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Abstract :   
 
The Messinian Salinity Crisis (MSC), which widely affected the whole Mediterranean basin, induced rapid 
and spectacular palaeoenvironmental changes. It led to a major erosion of the onshore areas and the 
upper parts of the continental shelves and slopes, as well as important evaporitic deposits in the offshore 
deep basins. The Corsica Basin belongs to the so-called “intermediate-depth basin” type because of its 
location between the coastal plain–shelf area of East Corsica and deeper marine basins in the northern 
Tyrrhenian Sea. The MSC event took place in the Corsica Basin during a period of active regional 
tectonics, contemporaneous with the opening of the Tyrrhenian Sea, as well as during the development 
of the Corsica Basin and the Elba-Pianosa Ridge.  
 
Based on the interpretation of high-resolution seismic reflection profiles and a new 1:250,000 scale 
synthetic geological map, we establish that the MSC is recorded in the Corsica Basin through the 
occurrence of two sedimentary formations bounded by three remarkable surfaces. These seismic markers 
suggest local and temporal variations in relative water level and associated depositional environments 
that differ between the north and south of the Corsica Basin. During the MSC, the northern sector (Golo 
Basin) was emerged, whereas the southern sector (Orbo Basin) was often flooded or submerged. In the 
Orbo Basin, the deposits record both an episode of intra-MSC climate change and regional tectonic 
events. During the MSC, the Corsica Basin was a perched lake, isolated from the deeper Tyrrhenian 
basins. The connection with the Tyrrhenian basins was re-established during the final stages of the MSC, 
before the catastrophic Pliocene reflooding, initiated by retrogressive erosion during a relative lowstand. 
An extensive network of incised valleys was thus established in the Orbo basin, allowing the drainage of 
the Corsica Basin southwards into the deeper Tyrrhenian basins. These markers record the active 
regional tectonic context throughout the MSC. The Orbo basin was strongly subsident along its western 
rim, while its eastern rim was uplifted. In turn, the Golo basin subsided from middle Pliocene times 
onwards, while the northern, eastern and southern edges of the Corsica Basin were deformed and 
uplifted. 
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erosion during a relative lowstand. An extensive network of incised valleys was thus 

established in the Orbo basin, allowing the drainage of the Corsica Basin southwards into the 

deeper Tyrrhenian basins. These markers record the active regional tectonic context 

throughout the MSC. The Orbo basin was strongly subsident along its western rim, while its 

eastern rim was uplifted. In turn, the Golo basin subsided from middle Pliocene times 

onwards, while the northern, eastern and southern edges of the Corsica Basin were deformed 

and uplifted.  

Keywords 

Messinian Salinity Crisis, syn-MSC deposits, Incision network, Corsica Basin, 

Tyrrhenian Sea, Pliocene reflooding. 

Abbreviations 

EPR= Elba-Pianosa Ridge 

MSC= Messinian Salinity Crisis 

Fm= formation 
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1. INTRODUCTION 

The Messinian Salinity Crisis (MSC), which affected the whole Mediterranean area (Fig. 

1) at the end of the Miocene between 5.97 and 5.33 Ma, induced rapid and spectacular 

palaeo-environmental changes (Hsü et al., 1973,Krijgsman et al., 1999,CIESM, 2008,Manzi et 

al., 2013,Roveri et al., 2014a)and references therein). The MSC came to an end when the 

Mediterranean Sea was reconnected to the Atlantic Ocean via the Gibraltar Strait at around 

5.46 Ma (Bache et al., 2012)), leading to catastrophic reflooding at 5.33 Ma (Roveri et al., 

2014). The first stage (5.97-5.6 Ma) is mainly defined from onshore outcrops in the marginal 

or peripheral basins, where a thinner evaporite sequence has been recognized known as the 

Primary Lower Gypsum (PLG) (Riding et al., 1998,Roveri et al., 2009,Roveri et al., 2014b); 

Manzi et al., 2013 and references therein). The PLG is usually incised by a major erosion 

surface correlated with the Margin Erosion Surface (MES) (Roveri et al., 2014b) observed on 

the Mediterranean margins. The second (5.6-5.55 Ma) and third (5.55-5.33 Ma) stages 

(Roveri et al., 2014b,CIESM, 2008) are characterized by a continuing fall in sea-level, 

becoming maximal during the second stage, with subaerial erosion (MES) of the continental 

margins and coeval with the deposition of a thick evaporite sequence in the deep basins (up 

to 1,400 m thick, i.e. Montadert et al., 1970; (Montadert et al., 1970,Hsü et al., 1973,Krijgsman 

et al., 1999)This evaporite sequence is composed of three distinct seismic units, recently 

renamed the Upper Unit (UU), the Mobile Unit (MU) and the Lower Unit (LU) by Lofi et al. 

(2011). An ambiguity persists concerning the age of the end of the sea-level fall. Thus, the 

MSC deposits, described in terms of sequence stratigraphy by Gorini et al. (2015), have been 

divided into two seismic megasequences: i) a Messinian Lower Megasequence (MLM) coeval 

with the sea-level fall (5.97-5.55 Ma) includes forced regressive deltas, mass transport 

complexes, deep basin clastics and evaporites (LU). ii) a Messinian Upper Megasequence 

(MUM), coeval with an increase in base level (5.55-5.33 Ma), includes evaporite units (MU 

and UU), fluvial incised valley fill, transgressive marine sands and material reworked by the 

catastrophic reflooding. This stratigraphic pattern is effectively in accordance with the 

transgressive geometry of the UU (Ryan et al., 1973; Mauffret, 1976) and the age of 5.55 Ma 
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for the MSC paroxysmal phase (CIESM, 2008, Gorini et al., 2015 and references therein). 

Moreover, around 5.5 Ma ago, there were significant changes in the palaeogeography and 

climate of the Mediterranean region (Fauquette et al., 2006; Manzi et al., 2013; Roveri et al., 

2014). 

No continuous record of the MSC has been observed between the onshore marginal 

basins and offshore deep basins. However, owing to their specific paleodepths at the onset of 

the MSC (between 200 and 1000 m), the intermediate-depth basins (Maillard et al. 2014, 

Ochoa et al., 2015) may provide important information on events and sea-level fluctuations 

during the MSC. Intermediate-depth basins have been defined as more or less restricted 

areas, corresponding to intermittent or thin depocentres located between the shallow platform 

and the continental slope. These areas were subject to strong erosion during the MSC on one 

side, while thick evaporitic sequences were deposited in deep basins on the other side. In 

some intermediate-depth basins, an important seismic unit, known as the Bedded Unit (BU; 

Lofi et al., 2011), has also been identified, as in the corsican basins (Guennoc et al., 

2011,Thinon et al., 2011) and in the Balearic Promontory (Maillard et al., 2014,Ochoa et al., 

2015). In the Balearic promontory, but only in the onshore coastal and shallow water areas, 

the BU has been interpreted as an “offshore expression of the PLG” sequence below the MES 

(Ochoa et al., 2015). From Gorini et al. (2015), the BU units are coeval with MUM deposition 

in the deep basin, post-dating the rapid draining of the intermediate-depth basin.  

In addition to the MSC seismic units, some remarkable surfaces are also markers of the 

MSC. Clearly identified on all Mediterranean margins, the MES is expressed as a single, 

generalized and polygenic erosional surface (Bache et al., 2010,Lofi et al., 2005,Maillard and 

Mauffret, 2006,Lofi et al., 2011). At the foot of the Mediterranean margins, the MES divides 

laterally into at least two remarkable surfaces: 1) Bottom Erosion Surface (BES, Lofi et al., 

2011) is considered to be the bounding erosive surface marking the base of the syn-MSC 

deposits; 2) Top Erosion Surface (TES), which corresponds to the bounding surface marking 

the top of the syn-MSC deposits, characterized by major incisions.  
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This study focuses on the interaction between MSC markers and the Neogene evolution 

of the Corsica Basin. The Corsica Basin is an intermediate-depth basin, which formed in a 

shelf environment during the pre-MSC Miocene (Fig. 1, Fig. 2). Our study is based on 

mapping of the various syn-MSC seismic units and surfaces, as well as on an analysis of their 

seismic facies and spatial distributions. Owing to the MSC markers, post-MSC vertical 

motions can be highlighted and an evolution can be proposed for the Corsica Basin since the 

end of the Miocene.  

