This motion can modify chemical reactions, and transport chemical species and heat. The value of the serpentinization rate could also increase or decrease during mineral alteration, depending on crystal grain size and geometry. Furthermore, serpentinization induces volumetric strains, which can result in mechanical fracturing of the ultramafic rock (MacDonald & Fyfe 1985). Such fracturing complicates the dynamics further by continually exposing fresh reactive surfaces. Both the closure of existing fractures and the generation of new fractures are phenomena that have been documented by two types of evidence, viz. by observations in nature and by observations in experiments during serpentinization (Andreani et al. 2004, Iyer et al. 2008a, Iyer et al. 2008b). For example, Andreani et al. (2004) explained the characteristics of serpentine banded veins at different scales by a crack-seal type process of formation, and Iyer et al. (2008b) presented some fracture patterns generated by the serpentinization of ultramafic rocks. On one hand, such volume expanding reaction may clog the pore space, reduce permeability, and limit the transport of fluids. On the other hand, generation of fractures may contribute to an acceleration of the hydration rate, by the production of both fresh reactive surfaces and new pathways for the infiltrating fluids. Jamtveit et al. (2000) presented both field observations and a simple network model to demonstrate how the transport of fluids into initially dry rock can be accelerated by perturbations in the local
stress field due to reactions with fluids. More recently, the physical processes involved in this
positive feedback were modeled and applied to the carbonation and serpentinization of
peridotite (Rudge et al., 2010, Kelemen & Hirth 2012, Plümper et al. 2012).

For all these reasons, it is expected that the value of the parameter A in natural systems is very
different from those obtained from small-scale experiments. For example, a value of $A=10^{10} \text{s}^{-1}$
was used by Emmanuel & Berkowitz (2006) to model serpentinization at the Lost City site.
Using seismic velocity as a proxy for the integrated progress of all serpentinization reactions,
Skelton et al. (2005) obtained time-averaged dissolution rates of $A=(0.2-2)\times10^{-12} \text{s}^{-1}$ for
orthopyroxene and olivine, and $A=(0.2-2)\times10^{-13} \text{s}^{-1}$ for clinopyroxene.

In this study, we establish a hydrogeological and geochemical model for describing and
quantifying the hydrogen production associated with the serpentinization process in natural
ultramafic-hosted hydrothermal systems. Our main objective is to see if the high hydrogen
concentrations measured in the hydrothermal fluids of the Rainbow site (MAR) can be
reproduced on the basis of simple assumptions regarding the thermo-hydraulic and
geochemical functioning of the hydrothermal system, and to derive a field scale value for the
serpentinization rate that could be of interest for other hydrothermal environments.

In the following, we first present the Rainbow hydrothermal system, discovered by German et
al. (1996) on the Mid-Atlantic Ridge (MAR). The circulation of the Rainbow hydrothermal
fluids has been studied recently by Perez et al. (2013) using a thermo-hydraulic model. The
large number of data (both from *in situ* measurements and modeling studies) that are available
for this site, together with its high hydrogen production rate, render it an excellent study case to
test our hydrogen production model. Modeling H$_2$ production and transport processes can help
to reach a better understanding of the functioning of this ultramafic-hosted hydrothermal
system.

Then, we present the modeling approach. In this study, we assume that the reaction zone at
Rainbow is entirely peridotite. The purpose of our chemical transport model is to determine if
in situ serpentinization could produce such high quantities of hydrogen from hydrothermal
alteration of peridotite. It also allows us to test the validity of applying the first-order kinetic
law in modeling serpentinization and the concomitant hydrogen production at the scale of a
natural hydrothermal system. The results are presented and discussed in the last section.

RAINFOREST VENT SITE DATA

Meaningful mathematical and computational models of seafloor hydrothermal circulation and
geochemistry should be able to account for all relevant physical/chemical processes at stake
and for all the available data that have been obtained from *in situ* measurements. The latter are
putting constraints on the models. The available data vary widely from one vent field to the
other, and in general the ability to formulate detailed mathematical and computational models
of any particular vent field is limited by a lack of data. The temperature, the hydrogen
concentration and the mass flux in the venting zone are of fundamental importance for models
of a high-temperature ultramafic hydrothermal site. For this reason, we have applied our
modeling approach to the Rainbow site.

The Rainbow hydrothermal vent field was discovered in 1994 (German et al. 1996). It is
located south of the Azores at 36°13.8′N-33°54.15′W, at a depth of 2275-2335 m. It is a
vigorous ultramafic-hosted hydrothermal system that emits hot fluids over a 20,000 m² area
from about ten major groups of extremely active black smokers located on an isolated sulfide
mound (Thurnherr & Richards 2001, Jean-Baptiste et al. 2004, German et al. 2010). The
Rainbow vent fluids have the highest temperature reported for MAR fluids (~360°C), the
highest chloride concentration (greater than 750 mM), the lowest end-member pH (2.8), and the
highest trace metal contents (Fe, Cu, Zn); they also have high K, Rb and Cs contents (Charlou
et al. 2010). One of the most interesting characteristics of the fluids emitted by the active
chimneys of the Rainbow vent site is their very high hydrogen concentration (up to 16
mmol kg⁻¹) (Charlou et al. 2002, 2010, Seyfried et al. 2011). The unique physical and chemical
characteristics of the Rainbow site have raised numerous questions about the processes at work.
The low-pH and high-temperature fluids issuing from the vents at Rainbow indicate that the
rates of olivine hydrolysis must be slow and that an intermittent magmatic heat source must be
present in its near proximity, because it is otherwise impossible to account for the high
temperature and the high flow rates observed at this site (Allen & Seyfried Jr. 2004). The cause
of the high hydrogen concentrations is still under debate (McCaig et al. 2007, Charlou et al. 2010, Seyfried et al. 2011).

The active venting area contains numerous active and inactive sulfide chimneys that lie on top of sulfide mounds built up mostly by the accumulation of collapsed, dead chimneys (Marques et al. 2006). A radiochemical study of the massive sulfides from the Rainbow hydrothermal site suggested that there was a first period of activation about 23,000 ± 1,500 years ago, followed by two periods of reactivation 3,200 and 2,000 years ago. This result gives an estimation of the age of the high-temperature hydrothermal activity, and shows the stability of the emplacement of the vent field (Kuznetsov et al. 2006). 14C dating of the shells confirmed that the hydrothermal activity in the Rainbow area began at least ~25,500 years BP (Lartaud et al. 2010). Radiocarbon dating of a core collected close to the vent site indicates that both the concentration and the flux of hydrothermally derived material increased significantly at some time between 8,000 and 12,000 years ago (Cave et al. 2002). This variation may reflect the initiation or intensification of hydrothermal venting at the Rainbow hydrothermal field at this time, perhaps linked to some specific tectonic event. Hydrothermal precipitates from the TAG hydrothermal field, which is located further north on the MAR, also indicate a long history of high-temperature activity; and that at the currently active TAG mound, episodic high-temperature venting has occurred every few thousand years, with current activity beginning ~80 years ago (Lalou et al. 1998, Lowell & Germanovitch 2004). Models of hydrothermal heat extraction from a convecting crystallizing magma chamber showed that relatively rapid amounts of magma replenishment would be needed to maintain observed hydrothermal heat output on a decadal time scale (Liu & Lowell 2009, Lowell et al. 2013). Hence, although the age of the high-temperature hydrothermal Rainbow field is several thousands of years, its functioning is certainly intermittent, and its continuous lifetime may be only tens to hundreds of years.

Since the first analyses of vent fluid samples (Charlou et al. 1998), the chemistry and temperature of the active vents have remained stable for more than a decade (Douville et al. 2002, Charlou et al. 2002, Charlou et al. 2010, Seyfried et al. 2011). Furthermore, the homogeneity of both the chemistry and temperature of the vent fluids has brought the authors
to the assumption that all smokers at this vent site have a single common fluid source, and that there is a magmatic body residing deep underneath (Charlou et al. 2010, Seyfried et al. 2011).

The vent fluids of the ultramafic-hosted Rainbow hydrothermal system do not only exhibit high temperature, unique chemistry and long duration of venting, but they also have high rates of fluid flow. Based on the 3He budget of the site, the estimated mass flux of high-temperature fluid exiting at the Rainbow vent field is $W_u = 490 \pm 220 \text{ kg s}^{-1}$ (Jean-Baptiste et al. 2004, German et al. 2010). This corresponds to a heat flux of 1320±600 MW (Jean-Baptiste et al. 2004), and is in agreement with the earlier estimates of Thurnherr & Richards (2001), based on hydrographic considerations: 2300±2000 MW. This high heat output is in the same range as those of the Lucky Strike site: 3800±1200 MW (Jean-Baptiste et al. 1998) and of the TAG site: 1810±693 MW (Wichers et al. 2005), both on the MAR. It is also in excellent agreement with modeled heat fluxes for slow spreading ridges obtained by calculating the available heat from hydrothermal cooling in the neovolcanic zone (Baker 2007). Hence, the estimated mass flux per square meter, Q_u, is constrained as:

$$1.35 \times 10^{-2} \text{ kg s}^{-1} \text{ m}^{-2} < Q_u < 3.55 \times 10^{-2} \text{ kg s}^{-1} \text{ m}^{-2}$$ \hspace{1cm} (4)

The water flux, Q_u, corresponds to a mean mass flux of hot water in the 20,000 m\(^2\)-section of the discharge zone of the Rainbow site.

METHOD

Composition of the rock

Rocks with a harzburgitic composition are most representative of ultramafic rocks that are exposed to fluid circulation beneath the seafloor at slow spreading ridges (Allen & Seyfried Jr. 2003). Accordingly, we performed calculations with a reactant rock composed of 80 wt% olivine (5.419 moles Mg\(_{1.8}\)Fe\(_{0.2}\)SiO\(_4\) per kg of rock), 15 wt% orthopyroxene (1.427 moles Mg\(_{0.85}\)Fe\(_{0.15}\)SiO\(_3\) kg\(^{-1}\)), and 5 wt% clinopyroxene (0.228 moles CaMg\(_{0.9}\)Fe\(_{0.1}\)(SiO\(_3\))\(_2\) kg\(^{-1}\)). This composition is the same as the one used by McCollom & Bach (2009). The initial density of the rock (before serpentinization processes start) is $\sim 3000 \text{ kg m}^{-3}$. The initial fluid reactant was assumed to be composed of seawater depleted in O\(_2\) and sulphate and partially depleted in Mg and Ca so as to achieve the charge balance (Table 1). This fluid is nominally intended to
represent seawater whose composition has been modified by circulation through the crust (McCollom & Bach 2009).

All calculations were performed for a pressure of 35 MPa, which is appropriate for hydrothermal systems such as the Rainbow site.