2. REGIONAL SETTING AND STATE OF KNOWLEDGE 

2.1. Present-day physiography 

Corsica is classically divided into two main geological domains (Fig. 2): Hercynian 

Corsica, which extends southwards into Sardinia, and Alpine Corsica, which makes up the 

southern extension of the western Alps. These two domains abut along a major tectonic 

contact striking NNW-SSE from Ile Rousse to Solenzara passing through Corte. Onshore, the 

Eastern Corsica coastal area is characterized by alternating rugged relief and elongated 

plains such as the Bastia and Aleria plains (Caron et al., 1990b,Janzein et al., 1982). 

Offshore, the East-Corsican margin (Fig. 1b) is marked by a relatively broad (ca. 10 km) 

continental shelf which narrows considerably north of Bastia and south of Solenzara (ca. 

2 km). Inversely, the shelf area widens at both ends, north of Cap Corse and east of the 

Bonifacio Straits. The Caprera Canyon, the largest canyon of the eastern Corsica-Sardinia 

margin, cuts the north-Sardinian continental shelf following a NE-SW trend.  

The narrow continental slope is incised by numerous canyons which convey detrital 

materials supplied by the rivers of eastern Corsica. These materials are discharged and 

confined into the deeper Corsica Basin, where they form turbidite systems (Bellaiche et al., 

1993,Gervais et al., 2004,Gervais et al., 2006b,Gervais et al., 2006a,Calvès et al., 

2012,Stanley et al., 1980).  

To the east, the Corsica Basin lies between the East-Corsica margin, the Tuscan shelf 

(where the MSC is recorded by the MES) and the North Tyrrhenian Sea deep basins, in which 

Messinian evaporite units have been described (Moussat, 1983,Gaullier et al., 2014). The 
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Corsica Basin is separated from the Tuscan Shelf by the Elba-Pianosa Ridge (EPR), which is 

a N-S elongated submarine structural/morphological high dotted with islands (Capraia, Elba, 

Pianosa, Montecristo, Scoglio d'Affrica, etc.). The Corsica Basin is narrow (30 km wide by 

190 km long) and strikes according to a NNE-SSW axis, with a present-day water depth of 

400 m at the northern end and more than 900 m in the south. It is divided into two sub-basins 

at 42°N latitude, called the Golo Basin and the Orbo Basin. The Golo and Fium Alto rivers 

discharge into the former, whereas the Tavignano and Fium Orbo rivers discharge into the 

latter. The present-day transition between the Corsica Basin (max depth more than 900 m) 

and the deep evaporitic Tyrrhenian basins is characterized by a steep slope (about 1.3°).  

2.2. Regional geodynamic evolution, structure of the Corsica Basin and the East 

Pianosa Ridge 

From the Oligocene to Present, the eastward retreat of the Calabria-Apennine 

subduction (Jolivet et al., 2006,Argnani, 2012) led to the 30° counterclockwise rotation of the 

Corsica-Sardinia block during the Aquitanian-Burdigalian and oceanic opening of the Liguria-

Provençal Basin (Gueguen et al., 1998,Speranza et al., 2002,Gattacceca et al., 2007). This 

was followed in the Tortonian-Messinian by back-arc rifting of the Tyrrhenian Sea, and then 

oceanic accretion dated between around 8 Ma and 4 Ma (Kastens and Mascle, 1990,Argnani, 

2012,Dewey et al., 1989,Faccenna et al., 1997,Brunet et al., 2000,Dini et al., 2002). From the 

Early Eocene up to the Early Miocene, the domain to the east of Corsica consisted of a wide 

and complex sedimentary basin system known as the EPR-proto Corsica Basin system (Fig. 

3, Cornamusini and Pascucci, 2014). From Late Burdigalian to Langhian times, the Corsica 

Basin developed as a N-S-trending basin that underwent major subsidence. During the Late 

Serravallian and Tortonian, the subsidence axis shifted eastwards onto the Tuscan Shelf 

(Bartole, 1995,Pascucci et al., 1999). In the Tyrrhenian basin, extension developed from the 

Late Oligocene (e.g. Réhault et al., 1987) or from the Miocene to Present (Malinverno and 

Ryan, 1986). Tortonian syn-rift deposits of the Sardinian margin mark the initial stage of the 

Tyrrhenian rifting process (Dogliani et al., 1994; Facenna et al., 1997; Cocchi et al., in press). 

The tectonic extension evolved to accretion of oceanic crust in two areas of the southeastern 

Tyrrhenian Sea, the Vavilov basin (7-3.5 Ma, Bigi et al., 1989; 4.3-2.6 Ma, Kastens et al., 
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1990; or 8-4 Ma, Facenna et al., 2007) and the Marsili basin (1.7-1.2 Ma) (Bigi et al., 1989; 

Pascucci, 2002; Greve et al., 2014; (Pascucci, 2002,Prada et al., 2014).The extension axis 

was mainly W-E during the Tortonian (~11 Ma; Zitellini et al., 1986; Kastens et al., 1990), but 

became re-oriented NW-SE in the southeastern part from the Late Pliocene (~2 Ma according 

to Kastens et al., 1990). However, during the MSC, the structural pattern of the western 

Tyrrhenian basin was controlled by a system of N-S ridges, such as the Baronie seamount 

(Gaullier et al., 2014). 

The Corsica Basin is the oldest, the largest and also the deepest basin of the Tuscan 

domain (Gabin, 1972,Aleria, 1979,Viaris de Lesegno et al., 1978). The underlying continental 

crust is as thin as (Contrucci, 1999,Mauffret et al., 1999), whereas it becomes thicker beneath 

Corsica (Hirn and Sapin, 1976) and under the EPR (between 20 and 26 km, Contrucci, 1999; 

(Mele and Sandvol, 2003,Carminati and Doglioni, 2012). The Corsica Basin is filled with a 

sedimentary succession which is up to 8 km thick as inferred from seismic data, ranging in 

age from Eocene to Pleistocene (Contrucci, 1999,Contrucci et al., 2005,Mauffret et al., 

1999,Pascucci, 2002,Finetti et al., 2005). The sedimentary filling of the proto-Corsica Basin 

appears similar to the EPR Tertiary sedimentary successions (Cornamusini and Pascucci, 

2014). The Corsica Basin is an asymmetrical sedimentary basin bounded by the St-Antoine 

and Solenzara Faults to the west, at the contact between the Neogene Aleria Plain and the 

Hercynian or Alpine basement (Fig. 1 to Fig. 3) (Contrucci et al., 2005,Mauffret et al., 

1999,Gabin, 1972). A large vertical displacement is assumed along the NE-SW-striking St-

Antoine Fault, with at least 4 km of throw (Finetti et al., 2005) and a left-lateral strike slip 

(Serrano et al., 2013,Loÿe-Pilot et al., 2004)The NW-SE-striking Solenzara Fault is composed 

of steep normal faults (dips > 60°NE) with right-lateral strike slip component (Serrano et al., 

2013,Loÿe-Pilot et al., 2004)According to analysis of magnetic and gravity anomalies, the 

Solenzara Fault probably extends to the south-east as far as the deep basins of the 

Tyrrhenian Sea (Mauffret et al., 1999,Finetti et al., 2005). This major structure would represent 

the tectonic front of the Corsican Alps (Finetti et al., 2005). The Solenzara Fault appears to 

have been active from the Aquitanian (23 – 20 Ma) (Carmignani et al., 1995,Pasci, 1997) or 
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the Burdigalian (20 – 16 Ma) (Letouzey et al., 1982,Cherchi and Trémolières, 1984)up until 

the Quaternary (Caron et al., 1990a,Janzein et al., 1982,Serrano et al., 2013). Starting in the 

Late Pliocene, subsidence increased in the northern part of the Neogene Aleria Plain, 

synchronously with major subsidence as observed in the Bastia Plain (Caron et al., 1990b). 