Thermodynamic modeling

Calculations of the chemical equilibrium were performed using the computer program, EQ3/6, version 8.0 (Wolery 1992), with a customized thermodynamic database compiled using Supcrtr92 (Johnson et al. 1992). Activity coefficients for aqueous species were calculated using the B-dot equation (Helgeson et al. 1981). Chrysotile $\text{Mg}_3\text{Si}_2\text{O}_5(\text{OH})_4$ was used in the calculations to represent the serpentine group. Solid solutions were included in the database for many minerals but only Fe-for-Mg exchange was considered for these solid solutions (McCollom & Bach 2009). Table 2 lists the solid solutions included in the thermodynamic database. Ideal site mixing was assumed for all solid solutions. All these assumptions are the same as those described and justified by McCollom & Bach (2009).

Serpentinization rate

The purpose of our modeling approach is to test the validity of applying the first-order kinetic law for modeling the serpentinization process and the concomitant hydrogen production at the scale of natural systems. We adopt the first-order kinetic formulation of Emmanuel & Berkowitz (2006) for the reaction rate, R, of the alteration of the harzburgite. With this formulation, the rate of serpentinization, $R = - \frac{\partial m_r}{\partial t}$ (where m_r is the mass of harzburgite within a given volume of rock), is a linear function of the reactive surface area, S_r, which is a characteristic of the mass m_r of harzburgite. Hence, $\frac{\partial m_r}{\partial t} = - k S_r$. The units corresponding to the quantities m_r, S_r, and k are kg, m², and kg m⁻² s⁻¹, respectively. During chemical reactions the ratio S_r/m_r may vary but if it is assumed to be constant throughout the serpentinization process it follows:

$$R = - \frac{\partial m_r}{\partial t} = K_r m_r. \quad (5)$$

We will call hereafter R the serpentinization rate. The rate coefficient K_r can be described by Eq. (2): $K_r = A \exp(-\alpha (T-T_0)^2)$ with $\alpha = 2.5 \times 10^{-4} \text{C}^{-2}$, and $T_0 = 270^\circ\text{C}$. We chose this equation 10
for the rate coefficient, instead of the formulation of Malvoisin et al. (2012), because of its simplicity (a small number of parameters) and its robustness. Indeed, this formulation successfully modeled both the experiments of Martin & Fyfe (1970), with \(A = 2 \times 10^6 \text{ s}^{-1} \), and the experiments of Marcaillou et al. (2011), with \(A = 5 \times 10^7 \text{ s}^{-1} \). We chose to only calibrate the \(A \) parameter. In fact, as explained in the introduction, the two parameters \(\alpha \) and \(T_0 \) (which define the temperature dependence of the reaction rate) are rather well constrained by the experimental data and not expected to be affected by the change of scale from laboratory to \textit{in situ} experiments. Sensitivity tests allowing for uncertainties of a factor of 2 on \(\alpha \) and \(\pm 30^\circ \text{C} \) on \(T_0 \) show that such uncertainties affect the hydrogen production rate \(R \) by \(\sim 40\% \) only. This is almost negligible compared to the variations of the parameter \(A \) which can be as large as several orders of magnitude depending on grain size.

The \(w/r \) mass ratio is usually defined as the ratio between the initial mass of water and the initial mass of rock in a closed box. This “static” \(w/r \) is used to model experiments in thermodynamic equilibrium in closed systems. We previously used this definition to calculate the hydrogen production as a function of the temperature and \(w/r \), using a thermodynamic database. In an open system, the static fluid/rock ratio, \(w/r \), can be replaced by a “dynamic” ratio, which is expressed as a function of the total mass of fluid, \(\Delta m_w \), that is involved in the serpentinization of a mass of peridotite, \(\Delta m_r \), during a given interval of time, \(\Delta t \) (Allen & Seyfried Jr. 2004):

\[
\frac{w}{r} = \frac{\Delta m_w/\Delta t}{\Delta m_r/\Delta t} = \frac{W}{R}
\]

where \(W \) is the fluid mass flow rate in kg s\(^{-1}\), and \(R \) is the serpentinization rate in kg s\(^{-1}\). We will use this “dynamic” water/rock ratio \(W/R \) in the following sections for the modeling of production and transport of hydrogen.

The thermo-hydraulic model

In our recent thermo-hydraulic modeling study of the Rainbow site (Perez et al., 2013), we came to the conclusion that a homogeneous permeability field does not exist that would be able to reproduce simultaneously the high exiting temperatures and the high mass flux which characterize the Rainbow site. Instead, we showed that introducing the assumption that the hydrothermal circulation preferentially takes place through a deep high-permeability zone can account for both the high discharge rate and the high temperatures that are observed \textit{in situ} at
the vent site. Such a single-pass type of modeling approach has already been adopted in several
studies to describe some of the Mid-Ocean-Ridge hydrothermal systems (e.g. Lowell &
Germanovich 2004, Lowell et al. 2013). Figure 1 displays a cross-section of the subsurface
hydrothermal system modeled. This single-pass configuration is very similar to the two-
dimensional geometry described in Fig. 19 of Perez et al. (2013). The main difference is that
we used an axially symmetric geometry instead of a two-dimensional one, because this appears
to be better adapted to the morphological specificity of the Rainbow site. Indeed, Perez (2012)
showed that simulations with an axially symmetric geometry yielded mass fluxes, venting-
surface areas, and exiting fluid temperatures that are in better agreement with the values
measured than previous 2D simulations. Following Jupp & Schultz 2004, the main
characteristics of the geometry and the permeability of the single-pass model can be estimated
from the simplified energy and mass balance equations of the system; they are summarized in
Table 3 and their uncertainty is discussed in the last section.

The energy and mass balance equations for the fluid flowing through the porous medium are
numerically solved with the same computer code (Cast3M code, http://www-cast3m.cea.fr) as
the one used and described in Perez et al. (2013). The procedure can be briefly summarized as
follows. A first-order implicit-time scheme and a finite-volume method for spatial
discretization are used with the BiCGSTAB solver, together with a biconjugate gradient
stabilized algorithm for solving non-symmetric systems (Perez et al., 2013). The diffusive part
is solved with a finite-volume method using the multipoint flux approximation. For the
convective part, the spatial scheme depends on the value of the Peclet number Pe: the scheme
degenerates into a second-order accuracy centered scheme for dominant diffusion transport
($Pe<2$) and into a first-order upwind scheme for dominant advective transport. The numerical
scheme adopted is able to solve highly nonlinear coupled equations both on long and short
spatiotemporal scales. The full details have been described in (Perez et al. 2013).

In the thermo-hydraulic simulation, the fluid is initially at rest and the temperature is equal to
T_0 in the whole porous domain. The fluid enters at a temperature of T_0 and exits with a zero
diffusive heat flux.

The bottom boundary is impermeable, and we use a Dirichlet-type condition for the
temperature to model the driver of the convection of the hydrothermal fluids (see Fig. 1). This
isothermal lower boundary requires that an infinite reservoir of heat is available to drive the
hydrothermal system. Such an assumption is acceptable for short time scales of decades or a
few hundreds of years at a low spreading ridge axis (Liu & Lowell 2009; Lowell et al. 2013). We have adopted a mesh inspired by the one used in the previous study of Perez et al. (2013). It is made of 30,751 grid elements. The spatial resolution is coarse in the recharge zone (top right corner of Fig.1) where $\Delta x=20$ m and $\Delta z=30$ m, and increases towards the bottom of the domain and the central discharge zone where $\Delta x=2$ m and $\Delta z=0.5$ m. We have verified that the numerical results are not mesh-dependent.

Transport of hydrogen

After a few decades, the modeled hydrothermal circulation reaches a quasi-steady state. Then, the corresponding temperature and pressure fields are used to simulate the transport of hydrogen by advection and diffusion

$$\phi \frac{\partial [H_2]}{\partial t} = \nabla \cdot (D \nabla [H_2] - \bar{u}[H_2]) + S_{H_2},$$

(7)

where D is the diffusion coefficient, and ϕ the porosity. We adopted the values $D=10^{-8}$ m2 s$^{-1}$ and $\phi=0.1$ (Jupp & Schultz 2004, Perez et al. 2013). We did not take into account the dispersion effects in this single-pass type model where transport is mainly convective in the high-permeability canal and diffusive in the surrounding low-permeability zone. Cast3M is not a reactive code. We have been able to overcome this restriction by including the serpentinization reactions via the modeling of a production term S_{H_2} in the hydrogen transport equation (7). This production term is a function of the temperature T and the w/r ratio as described in the thermodynamic model. In our modeling, we take into account only the serpentinization reaction: we assume that the reaction zone at Rainbow is entirely peridotite and that the produced hydrogen does not react during the transport. Furthermore, as the thermo-hydraulic and transport modelings are not coupled but only solved sequentially, the water consumption and heat production of the serpentinization reactions are neglected. Perez (2012) has shown the validity of these assumptions. The hydrogen transport equation (7) is numerically solved in the same way as the mass and energy balance equations (see Eq. (7) in Perez et al. 2013 for more details).
RESULTS AND DISCUSSION

In a first step, equilibrium calculations were performed to calculate H₂ production during seawater-peridotite alteration for temperatures from 25°C to 400°C, and water/rock (w/r) mass ratios in the range 0.2-75. As the thermodynamic properties of the polymorphs involved in the serpentinization reactions are relatively insensitive to pressure, all calculations were performed for a pressure of 35 MPa. Figures 2A,B display the evolution of the H₂ production as a function of the temperature and the w/r ratio. Figure 2 shows that the calculated hydrogen concentration at equilibrium, denoted by [H₂], varies strongly with temperature. For all values of the w/r ratio, [H₂] first increases with temperature, then reaches a peak at T ~ 320°C, and finally decreases sharply at higher temperatures. The increase of [H₂] over the temperature interval from T = 25°C to T ~ 320°C is due to the increase of the formation of magnetite. At temperatures above ~325°C, olivine is in thermodynamic equilibrium with the fluid and with secondary alteration minerals, such that the amount of Fe that is converted to magnetite then drops. At all temperatures, the amount of H₂ produced per kilogram of harzburgite increases with increasing w/r ratio (Fig. 2A). In contrast, the resulting hydrogen concentration (expressed in mol per kg of post-reaction residual water) decreases with increasing w/r ratio (Fig. 2B), as the amount of fluid is larger at higher w/r ratios. The evolution of [H₂] versus T at w/r = 1, and versus w/r at T = 100, 300, and 350 °C has already been modeled by McCollom & Bach (2009). Our results are in agreement with these previous results, but extend the results for the H₂ production rates to a wider range of temperatures and w/r ratios.