The Pliocene and Quaternary sedimentary formations are affected by weak deformation, 

characterized by normal faults with uplift or tilting axes striking NW-SE ((Caron et al., 

1990a,Janzein et al., 1982,Serrano et al., 2013). During the Quaternary, some alluvial 

terraces were uplifted and tilted, and some rivers were modified (Serrano et al., 2013).  

The EPR developed both as a result of the Middle-Late Burdigalian-Langhian tectonic 

event and the Miocene magmatism (Finetti et al., 2001,Cornamusini et al., 2014). Thus, this 

N-S-trending ridge is also characterized by the occurrence of several granite plutons and 

volcanic massifs. The magmatic complex of Elba Island (8.4-5.9 ma), including the Monte 

Capanne batholith (6.8-6.2 Ma) and laccolith/vein system (Serri et al., 2001; Dini et al., 2002; 

Peccerillo, 2003; Westerman et al., 2004), as well as Montecristo Island (7.3-7.1 Ma) and the 

volcanism of Capraia Island (about 7 Ma), all date from the late Tortonian-Messinian up to the 

Early Pliocene (Serri et al., 2001; Peccerillo, 2003 with references therein). The build-up of the 

EPR probably culminated in emergence and resulted in a late Burdigalian?–Langhian 

erosional phase (Carmignani et al., 1995,Cornamusini et al., 2002,Contrucci, 1999,Contrucci 

et al., 2005,Bartole, 1995,Cornamusini and Pascucci, 2014,Cornamusini and Pascucci, 

2014,Cornamusini et al., 2014)). During Tortonian–Messinian times, the development of the 

Corsica–Tuscan Shelf rift basin system was related to a major phase of opening of the 

Tyrrhenian Sea, which resulted in the widening and emergence of the EPR (Cornamusini et 

al., 2014). These authors (op.cit.) show that the continuous uplift and dismantling of the EPR 

induced a well-developed drainage system flowing both westwards (Corsica Basin) and 

eastwards (Tuscan Shelf). The uplift of the EPR continued into the Middle Pliocene 

(Contrucci, 1999) and up to the Present (Gervais et al., 2006a,Gabin, 1972). Since the 

Miocene, the development of the EPR tended to isolate the Corsica Basin from the Tuscan 

shelf to the East and from the Tyrrhenian basins to the South. 
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2.3. Cenozoic sedimentary cover 

2.3.1. Pre-MSC Miocene formations 

The Pre-MSC sedimentary cover of the Corsica Basin is composed of Miocene deposits 

of Aquitanian to Late Messinian age (Aleria, 1979,Viaris de Lesegno, 1978,Viaris de Lesegno 

et al., 1978) overlying a thick Eocene/Oligocene succession (Cornamusini and Pascucci, 

2014). The basement of the Corsica basin reaches a depth of 8.5 km (Mauffret et al., 

1999,Contrucci, 1999,Contrucci et al., 2005). The Neogene Pre-MSC Miocene formations, 

outcropping onshore around the Corsica Basin, suggest a well-developed shallow depositional 

environment. Finetti et al. (2001) propose that the main deepening of the Corsica Basin 

occurred between the Miocene and the Quaternary (8 – 1 Ma), contemporaneously with the 

opening of the Tyrrhenian Sea. 

Neogene pre-MSC Miocene formations (Fig. 4a) outcrop extensively on the Aleria Plain, 

which is the western onshore part of the Corsica Basin (Orszag-Sperber and Pilot, 

1976,Caron et al., 1990b,Serrano et al., 2013,Orszag-Sperber et al., 2000,Janzein et al., 

1982,Loÿe-Pilot et al., 2004,Loÿe-Pilot and Ferrandini, 2014)These formations of the Aleria 

Plain appear to consist of a thick (1 - 2 km) sequence dating from the Middle Burdigalian to 

the Messinian, including Serravallian and Tortonian units, deposited in a shallow marine to 

coastal environment. A sedimentary hiatus presumably marks the post-Langhian emergence 

(Orszag-Sperber and Pilot, 1976,Brunet et al., 2000,Serrano et al., 2013)(Orszag-Sperber and 

Pilot, 1976; Brunet et al., 2000; Fig. 4a). The Miocene deposits are composed of detrital 

materials derived from Alpine units, but only since the early Tortonian, while the older clastic 

deposits are mainly sourced from Hercynian granitoids (Loÿe-Pilot and Magné, 1978; Bossio 

et al. 2000; Loÿe-Pilot et al., 2004; Loÿe-Pilot and Ferrandini, 2014). This change in the 

detrital source is explained by the exhumation of Alpine Corsica dated as Early-Middle 

Miocene (Zarki-Jakni et al., 2004; Fellin et al., 2005; Cavazza et al., 2007). The oldest pre-

MSC formations, which crop out on the Aleria Plain, make up the Burdigalian St-Antoine Fm 

and Alzelle Fm (Fig. 4a) (Loÿe-Pilot and Magné, 1978; Loÿe-Pilot et al., 2004; Serrano et al., 

2013; Loÿe-Pilot and Ferrandini, 2014). The Burdigalian-Langhian Aghione Fm is composed 
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of sandstones and conglomerates with rhyolitic pebbles and marls rich in microfauna, which 

indicate a marine environment undergoing rapid subsidence (Loÿe-Pilot and Ferrandini, 2014). 

It is coeval with the Marina del Marchese Fm of the EPR, according to Cornamusini and 

Pascucci (2014) (Fig. 4b). The Aghione Fm passes up gradually into the Alzitone Fm, which is 

attributed to the Serravalian. The Alzitone Fm consists of poorly sorted heterogranular 

sandstones with numerous fluvial channelized rhyolitic conglomerates, which are capped by 

sub-aerial sandy facies and paleosoils marking a possible hiatus at the Serravalian/Tortonian 

boundary. The basal Tortonian is represented by the shallow marine Vadina Fm characterized 

by alternations of massive fine-grained sandstones, organogenic reefal limestones and 

conglomeratic levels. This formation is capped by a hiatus overlain by the Casabianda Fm of 

Upper Tortonian to basal Messinian age, which is composed of sandy marls with sand lenses, 

intercalations of fossiliferous sandy and muddy limestones. 

The pre-MSC formations of the EPR consist of Miocene sedimentary deposits overlying 

Upper Oligocene and Eocene formations, in turn lying unconformably on deformed 

Helminthoid flysch of Cretaceous-Paleocene age (Heezen et al., 1971; Viaris de Lesegno et 

al., 1978; Carmignani et al., 1994, 2004; Bartole, 1995; Contrucci, 1999; Pascucci et al., 1999; 

Brunet et al., 2000; Cornamusini et al., 2002; Cornamusini and Pascucci, 2014). During the 

Eocene-Oligocene, the EPR-proto-Corsica Basin system is characterized by the development 

of mainly siliciclastic turbidite fans, deposited in bathyal to outer neritic environments. 

However, during the Burdigalian, this system is characterized by outer-shelf calciturbidites 

(Fig. 4b, Marina del Marchese Fm) whose basinal depocentre appears to be located close to 

the Solenzara Fault (Fig. 3) (Cornamusini and Pascucci, 2014). During the Late Tortonian, the 

fluvio-lacustrine depositional environment developed close to the EPR shifted towards a 

marine/littoral conditions during the Early Messinian up until the MSC (Cornamusini et al., 

2014). According to Carmignani et al. (2004), the basins of the Tuscan Shelf are filled with a 

Middle Miocene to Quaternary sedimentary succession overlying the orogenic substratum. 

During late Messinian times, the evaporites and continental facies of the Lago-Mare Unit were 
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deposited, showing evidence of a Paratethyan influence (Iaccarino and Bossio, 1999; 

Carmignani et al., 2004 and references therein). 