In a second step, we performed the thermo-hydraulic simulation of the Rainbow hydrothermal site in the framework of the single-pass model, as previously described. Figures 3A,B display the temperature and scalar velocity fields when the hydrothermal circulation is established, at t=50 years. We see that fresh fluid first enters the domain through the recharge zone, then heats up while it is flowing above the magmatic heat source, and finally exits at high temperature through the central high-permeability discharge zone. The maximum temperature reached by the exiting fluid is 369°C. The scalar velocities are in the range (0.2-5)×10⁻⁶ m s⁻¹ and (1-5)×10⁻⁵ m s⁻¹, in the horizontal heating zone and in the vertical canal, respectively. At the top of the discharge zone, the mass flux of the hydrothermal flow reaches values of 300 kg s⁻¹. All these values are in good agreement with those for the temperatures and mass fluxes that have been
measured in situ at the Rainbow vent site \((T_u \sim 360^\circ C \text{ and } Q_u \sim 490\pm220 \text{ kg s}^{-1}) \), and with the theoretical values deduced from the single-pass model (Darcy velocities in the horizontal heating zone, \(u_0 \), and in the discharge zone, \(u_u \), equal to \(5\times10^{-7} \text{ and } 3.5\times10^{-5} \text{ m s}^{-1} \), respectively, cf. Table 3 and Eqs. (2)-(3) in Jupp & Schultz 2004).

In a third step, we used the thermo-hydraulic results (temperature and velocity fields) to perform the simulation of the production and transport of hydrogen across the Rainbow site. Figures 4A,B display the hydrogen production and concentration fields after 50 years of continuous heat and hydrogen outputs of the hydrothermal site. For this simulation, the parameter \(A \) in the temperature-dependent formulation of the serpentinization rate coefficient (cf. Eq. (2)) is chosen equal to \(10^{-11} \text{ s}^{-1} \). Comparing Figs 3A and 4A clearly shows that hydrogen is essentially produced in the zone where the temperature is in the range that is relevant for serpentinization reactions, namely, from \(250^\circ C \) to \(350^\circ C \). The location of this zone has not been imposed \textit{ab initio} but is a result of the simulation. In marked contrast with these results, we observe that the temperature of the fluid moving through the vertical discharge zone is higher than \(350^\circ C \) and clearly out of the temperature range where serpentinization reactions can occur. As a consequence, no hydrogen is produced in the discharge zone. Furthermore, as shown in Fig. 4B, the hydrogen is less concentrated in the high-permeability canal where it is quickly evacuated by the high-velocity flow than in the surrounding low-permeability zone where it has diffused.

Two similar simulations of the production and transport of hydrogen have been performed with two other values of the parameter \(A \): \(10^{-10} \text{ and } 10^{-12} \text{ s}^{-1} \). Figure 5 displays the time-evolution of the maximum \(H_2 \) concentration that exits from the hydrothermal system. Each curve corresponds to a particular value of the parameter \(A \). Figure 5 illustrates the high sensitivity of [\(H_2 \)] to the kinetics of the reaction of serpentinization. Figure 5 shows that [\(H_2 \)] \(\sim 16 \text{ mmol kg}^{-1} \) during the whole lifetime of the hydrothermal site (several decades or a few hundreds of years) if \(A = 10^{-11} \text{ s}^{-1} \). This value of [\(H_2 \)] is in good agreement with the value measured \textit{in situ} (Charlou et al. 2002, 2010, Seyfried et al. 2011). If \(A \) is lower than \(10^{-11} \text{ s}^{-1} \), the reaction of serpentinization is too slow with respect to the velocity of the flow (cf. \(A = 10^{-12} \text{ s}^{-1} \) in Fig. 5). Only a small quantity of hydrogen travels in the high-permeability canal and the \(H_2 \) concentration in the venting fluid is low ([\(H_2 \] < 2 mmol kg\(^{-1}\)). On the contrary, if \(A \) is larger
than 10^{11} s$^{-1}$, the fast reaction of serpentinization produces a high concentration of hydrogen ($[\text{H}_2] > 70$ mmol kg$^{-1}$) but also consumes quickly a large quantity of harzburgite (cf. $A = 10^{10}$ s$^{-1}$ in Fig. 5). The resulting decrease with time of the volume of harzburgite available for the reaction induces the decrease of the H_2 concentration. However, even after several decades of serpentinization, the value for $[\text{H}_2]$ in the venting fluid still remains higher than its in situ measured value.

Experiments performed at 500 bars, and temperatures between 250 and 350°C, whereby the initial grain size (IGS) of natural olivine was in the range 1-150 µm, showed that the serpentinization kinetics for IGS>5 µm is inversely proportional to the square of the IGS (Malvoisin et al. 2012). Using the formulation by Rudge et al. 2010, $A=K_0 \times (a_0/a)^2$ with $K_0=10^{-6}$ s$^{-1}$ and $a_0=70$ µm (see equation 3 above), the best value estimated from our simulations, $A=10^{-11}$ s$^{-1}$, thus corresponds to an effective “grain size” a~2 centimeters. This may be seen as the characteristic length scale of in situ serpentinization processes.

Our A value ($A=10^{11}$ s$^{-1}$) is lower than the value of A used by Emmanuel & Berkowitz (2006) in their model approach ($A=10^{10}$ s$^{-1}$). But both of these values are considerably lower than those obtained from laboratory experiments on powders ($A=(0.1-1) \times 10^6$ s$^{-1}$, Martin & Fyfe 1970, Marcaillou et al. 2011, Malvoisin et al. 2012) or on aggregates ($A=10^{-9}$ s$^{-1}$, Malvoisin et al. 2014). In natural systems, in situ coarse-grained ultramafic rocks certainly have a much lower reactive surface area than powders or aggregates used in experiments. The values for the parameter A calculated from our model are about one or two orders of magnitude higher than values obtained by Skelton et al. (2005) from in situ seismic velocity data: $A=(0.2-2) \times 10^{-12}$ s$^{-1}$ for orthopyroxene and olivine, and $(0.2-2) \times 10^{-13}$ s$^{-1}$ for clinopyroxene. Thus, all the values of the parameter A determined from the in situ data are several orders of magnitude lower than those obtained from small grain-size experiments. This reflects the larger characteristic length scale of in situ serpentinization processes as expected.