While the present-day maximum water depth in the Corsica Basin is about 900 m, the 

depth was shallower during the Messinian, being typical of shelf conditions (less than 200 m 

water depth) in view of the nature of the pre-MSC Miocene formations of the Neogene Aleria 

Plain (e.g. Serrano et al., 2013) and the EPR (Carmignani et al., 1994, 2004; Cornamusini and 

Pascucci, 2014; Cornamusini et al., 2014).  

2.3.2. Syn-MSC Messinian formations 

Rare syn-MSC formations have been sampled in the Tyrrhenian region, whereas they 

crop out extensively in onland Tuscany (Bossio et al., 1998; 2000). According to Aleria (1979), 

accumulation of sulphate or carbonate sediment types only occurred in the shallow zones 

during the Messinian, while evaporitic formations were deposited in the deep zones. Samples 

of an algal limestone associated with grey-green clays containing Cipridis pannonica (BG78-

20) and a mealy-white micrite (BS77-2) have been collected off the north-east Sardinian 

margin and in the Bonifacio Strait (Fig. 5). These samples have been assigned to the MSC 

evaporite sequence (Aleria, 1979). Dredges in the northern Corsica Basin and on the EPR to 

the west of the island of Gorgona have sampled some end-Miocene sediments, indicating a 

Lago-Mare-type environment according to Taviani et al. (2007). In the deep Tyrrhenian 

basins, only Hole 132 of DSDP Leg13 (Ryan et al., 1973) and Hole 373 of Leg42 (Hsü et al., 

1978) have sampled gypsum of Late Miocene age. These samples are correlated with the 

Upper unit (UU) and Middle unit (MU) (Ryan et al., 1973; Moussat, 1983; Gaullier et al., 2009, 

2014). 

On the Aleria Plain, the syn-MSC deposits correspond to the Aleria Fm, which are then 

covered by the Lower Pliocene (Fig. 4a) (Saint Martin et al., 2007). The Aleria Fm is 

composed of sandy marls, sands and conglomerates with marl lenses containing Congeria 

and diatoms. The age of this formation is very controversial, with attributions ranging from 

Lower Pliocene to basal Messinian (Ottmann, 1958; Magné et al., 1975; Orszag-Sperber, 

1978; Caron et al., 1990b; Saint Martin et al., 2007; Loÿe-Pilot and Ferrandini, 2014).  The 
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Aleria Fm is interpreted as representing fluviatile deposits (Ottmann, 1958; Orszag-Sperber, 

1978; Ferrandini et al., 2004), described as a complex fluvio-deltaic system at the outlet of the 

present-day Tavignano river (Ottmann, 1958; Orszag-Sperber, 1978), or alternatively as a 

fluvial system with channels subject to frequent overflow (Ferrandini et al., 2004). 

Based on its sedimentary and biological components, but also on its stratigraphic 

position, the Aleria Fm has been compared with the Lago-Mare deposits (Bossio et al., 2000; 

Orszag-Sperber et al., 2000; Loÿe-Pilot and Ferrandini, 2014). The observations of Serrano et 

al. (2013) show that this formation was laid down on a major discontinuity surface (Fig. 4) 

since the Aleria Fm rests locally on the Vadina Fm (lower Tortonian) and truncates the 

Casabianda Fm (Tortonian - lower Messinian). We attribute this major surface to the MES. 

Consequently, the Aleria Fm could correspond to syn-MSC deposits, but its preservation 

could also occur due to the regional reflooding. 

In the offshore Corsica Basin, the deposits ascribed to the syn-MSC formation were 

defined during the 1970s exclusively on the basis of seismic profiles, and referred to as the 

“Messinian Fm” (Fig. 6, Viaris de Lesegno et al., 1978; Aleria, 1979). This unit is located 

between the pre-MSC seismic units and the Plio-Quaternary (PQ) seismic units. The upper 

limit of this “Messinian Fm” was described as a major incision surface filled up by an extensive 

channeled system (Viaris de Lesegno et al., 1978). This discontinuity was named the 

Messinian surface, within the initial definition of the “M surface” (Ryan et al., 1973). The 

Messinian Fm was interpreted as being formed of endorheic (Aleria, 1979) or lacustrine 

deposits (Viaris de Lesegno et al., 1978).  

2.3.1. Pliocene Formations  

The Lower Pliocene deposits of the Aleria Plain, dated by abundant microfauna (Magné 

et al., 1975), are composed of clearly marine sandy marls (Urbino Fm.). This formation is 

coeval with the Pliocene reflooding interval dated at 5.46-5.33 Ma (e.g. Bache et al., 2012; 

Roveri et al., 2014) (see R on Fig. 4). According to Serrano et al. (2013), the marine 

regression at the end of the Early Pliocene induced a Middle Pliocene hiatus and the end of 

marine incursions. The Upper Pliocene unit (Peri Fm, Fig. 4a) is a continental formation 
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composed of conglomerates interbedded with sand and clay layers with paleosols (Loÿe-Pilot 

and Magné, 1978; Serrano et al., 2013). It lies unconfomably on older formations (Fig. 4). 

On the EPR, the substratum is often unconformably overlain by Pleistocene sediments 

and Pliocene deposits are absent (Bartole, 1995; Pascucci et al., 1999; Cornamusini et al., 

2002; Cornamusini and Pascucci, 2014). In the Corsica Basin, a majority of authors (Orszag-

Sperber and Pilot, 1976; Loÿe-Pilot et al., 2004; Serrano et al., 2013; Loÿe-Pilot and 

Ferrandini, 2014) suggest that the Lower Pliocene pelagic sedimentation gave way to active 

terrigenous inputs during the Middle Pliocene.  

3. DATA AND METHODS 

The available dataset (Fig. 6) includes old low-resolution seismic reflection profiles (e.g. 

MESIM, LISA, BacinoCorse cruises), provided by a variety of Universities and Institutes, as 

well as oil industry companies. In addition, around 7100 km of high-resolution seismic 

reflection profiles (HR) were acquired between 1997 and 2003 during training-course cruises 

of the University of Western Brittany (Corstage 97, 98, 99, 00 & 01 cruises) and cruises of the 

Géosciences Azur laboratory (HR02D cruise) in collaboration with the French Geological 

Survey (BRGM). Two acquisition systems have been used to collect the HR seismic data: an 

airgun source with an AMG two-channel streamer and a sparker source (1000J) with a six-

channel streamer. The Very High-Resolution (VHR) seismic reflection profiles (LIMA1&2, 

Bocca99, Bocca00, Geocorse2003 cruises) were acquired on the eastern Corsica continental 

shelf within the framework of collaborations between BRGM and the University of Corsica (M. 

Ferrandini). The acquisition tools consisted of a sparker source (100-1000J power range) with 

either a single or a six-channel streamer. The acquisition parameters of these HR and VHR 

cruises are specified on the European GEO-seas website (http://www.geo-seas.net). 

Interpretation of the seismic data was performed with the Seisvision-Geographix® software. 

The designation of the units and surfaces associated with the MSC is based on the 

nomenclature of the Mediterranean Messinian seismic markers established by Lofi et al. 

(2011) and correlated to the Messinian sequential stratigraphy defined by Gorini et al. (2015). 

http://www.geo-seas.net/
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The density of the seismic profiles and data output from the interpretations has enabled a 3D 

geometric model to be established for the southern sector of the Corsica Basin by means of 

GeoModeller Software (Calcagno et al., 2006). The isopach and isobath maps presented in 

the present study are derived from the 3D geologic modelling (in depth) of the southern 

Corsica Basin (Calcagno et al., 2004). 

Investigations conducted over the decade since 2000 have allowed us to identify the 

MSC seismic markers and describe the distribution, geometry and facies changes of the syn-

MSC “Messinian Fm”. From this study, we propose a model for the geological evolution of the 

Corsica Basin during the MSC and early post-MSC times. 

4.  MAIN RESULTS 

The interpretation of the numerous HR seismic reflection profiles (Fig. 5, Fig. 7) has 

allowed us to establish a detailed and precise spatial distribution of the syn-MSC Messinian 

markers. Moreover, various maps have been drawn up, such as a geological map of the pre-

Pliocene formations of eastern Corsica and the network of syn-MSC incisions (Fig. 8), as well 

as isopach maps of the syn-MSC Messinian and the Plio-Quaternary formations (Fig. 9, Fig. 

10) of the Corsica Basin. The syn-MSC Messinian markers are also used to quantify the post-

MSC vertical motions and understand the post-Miocene evolution of the Corsica Basin. 

4.1. Pre-MSC seismic units 

Two pre-MSC Miocene formations can be identified: an acoustic basement and a pre-

MSC seismic unit, sometimes cropping out under a fine sedimentary cover on the shelf (Fig. 

11 to Fig. 17).  

The seismic facies of the acoustic basement is non-reflective. Its top is a diffracting and 

relatively continuous reflector. Mapping (Fig. 8) shows that offshore Bonifacio, the continental 

shelf acoustic basement coincides with the extension of the granitic bodies of Corsica and the 

Sardinia Massif. Likewise, the Alpine Basement Units probably extend offshore, between the 

continental shelves of Bastia and Aleria, as well as along the coast off Cap Corse. 
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The pre-MSC seismic unit on the THR seismic profiles across the Corsica continental 

shelf is characterized by a uniform acoustic facies made up of a succession of strong 

amplitude/low frequency reflectors that are concordant and continuous (Fig. 11, Fig. 12). In 

the Bonifacio Strait, this unit shows several sequences having distinct seismic facies 

(Reynaud et al., 2013). The pre-MSC seismic unit onlaps directly onto the acoustic basement, 

and is truncated by a major unconformity ascribed to the MSC and incised by canyons on the 

continental shelf as well as on the slope (Fig. 11b). In the Corsica Basin, the seismic facies of 

the pre-MSC unit is characterized by discontinuous, sub-horizontal, relatively weak-amplitude 

and low-frequency reflectors (Fig. 11, Fig. 13, Fig. 14). Its top coincides with the BES and its 

base is not observable using the HR seismic data in the present study. Burdigalian to Early 

Messinian formations also appear to be present within the pre-MSC of the Aleria continental 

shelf as an extension of the Neogene Aleria Plain.  

Mapping shows (Fig. 8) that the pre-MSC Miocene units cropping out on the Corsica continental 

shelf are small in extent, being observed only in the Bonifacio Strait, on the shelf offshore from 

the Aleria Plain and to a minor degree along the coast of Cap Corse (Fig. 7b, Fig. 8). Elsewhere, 

the pre-MSC Miocene is not exposed at outcrop, either because it was eroded and/or covered 

by Plio-Quaternary formations or because it has undergone substantial downthrow along the 

major escarpments. On the Bastia continental shelf, the MES and the pre-MSC basement are 

not observed on the seismic profiles. Indeed, the building up of the shelf would be recent in this 

area, taking place during the Pliocene and Quaternary. 

4.2. Syn-MSC seismic markers  

Based on the HR seismic data, the Messinian Fm, initially defined by Aleria (1979) (Fig. 

6), is placed between the PQ seismic units assigned to the Plio-Quaternary and the pre-MSC 

seismic units. The Messinian Fm is composed of two seismic units designated BU1 and BU2 

(Fig. 7 to Fig. 17). Four specific surfaces are identified, attributed to the MES, BES, TES and 

Intermediate Erosion Surface (IES), which are assigned to the MSC.  
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4.2.1. Syn-MSC remarkable surfaces 

The Margin Erosion Surface (MES) is observed on the East-Corsica margin, the EPR 

and the northern part (Golo Basin) of the Corsica Basin (Fig. 8). The MES is a seismic horizon 

with a strong erosive character, which truncates the reflectors of the pre-MSC unit (Fig. 11, 

Fig. 12). The morphology of the MES is generally extremely rugged and sometimes 

associated with deep incisions beneath the inner and middle shelves (Fig. 11b). This surface 

is interpreted as the hiatus between the Plio-Quaternary sedimentary cover and the pre-MSC 

Miocene formations, in agreement with the interpretation of Contrucci (1999) and Mauffret et 

al. (1999) and also with the succession observed in the Aleria plain (Fig. 4a) and in the two 

wells Mimosa1 and Martina1 where the Pliocene units are totally lacking, with Pleistocene 

deposits lying directly upon Oligocene and Burdigalian deposits, respectively, (Fig. 4b). 

In the southern part of the Corsica Basin (Orbo Basin), the MES passes laterally into 

three seismic surfaces ascribed to the BES, TES and IES (Fig. 7, Fig. 15). The BES 

corresponds to the top of the pre-MSC unit. This surface truncates the pre-MSC unit. Its 

erosive character is essentially observable based on pre-MSC paleorelief (Fig. 13). The BU1 

and BU2 units onlap unconformably the pre-MSC unit (Fig. 7, Fig. 13; Fig. 14; Fig. 16b, Fig. 

17). The TES is a continuous and smooth seismic horizon, characterized by the presence of 

erosional surfaces that locally deeply incise the underlying BU2 as well as sometimes the BU1 

and pre-MSC seismic units. These incisions as a whole make up a complex system of incised 

valleys (Fig. 8, Fig. 18). The transition between the BU1 and BU2 seismic units, called IES, is a 

sub-horizontal and highly reflective seismic horizon characterized by the presence of multiple 

small and shallow depressions. The IES could be interpreted in some places as a rather 

abrupt facies transition between the BU1 and BU2 units. 

4.2.2. Seismic Units BU2 and BU1 and their distribution 

The seismic facies of the BU1 unit is homogeneous, defined by a set of very high 

amplitude and intermediate frequency reflectors, which are concordant, corrugated, fairly 

continuous, but with some heterogeneities, and sub-horizontal (Fig. 13 to Fig. 16). The 
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thickness of BU1, less than 0.075 s. twtt, is relatively constant, except at the edge of the basin 

(Fig. 9a), where BU1 onlaps the pre-MSC unit (Fig. 13, Fig. 15, Fig. 16b). 

The BU2 seismic unit is sealed and incised by the TES and overlain by the PQ seismic 

unit. It onlaps BU1 and the pre-MSC seismic unit at the edge of the basin (Fig. 13). The 

thickness of the BU2 unit can reach 0.1 s. twtt (Fig. 9b), and it consists of some thin lenticular 

sub-units displaying variable seismic facies (ranging from layered to transparent) which 

intersect and pinch out (a-f on Fig. 13, Fig. 16b). 

The units BU1 and BU2 have been identified only in the Orbo Basin (Fig. 8). It is 

noteworthy that both BU1 and BU2 are incised by the TES (Fig. 9). The thickness map of BU1 

(Fig. 9a) shows that its distribution is slightly wider than BU2, being present on the western 

flank of the EPR. Its depocentre currently lies along the EPR slightly west of the N-S trending 

valley. A very thin BU1 unit extends over the Bonifacio margin beyond the Solenzara Fault. 

The thickness map of BU2 (Fig. 9b) shows a depocentre axis located near the foot of the 

western edge of the Corsica Basin, and that the BU2 unit does not extend beyond the 

Solenzara Fault. In summary, we note a decrease in size and a westward migration of the 

depocentres occurring between the deposition of BU1 and BU2. 

4.2.3. Incision system network 

The incised valley system, associated with the TES, is only observed in the Orbo Basin 

(Fig. 8). It is made up of three groups of incisions (Fig. 18a). The upstream part of the incision 

system contains a single N-S trending valley to the North-East (V1), and a wide network of 

channels to the West (V2). Downstream, to the south, these two systems merge to form a 

single wide and deep valley (V3), which runs out into the deep basins of the Tyrrhenian Sea. 

The N-S trending valley (V1, Fig. 18a) can be observed over more than 100 km along at 

the western flank of the EPR. No preserved drainage system is connected to V1 upstream 

system. Changes in the strike of the N-S trending valley follow along-strike variations of the 

EPR and coincide with the confluence area of the wide valley network (V2), as well as with 

small tributaries, such as those coming from the Bonifacio Strait and, to a lesser extent, from 

the EPR. Although small in size towards the north, the N-S-trending valley widens and 
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deepens farther south (Fig. 16). Currently located on the western flank of the EPR, the V1 

valley was uplifted and tilted towards the west (Fig. 16a, b). The relative uplift may be 

estimated as at least 110 m.  