Model robustness and uncertainties

In this study, we use a single-pass type thermo-hydraulic model to study hydrogen production through serpentinization at the Rainbow hydrothermal field by coupling thermodynamic and dynamic modeling. Our numerical simulations show that the serpentinization of peridotites is able to sustain high hydrogen production throughout the lifetime of the venting site. The zone
where serpentinization occurs is large enough and contains enough harzburgite to produce hydrogen on the whole continuous lifetime of the Rainbow site. Therefore, this thermo-hydraulic model not only successfully reproduces the observed high temperatures and mass flow rate, but also allows to explain the high hydrogen production rates that are necessary to account for the elevated H$_2$ concentrations measured in the exiting fluids. Nevertheless, the complexity of the system and the lack of data on the subsurface plumbing and hydrologic flow paths require the introduction of simplifying assumptions, just like for any underconstrained natural system which is investigated by means of a modeling approach. These assumptions translate into a set of imposed parameters, whose values are more-or-less uncertain. Therefore, this raises the question of the impacts of these fixed parameters on results and conclusions. In the single-pass configuration however, these various parameters obey simple scaling laws imposed by the mass and energy conservation equations constrained by the discharge yield of the exiting fluids and the temperature data (Jupp and Schultz, 2004). This fact reduces the number of free parameters drastically.

Permeability field

Permeability is a key parameter for determining hydrologic flow paths in subsurface hydrothermal systems. Unfortunately, it is also one of the most ill-determined parameters in natural geologic settings. Our parametric study of the permeability field (Perez et al., 2013) led to the conclusion that a homogeneous permeability field does not exist that would be able to reproduce simultaneously the high exiting temperatures and the high mass flux which characterize the Rainbow site. Instead, we showed that a single-pass model, that is based on the assumption that the hydrothermal circulation preferentially takes place through a deep high-permeability zone, can account for both the high discharge rate and the high temperatures that are observed *in situ* at the vent site. This conclusion is supported by previous studies, which show that localized venting with a high-heat output requires zones with a high permeability to the focus discharge. It might be more easy to explain this by a single-pass model than by high-Rayleigh-number convection in a homogeneous porous medium (Lowell 1991, Lowell et al. 1995).

The permeabilities k_d of the central discharge zone and k_r of the horizontal high-permeability canal can be deduced in a simple way from the geometric parameters of the system using the mass conservation equations:
- k_d is imposed by the mass flow and temperature of the fluids exiting through the central discharge zone of radius R_d: $k_d = \mu_\ell W_d/\rho_u g (\rho_o - \rho_u) \pi R_d^2$ (see eq. 3 in Jupp & Schultz 2004).

Notation is indicated in Table 3.

k_r is linked to k_d by the mass conservation equation, such that $k_r = k_d R_d^2 / 2 L_r^2$ (eq. 23 in Jupp & Schultz 2004), where L_r is the thickness of the horizontal high-permeability zone at the base of the system.

Therefore, once the various size parameters of the computational domain are defined (see below), the only value that still can be arbitrarily chosen is that of the permeability outside the high-permeability pathways. Sensitivity tests (Perez, 2012) showed that the results of the model are insensitive to this parameter provided that its value is small enough (in practise, two orders of magnitude lower than that of the high-permeability canal). Making the permeability small enough will ensure that the thermo-hydraulic model is in the single-pass mode. It is therefore capable of reproducing the observed high temperature and high discharge yield.

Size of the computational domain and thermal boundary conditions

In a typical situation, a magmatic heat source is located at a depth L_z of 1000 to 2000 m below the seafloor, coinciding with the base of the sheeted dikes and the upper level of the gabbros (Richardson et al. 1987, Nehlig 1994) and has a width R_r of ~ 1000 m (Detrick et al. 1987, Jupp and Schultz 2004). For the Rainbow site, the venting surface area is ~ 20,000 m2 (which corresponds to R_r=80m), with a distance R between the central discharge zone and the outer recharge area of a few kms. The temperature imposed at the base of the domain facing the heating zone (Fig. 1), typically 500-700°C, corresponds to the transition between brittle (permeable) and ductile (impermeable) rocks (Lister 1974, 1983, Lowell & Burnell 1991). This is in agreement with evidence from metamorphic assemblages and fluid inclusions obtained from both mid-ocean ridges and ophiolites (see Wilcock, 1998 and references therein).

Sensitivity tests (Perez 2012) indicate that the kinetic parameters of the system are quite insensitive to the value of L_z and R, which is in conformity with the expectations for a single-pass configuration. They also show that the radius of the heating zone, R_r, is imposed by the heat output of the hydrothermal system.

Consequently, the only “loose” parameter is the thickness L_r of the horizontal high-permeability pathway at the base of the system, which may vary around a typical value of $L_r \sim$
Therefore, the model has been run with three different values of L_r (60 m, 80 m and 240 m) in addition to the chosen value $L_r = 160$ m, with the aim of evaluating the sensitivity of the model results to this size parameter. Over the range 60 m-160 m, the dynamical behavior of the model changes rather little, and the calculated A parameter varies from $A = 4 \times 10^{-11}$ to $A = 10^{-11}$ s$^{-1}$. For $L_r = 240$ m, which corresponds to a Rayleigh number in the horizontal high-permeability pathway that is too small, the flow is dominated by isolated rising and falling plumes whose sizes are smaller than the channel thickness L_r. The model is no longer in the single-pass configuration, and is no longer able to reproduce the mass fluxes observed.