In the western part of the Orbo basin, an incised valley network (V2, Fig. 7, Fig. 18a) 

extends over about 660 km2. It is characterized (Fig. 14) by wide, shallow, flat-bottomed 

valleys that totally or partially incise into the BU2 and BU1 seismic units.  

The termination of the incision system is characterized by a single wide and deep valley, 

striking N-S to W-E, which follows the contour of the EPR (V3, Fig. 16). The outlet of the 

incision system lies at the same level as the sill between the Corsica Basin and the deep 

North-Tyrrhenian basins (M, Fig. 18a), where the depth of the base of PQ unit increases from 

1.4 to 2.4 s. twtt (750–1000 m of depth difference). It is characterized by a “crow’s feet” 

distribution of the MES isochrons (Fig. 8, Fig. 16a). At its outlet, the valley is at present 

obstructed by a basement high (called here the Caprera seamount), the western edge of 

which is interpreted as a fault plane (Fig. 8, Fig. 17). This NE-SW striking fault is in line with 

Caprera Canyon, is called here the “Caprera Fault”. The Caprera basement high is directly 

overlain by a southeastwards tilted sedimentary cover that is assumed to be pre-MSC in age 

(Fig. 17). The termination and geometry of the reflectors within the PQ seismic unit along the 

Caprera Fault suggest a normal displacement during the Pliocene. No samples exist to 

constrain the lithology of the Caprera basement. The Caprera seamount could thus be 

interpreted as a small volcanic body on strike with those of the EPR or as a structural high 

comparable with the granitic Vercelli Seamount (Cocchi et al., in press), the Etruschi and 

Cialdi Seamounts (Marani and Gamberi, 2004) or the Scoglio d’Affrica Seamount (Fig. 2, Fig. 

8). The Caprera seamount appears to have been formed during the Pliocene, in relation with 

the opening of the Tyrrhenian Sea. 

4.3. Post-MSC sedimentary cover  

The Plio-Quaternary sedimentary cover the overlies pre- and syn-MSC formations 

across the entire Corsica Basin, as well as under the continental shelf, with the exception of 

the outcrop zones of the pre-MSC formations (Fig. 8). On the continental shelf offshore from 
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the Aleria Plain, the incision of the pre-MSC unit (Fig. 11b) is infilled by post-MSC deposits 

assigned essentially to the Pliocene, in agreement with the onshore outcropping formations 

(Caron et al., 1990a). 

In the Corsica Basin, the isopach map of the PQ seismic unit (Fig. 10, Fig. 12) shows 

that the Plio-Quaternary depocentre is situated in the northern part of the Corsica Basin, off 

the Bastia alluvial Plain where large amounts of clastic materials are supplied by the Fium Alto 

and Golo rivers (Gervais et al., 2004). The thickness of PQ seismic unit may reach more than 

1 s twtt, filling the incisions ascribed to the MSC (Fig. 7 to Fig. 17). The seismic facies of the 

PQ unit is characterized by a group of reflectors that are weaker in its lower part compared 

with its upper part. The upper part is characterized by the presence of numerous units 

attributed to Plio-Quaternary turbiditic deposits (Bellaiche et al., 1994; Gervais et al., 2006). In 

the lower part of PQ, there are a few major unconformities in the centre of the N-S valley, 

which peter out as they approach the Plio-Quaternary turbiditic deposits (Fig. 12). 

The post-MSC sedimentary cover is deformed and faulted offshore from Cap Corse 

near the northern extremity of the Corsica Basin (Fig. 12). After affecting the pre-MSC units, 

the normal faults seem to have been reactivated during the Plio-Quaternary with a slightly 

reverse component. At the southern end of the EPR, near the Caprera Fault and the Caprera 

seamount, the lower part of PQ unit cover is likewise deformed and faulted (Fig. 17), 

producing a bulge which is onlapped by the more recent deposits of the PQ unit. These 

observations suggest that a regional tectonic phase affected the northern and eastern sectors 

of the Corsica Basin during the Pliocene. This is in agreement with the field observations 

carried out on the Neogene Aleria Plain (Guieu et al., 1994b; Serrano et al., 2013), which 

highlight the onset of northward subsidence during the Middle Pliocene, as well as the 

deformation resulting from faulting, uplift or tilting along NW-SE axes. This also supports the 

existence of an intra-Pliocene reactivation as observed in the Tyrrhenian Sea and on the East-

Sardinia margin (Gaullier et al., 2014) and corroborates the observations of recent uplift 

established by several authors for northern Corsica (Lenotre et al., 1996; Somme et al., 2011), 

for the EPR (Gervais et al., 2006) and for Cap Corse (up to 12 Ma ; Jakni et al., 2000).  
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5.  DISCUSSION 

5.1. The influence of regional tectonic activity during the MSC 

The spatial distribution of the BU1 and BU2 units (Fig. 8, Fig. 9) suggests that the Golo 

Basin was an emergent area while the Orbo Basin was subsiding and often flooded during the 

MSC. This difference could be explained by the tectonic reactivation during the Messinian of 

older crustal structures, such as the Scoglio d’Affrica horst (Pascucci et al., 1999) and the St-

Antoine Fault (Fig. 8). It may also be accounted for by the initial morphology of the Corsica 

Basin including a deepening towards the South. 

The difference of spatial distribution between BU1 and BU2 also expresses the 

development of different depocentres and depositional environments during the MSC:  

i) On the southern edge of the Orbo Basin, the Sardo-Bonifacio continental slope 

is very sparsely overlain, if at all, by Messinian deposits. The southern limit of 

these deposits emphasizes the role played by the Solenzara Fault. Thus, this 

crustal-scale fault (Finetti et al., 2005; Mauffret et al., 1999) would have been 

active during the MSC depositional phases. This is consistent with observations 

on the western edge of the Aleria Plain, where the Solenzara Fault shows a 

normal faulting mechanism from the Burdigalian to the Late Miocene (Loÿe-Pilot 

et al., 2004) and became reactivated during the Late Miocene (Guieu et al., 

1994a). The distribution of the syn-MSC depositional units could be explained by 

a deepening of the Orbo Basin along the Solenzara Fault during the MSC.  

ii) Within the Orbo Basin, the depocentre migrated westward. During deposition of 

the BU1 unit, the basin became wider. This observation is in agreement with the 

existence of a wide proto-Corsica Basin prior to the MSC and the fact that, at the 

time, the EPR was not fully developed, but in an embryonic phase (Fig. 3; 

Cornamusini and Pascucci, 2014). In contrast to the BU1 unit, the depocentre of 

BU2 was restricted and shifted to the west (Fig. 9). The westward migration and 

shrinking of the depocentres mostly result from the main build-up of the EPR by 

expansion and relative uplift, but also from the flexure and relative deepening of 
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the Orbo Basin. These observations are in agreement with Finetti et al. (2001, 

2005), who suggested an increased rate of deepening of the Corsica Basin as 

early as the Tortonian, and more particularly during the Plio-Quaternary. The 

southern part of the Corsica basin, corresponding to the Orbo basin, was 

strongly subsident during the MSC, allowing the creation of a local basin while all 

surrounding areas were emerged. 

5.2. The syn-MSC deposits  

The stratigraphic position of BU1 and BU2 between the Plio-Quaternary and the pre-

MSC Miocene formations allows us to date them as late Messinian in age, in relation with the 

MSC. These syn-MSC units are only observed in the Orbo basin, i.e. the southern part of the 

Corsica basin. Their absence in the Golo Basin indicates that the northern part of the Corsica 

basin was an emerged area during the entire MSC, in common with the EPR, the Aleria Plain 

and the Corso-Sardinian margin south of the Solenzara Fault. The marked difference in 

distribution between BU1 and BU2 (Fig. 8, Fig. 9) also implies that, during the MSC, the area of 

sedimentation shrank and the depocentre migrated from east to west in the Orbo basin. These 

observations suggest that, during the MSC, local subsidence was active only in the southern 

part of the Corsica basin and migrated to the western part of the Orbo basin, close to the 

Solenzara fault. Thus, the southern part of the Corsica basin subsided while the EPR 

developed. Local subsidence is likely to have favoured the development of a local endorheic 

basin, i.e. a perched lake surrounded by emerged land. 