Hydrogen production model

Our calculations were performed for rocks with a harzburgitic composition (80 wt% olivine, 15 wt% orthopyroxene, and 5 wt% clinopyroxene). This is the most representative composition for ultramafic rocks exposed to fluid circulation beneath the seafloor (McCollom & Bach 2009). However, serpentinization reactions and hydrogen production vary with the composition of ultramafic rocks. Klein et al. (2013) explored the composition controls on hydrogen production during serpentinization for a large range of initial olivine/pyroxene ratios. Thermodynamic predictions suggest that serpentinization of olivine-rich lithologies produces more hydrogen (up to a factor of 2 to 3). Therefore, one must keep in mind that the results of the present study depends, in a quantitative way, on the assumption regarding the initial composition of the ultramafic rocks undergoing serpentinization at the Rainbow site. The impact of the uncertainty on the initial rock composition on our estimated A parameter, probably less than a factor of 2, remains modest however, considering the fact that the kinetics of serpentinization reactions may vary by orders of magnitude depending on the *in situ* conditions (see Introduction above). It is also worth noting that we neglected hydrogen generation through ferric-serpentine production whereas it is known to lead to significant hydrogen concentrations at low temperature (Klein et al. 2009). An additional simulation using the results of Klein et al. (2009) indicates that the calibration of A with the value of $[H_2]$ measured *in situ* changes from $A = 10^{-11}$ to $A = 1.5 \times 10^{-11}$.

In conclusion, based on the sensitivity tests performed to evaluate the impact of the various uncertainties on the model results, we estimate that the appropriate value of the parameter A, to
describe the *in situ* kinetics of serpentinization at the Rainbow hydrothermal site, lies in the range (1-5)×10^{-11} s^{-1}.

CONCLUSION

Most of the modeling studies concerned with mid-ocean ridge hydrothermal systems are “process-oriented” rather than site-specific, illustrating the inadequacy of the available data as a basis for constructing realistic models. However, in addition to its excellent temperature and fluid geochemistry data, which have remained remarkably stable over more than a decade (including unusually high hydrogen concentrations), the Rainbow site has the specificity of benefiting from an accurate flow rate estimate. This important additional constraint has motivated us to tentatively explore the production of hydrogen by serpentinization in this ultramafic-hosted hydrothermal system by coupling thermodynamic and dynamic modeling. This dynamic model builds further on earlier thermo-hydraulic results for this site (Perez et al. 2013), which showed that a homogeneous permeability field does not exist that would be able to reproduce simultaneously the high exiting temperatures and the high mass flux which characterize the Rainbow site, and that a single-pass type model, based on the assumption that the hydrothermal circulation preferentially takes place through a deep high-permeability zone, is required.

The model results show that a first-order kinetic law is a useful representation of the kinetics of serpentinization. Although it certainly does not fully reflect the complexity of surface reactions in nature, it can be used as an effective law at larger scale. The estimated value for the parameter A in the temperature-dependent formulation of the serpentinization rate coefficient lies in the range $\sim (1-5)\times10^{-11}$ s$^{-1}$, which corresponds to an effective “grain size” $a\sim(1-2)$ cm. This value may be viewed as the characteristic length scale of *in situ* serpentinization processes. The value for A is in agreement with other published modeling studies of natural systems. It lies between the small values determined from *in situ* data for olivine ($A \sim (0.2-2)\times10^{-12}$ s$^{-1}$) and the very high values obtained from small grain-size experiments ($A \sim (0.1-1)\times10^{-6}$ s$^{-1}$).
Finally, our results confirm that the serpentinization of peridotites is able to sustain high hydrogen production rates throughout the lifetime of an ultramafic-hosted system such as the Rainbow site.

Future sophistications could be incorporated into this simplified initial version, in order to carry out process-oriented studies, such as investigating the impact of the feedback of serpentinization reactions on rock mechanical properties (clogging effect, rock expansion, …) and hence on thermics and hydraulics, or the impact of ideal vs non-ideal mixing in the geochemical model.

This highlights the necessity of including the simplified modeling approach proposed in the present study into the emerging computational geoscience methodology, such that a better understanding of the serpentinization process associated with hydrogen production could be achieved in the future.

ACKNOWLEDGMENTS

The authors acknowledge Thomas McCollom for his useful help in building the thermodynamic database for calculations of chemical equilibrium of solid solutions with the computer program EQ3/6. The authors are also thankful to R. Lowell, M. Appold, and two other anonymous reviewers for their suggestions and constructive comments.
Agrinier P & Cannat M (1997) Oxygen-isotope constraints on serpentinization processes in ultramafic rocks from the Mid-Atlantic Ridge (23°N), 596 pp., Ocean Drilling Program, College Station, TX, United States.

Delescluse M & Chamot-Rooke N (2008) Serpentinization pulse in the actively deforming

Iyer K, Rüpke LH, Morgan JP (2010) Feedbacks between mantle hydration and hydrothermal...

Table 1: Initial fluid composition used in the model.