Due to the lack of sampling, the lithology of BU1 within the offshore Corsica Basin is still 

unknown. Considering only its basal seismic facies, BU1 could be interpreted in different ways, 

i.e.: as an evaporitic unit (Contrucci et al., 2005; Mauffret et al., 1999), a carbonate unit such 

as the “Calcare di Base” formation (Bowman, 2012), the PLG sequence (Ochoa et al., 2015), 

or an equivalent of the Lago Mare facies (Hsü et al., 1973; Popescu et al., 2015 and 

references therein). There is insufficient evidence to either support or exclude these proposed 

models. However, taking account of the whole regional context (cf. Section 5.6), we interpret 
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the BU1 unit as an evaporitic, carbonate or mixed unit deposited in a lacustrine environment 

during a dry period.  

The varied seismic facies, geometries and the thin lenticular morphologies of the sub-

units of the BU2 suggest sub-aqueous terrigenous sedimentation in a lacustrine environment. 

The deposition of BU2 is likely due to increased terrigenous inputs.  

The differences in seismic facies and architecture between BU1 and BU2 units suggest 

contrasting depositional environments. We propose that, during MSC period, differences 

between BU1 and BU2 may be explained by climatic variations within the perched lake 

represented by the Orbo basin. Paleoclimate data indicate an increase in precipitation starting 

from 5.5 Ma ago (Fauquette et al., 2006; Krijgsman and Meijer, 2008; Rouchy and Caruso, 

2006). The depositional environment of BU1 would correspond to a dry climate before 5.5 Ma, 

while more humid conditions from 5.5 Ma onwards led to increased terrigenous inputs.  

Considering the proposed ages, according to the stratigraphic model of Gorini et al. 

(2015), the deposition of BU2 (post 5.5 Ma) belongs to the Messinian Upper Megasequence 

(MUM, Fig. 19), and would thus be equivalent to the MU and/or UU of Lofi et al. (2011). In that 

case, the BU1 unit would belong to the Messinian Lower Megasequence (MLM, Fig. 19).  

5.3. Remarkable surfaces of the Messinian Salinity Crisis  

Based on its seismic characteristics and stratigraphic position, the BES represents the 

lower boundary of the syn-MSC deposits, in agreement with Lofi et al. (2011) and Maillard and 

Mauffret (2006). In the present study, we correlate the BES with the MES, because the latter 

is the major unconformity of the Corsica Basin. The BES appears to be a marker of the major 

sea-level fall of the MSC, dated from 5.9 to 5.6 Ma (Fig. 19; e.g. CIESM, 2008; Gorini et al., 

2015).  

The IES corresponds to the bounding surface marking the top of the BU1 unit. On the 

basis of its seismic facies, the IES of the Corsica Basin highlights a change in depositional 

environment between the sedimentation of BU1 and BU2. There is no clear variation in base 

level from BU1 to BU2. While IES does not record significant erosion, it might correspond to a 

period of dessication of the lake. The IES thus reflects the existence of minor local base-level 



Thinon et al. In press 2016 - Seismic markers of the Messinian Salinity Crisis in an intermediate-depth basin: data for 
understanding the Neogene evolution of the Corsica Basin (Northern Tyrrhenian Sea) – Marine and Petroleum Geology 

23 

fluctuations in the Corsica basin, possibly a phase of dessication between the major 

Messinian sea-level fall and the Pliocene catastrophic reflooding, therefore during a sea-level 

low stand (Fig. 19). 

The TES separates the Plio-Quaternary formations from the syn-MSC units. The TES 

appears to separate the end of the MSC and the onset of marine deposition in the Corsica 

Basin. According to Gorini et al. (2015), the TES is a late transgressive erosional surface (Fig. 

19) created by the catastrophic reflooding dated as taking place between 5.46 (Bache et al., 

2012) and 5.33 Ma (e.g. CIESM, 2008; Gorini et al., 2015). A complex incision system is 

observed within this surface that probably predates the reflooding, corresponding to the 

establishment of a drainage system connecting the Orbo basin to the Tyrrhenian Sea. 

5.4. The incised valley system 

The western channel system (V2, Fig. 7, Fig. 16) resembles an incised-valley network. 

Although the continuity of the incisions between the Aleria continental shelf and the Orbo 

Basin is not clearly observed, we can reasonably assume that the V2 system was connected 

to the onshore Corsica drainage system.  

The morphology of the N-S-trending valley (V1, Fig. 7, Fig. 16, Fig. 18) displays 

incisions that are deeper and wider in the downstream portion. This imposes a southerly 

sediment transit direction towards the deep Tyrrhenian basin. The mouth of this system lies at 

the same depth as the present-day sill between the Corsica Basin and the present deep 

Tyrrhenian basin, highlighted by significant erosion and a “crow’s feet” distribution of the MES 

isochrons (Fig. 8, Fig. 18). This suggests a connection between the Corsica Basin and the 

Tyrrhenian basin associated with drainage of the flow system through the mouth of this 

incised network. The incised valley V1 is filled by marine Pliocene deposits. The onset of 

development of the V1 system could correspond to the end of BU2 deposition. The existence 

of angular unconformities in the paleovalley filling suggests that the Pliocene transgression 

followed the strike of the incised valley system, which was oriented preferentially along the 

EPR. It is likely that the flow system continued under the effects of currents generated by the 

existence of relief (enclosed valleys and the EPR itself) until the incised valleys were 
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completely filled. The orientation of the flow system along the EPR probably reflects a 

structural control of the uplifting ridge. V1 post-dates the lacustrine MSC deposits of the Orbo 

Basin. After incision of the V1 system, it is likely that a connection was restored with the 

Tyrrhenian Sea and that sedimentation resumed in the Orbo basin which was no longer 

endorheic and became a by-pass area. 

The incised-valley system was probably initiated and developed during a sea-level 

lowstand. The complex interplay between the overall low base level of the MSC and the uplift 

of the EPR probably favoured localized incisions (V3 and V1). Erosion likely occurred during a 

period of low sea level, i.e. before 5.46 Ma according to Bache et al. (2012), and definitely 

before the catastrophic reflooding at 5.33 Ma (Fig. 19). As an age of 5.5 Ma is proposed for 

the BU1-BU2 boundary, the drainage of the Orbo basin into the Tyrrhenian Sea through the 

incised valley system would have taken place between 5.5 and 5.46 Ma.  

5.5. Plio-Quaternary evolution of the Corsica Basin 

The distribution of the Plio-Quaternary unit (Fig. 10a) indicates that the northern part of 

the Corsica Basin, the Golo Basin, seems to be strongly subsident compared to the Orbo 

basin. This evolution is contemporaneous with the acceleration of subsidence observed in the 

northern part of the Neogene Aleria Plain since the Late Pliocene, and the subsidence of the 

Bastia Plain during the Pliocene-Quaternary (Caron et al., 1990a). Since the Middle Pliocene, 

the northward tilting of the Corsica Basin induced a migration of the sedimentary depocentre 

in the Golo Basin.  

The MSC markers also provide information about the recent evolution of the Corsica 

Basin, by recording the deformation. Faulting, tilting and uplift of the MSC markers are 

observed on the western flank of the EPR and on its southern and northern termination. The 

Plio-Quaternary formations are also affected, mainly on the northern and southern edges of 

the Corsica Basin. This deformation highlights the regional tectonic activity since the MSC, 

such as the development of the EPR and the Orbo Basin followed by the Golo Basin. These 

observations are consistent with deformation described on the EPR (Bartole, 1995; Contrucci 

et al., 2005), Cap Corse (Jakni et al., 2000) and the Neogene Aleria Plain (Caron et al., 
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1990b; Guieu et al., 1994b; Serrano et al., 2013). During the Plio-Quaternary, Alpine Corsica 

was uplifted and the EPR was formed. 