<table>
<thead>
<tr>
<th>Component</th>
<th>Cl</th>
<th>Na⁺</th>
<th>Mg²⁺</th>
<th>K⁺</th>
<th>HCO₃⁻</th>
<th>SiO₂(aq)</th>
<th>Al³⁺</th>
<th>Ca²⁺</th>
<th>Fe²⁺</th>
<th>SO₄²⁻</th>
<th>O₂(aq)</th>
<th>H₂</th>
<th>pH</th>
<th>Eh (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration</td>
<td>545.4</td>
<td>464.0</td>
<td>37.0</td>
<td>9.8</td>
<td>2.3</td>
<td>0.16</td>
<td>2×10⁻⁵</td>
<td>10⁻³</td>
<td>1.5×10⁻⁶</td>
<td>0</td>
<td>0</td>
<td>7.7</td>
<td>0.275</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: List of solid solutions included in the thermodynamic database.

<table>
<thead>
<tr>
<th>Solid solution</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olivine (Fe,Mg)₂SiO₄</td>
<td>Fayalite and Forsterite</td>
</tr>
<tr>
<td>Orthopyroxene (Fe,Mg)SiO₃</td>
<td>Enstatite and Ferrosilite</td>
</tr>
<tr>
<td>Clinopyroxene Ca(Fe,Mg)Si₂O₆</td>
<td>Diopside and Hedenbergite</td>
</tr>
<tr>
<td>Serpentine (Fe,Mg)₃Si₄O₁₀(OH)₄</td>
<td>Chrysotile and Greenalite</td>
</tr>
<tr>
<td>Brucite (Mg,Fe)OH₂</td>
<td>Brucite and Fe(OH)₂</td>
</tr>
<tr>
<td>Talc (Fe,Mg)₃Si₄O₁₀(OH)₂</td>
<td>Talc and Minnesotaite</td>
</tr>
<tr>
<td>Amphibole Ca₂(Fe,Mg)₅Si₈O₂₂(OH)₂</td>
<td>Tremolite and Ferrotremolite</td>
</tr>
<tr>
<td>Notation</td>
<td>Definition</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>S_d</td>
<td>Surface of the hot-fluid discharge zone</td>
</tr>
<tr>
<td>L_z</td>
<td>Domain thickness</td>
</tr>
<tr>
<td>W_u</td>
<td>Mass flux of high-temperature vent fluids</td>
</tr>
<tr>
<td>$Q_u = W_u / S_d$</td>
<td>Mass flux per square meter</td>
</tr>
<tr>
<td>T_u</td>
<td>Maximum temperature of the vent fluids</td>
</tr>
<tr>
<td>ρ_u</td>
<td>Density of the upflowing fluid at $(P, T) = (390$ bars, 360°C)</td>
</tr>
<tr>
<td>μ_u</td>
<td>Dynamic viscosity of the upflowing fluid</td>
</tr>
<tr>
<td>$c_p(T_u)$</td>
<td>Heat capacity of upflowing fluid at $(P, T) = (390$ bars, 360°C)</td>
</tr>
<tr>
<td>h_u</td>
<td>Specific enthalpy of upflowing fluid</td>
</tr>
<tr>
<td>ρ_0</td>
<td>Density of the cold fluid at $(P, T) = (390$ bars, 2°C)</td>
</tr>
<tr>
<td>μ_0</td>
<td>Dynamic viscosity of the cold fluid at $(P, T) = (390$ bars, 2°C)</td>
</tr>
<tr>
<td>$c_p(T_0)$</td>
<td>Heat capacity of the cold fluid at $(P, T) = (390$ bars, 2°C)</td>
</tr>
<tr>
<td>h_0</td>
<td>Specific enthalpy of the cold fluid</td>
</tr>
<tr>
<td>T_m</td>
<td>Maximum temperature of the fluid due to the presence of the magma</td>
</tr>
<tr>
<td>λ</td>
<td>Crust’s thermal conductivity</td>
</tr>
<tr>
<td>R_d</td>
<td>Radius of the hot-fluid discharge zone</td>
</tr>
<tr>
<td>R_r</td>
<td>Radius of the heating zone above the magmatic body</td>
</tr>
<tr>
<td>L_z</td>
<td>Thickness of the heating zone</td>
</tr>
<tr>
<td>δ_t</td>
<td>Thickness of the conductive boundary layer in the heating zone</td>
</tr>
<tr>
<td>k_d</td>
<td>Permeability in the discharge zone</td>
</tr>
<tr>
<td>k_r</td>
<td>Permeability in the heating zone</td>
</tr>
</tbody>
</table>

Table 3: Description of the different parameters of the single-pass model and corresponding values obtained from measurements and theoretical formulations for the Rainbow hydrothermal site.
Figure 1: Configuration of the single-pass geometry used to model the Rainbow vent site.

Figure 2: H$_2$ production as a function of the temperature T (°C), and for various values of the water/rock ratio (0.2 < w/r < 75). The concentration [H$_2$] is expressed in mol per kg of initial harzburgite (A), and mol per kg of water remaining after reaction (B).
Figure 3: Modeling of the Rainbow vent site with an axisymmetric single-pass geometry. Snapshots of the vertical fields of the temperature (A), and the scalar velocity (B), when the hydrothermal circulation is established.

Figure 4: Modeling of production and transport of hydrogen at the Rainbow vent site with an axisymmetric single-pass geometry. Snapshots of the vertical fields of the source (A), and the concentration of hydrogen (B), when the hydrothermal circulation is established.
Figure 5: Time evolution of the maximum hydrogen concentration that exits from the hydrothermal system, for three different values of the serpentinization rate coefficient.