5.6. Neogene evolution of the Corsica Basin  

Based on the seismic data and maps, we propose a scenario for the evolution of the 

Corsica Basin from the Miocene to the present day (Fig. 20). The indicated time periods are 

based on published studies (e.g. CIESM, 2008; Bache et al., 2012; Gorini et al., 2015) and are 

provided here solely for guidance.  

(A) In the Middle Miocene, the EPR and the Corsica Basin are morphologically poorly 

developed. The Corsica proto-basin is a shallow marine domain with an outer platform 

resembling the present-day Tuscan Shelf (Cornamusini and Pascucci, 2014). The Corsica 

Basin is progressively individualized in a context of continuous subsidence since at least the 

Tortonian. 

(B) The MSC sea-level fall from 5.97 (?) to 5.6 (?) Ma leads to the development of an 

erosional network (marked by the MES and BES) extending from the Corsica proto-basin up 

to the foot of the East-Sardinian margin.  

(C) Sedimentation resumes owing to local tectonics and relief creating a perched lake. A 

hot and dry climate prevails until 5.5 Ma (Fauquette et al., 2006), leading to evaporite and 

carbonate deposition (BU1). The falling stage sequence of Gorini (MLM; Fig. 19; Gorini et al., 

2015) is recorded here by the BES and the deposition of BU2. 

(D) From 5.5 Ma, climatic conditions evolve from hot and dry to hot and humid 

(Fauquette et al., 2006; Rouchy and Caruso, 2006). The increase in precipitation causes 

greater erosion in the Corsican catchment areas and on the EPR, which is still emerged and 

being eroded at the time. Subsidence of the Orbo basin increases due to the activity of faults 

such as the St-Antoine and Solenzara Faults, thus forming an asymmetric rifting basin. This 

local subsidence allows a favourable accommodation space for the terrigenous deposits of the 

BU2 unit. During the same period of time, the growth of the EPR induces the westward 

migration of the BU2 depocentre and accentuates the isolation of the Corsica Basin from the 

Tyrrhenian Sea. At the same time, the Orbo Basin is reduced in width and the sedimentary 
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depocentre (BU2 unit) migrates to the west. At the end of this phase, the sea level remains low 

in the Tyrrhenian basin and the Corsica basin is still a perched lake, disconnected from the 

Tyrrhenian Sea. Under this scenario, BU2 is coeval with the MUM (Fig. 19; Gorini et al., 2015). 

(E) Before the catastrophic reflooding (5.33 Ma), which marks the end of the MSC, the 

Orbo basin is re-connected to the Tyrrhenian Sea via a complex incised-valley network (Fig. 

18a) developed during the low sea-level stand initiated by retrogressive erosion. The EPR 

needs to be sufficiently elevated to influence the strike of this incised valley system (V1). At 

this time, the perched lake of the Corsica Basin is drained. 

(F) At 5.33 Ma, the end of the MSC is picked out by a rapid sea-level rise, called the 

Giant reflooding (Fig. 19; Gorini et al., 2015), leading to renewed submergence of the Corsica 

Basin. This episode is recorded by a late transgressive erosional surface (TES). Marine 

deposits fill the incised-valley network and onlap the TES in the Orbo Basin and the MES in 

the Golo Basin as well as at the edges of the Corsica basin on the EPR. In the Neogene 

Aleria Plain, the Lower Pliocene marine sediments also onlap onto the pre-MSC formations. 

(G) From Intra-Pliocene times, the Corsica Basin undergoes northward tilting. While the 

Corsica Basin continues to subside, especially close to Corsica, the depocentre migrates 

northwards from the Orbo Basin into the Golo Basin. At the same time, the Neogene Aleria 

Plain is also tilted northwards at the foot of the Alpine massif along the St-Antoine Fault, 

favouring the deposition and preservation of the Upper Pliocene continental deposits (Caron 

et al., 1990a; Serrano et al., 2013). At the extreme south of the Corsica Basin, a NNE-SSW-

trending structural high (the Caprera seamount) emerges masking the mouth of the MSC 

incision system. The formation of this tilted block may be linked to the Pliocene-Quaternary 

evolution of the Tyrrhenian Sea (Lentini et al., 2006). The northern (off Cap Corse) and south-

eastern parts of the Corsica Basin are deformed, uplifted and undergo faulting. The uplift of 

the eastern edge of the Corsica Basin continues, inducing the westward tilting of the N-S-

trending valley. The uplift of the Caprera Seamount and northern Corsica, as well as the 

subsidence of the Corsica Basin, and especially the Golo Basin, continues during the 

Quaternary, in agreement with the observations of many authors (Jauzein et al., 1982; Caron 
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et al., 1990b; Lenotre et al., 1996; Jakni et al., 2000; Somme et al., 2011; Gervais et al., 2006; 

Serrano et al., 2013). The occurrence of late Pliocene-Quaternary tectonic activity in the 

northern Tyrrhenian Sea, locally characterized by inversion tectonics, suggests active 

mechanisms (intraplate compression?) superimposed on post-rift subsidence (Spadini and 

Wezel, 1994). 

6. CONCLUSIONS 

Based on new interpretation of HR seismic reflection profiles and new regional maps, 

we establish that the MSC is recorded through specific deposits and remarkable surfaces in 

the Corsica Basin, located between the East-Corsica continental margin and the deep 

Tyrrhenian basins.  

The study of these seismic markers leads us to propose a syn- and post-MSC evolution 

for the Corsica Basin. At the beginning of the MSC, the Corsica Basin was emerged above 

sea level. During the MSC, the subsidence of the southern part (Orbo Basin) of the Corsica 

Basin favoured the deposition and preservation of two syn-MSC units (BU1 and BU2). The 

Orbo basin was probably a perched lake at that time, associated with the accumulation of 

lacustrine evaporites or carbonates (BU1) and terrigenous sediments (BU2). The syn-MSC 

sedimentation suggest contrasting depositional environments that can be explained by an 

intra-MSC climate change from dry to more humid conditions at around 5.5 Ma. 

At least three remarkable erosional surfaces are highlighted. The basal erosional 

surfaces (MES and BES) are interpreted as resulting from subaerial erosion in response to the 

huge sea-level drop in the Mediterranean and mark the onset of the MSC. Erosion on the 

continental margin (MES) lasted until at least the Pliocene reflooding. The Top Erosional 

Surface (TES), which is placed at the base of the Plio-Quaternary sedimentary succession, 

appears to represent a late transgressive erosional surface induced by the catastrophic 

reflooding, marking the end of the MSC. Combined with the TES, a large and complex 

incised-valley network extending over the Orbo Basin was initiated by retrogressive erosion 

during a relative fall in sea level, i.e. the low stand phase of the MSC. Since the beginning of 
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the MSC, the Corsica basin behaved as an endorheic perched lake, disconnected from the 

Tyrrhenian Sea until the end of the MSC when incision took place. Before the catastrophic 

Pliocene reflooding event, the Corsica basin was connected again to the deep Tyrrhenian 

basins.  

While the detailed markers, stratigraphic units and remarkable surfaces of the MSC 

have been already identified in the East-Corsica region, our study further demonstrates the 

control of the active tectonic setting on these records. The distribution of syn-MSC deposits 

was influenced by the subsidence of the Orbo Basin along the Solenzara and St-Antoine 

Faults and by the build-up of the Elba-Pianosa Ridge. Since the Pliocene, the tectonic setting 

has changed: the northern part (Golo Basin) of the Corsica Basin has subsided, whereas the 

northern and southern edges of the Corsica Basin, as well as the Elba-Pianosa Ridge, have 

undergone significant deformation.  
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Fig. 1: a) Map showing distribution of MSC units in the Western Mediterranean at present-day 

(modified from Lofi et al., 2011). B) Location of the study area (red box) on the Late Messinian 

paleogeographic and paleotectonic map of Jolivet et al. (2006). 

 

Fig. 2: Bathymetric maps [isobaths: 100 m (solid line) or 20 m (dashed line)] of (a) the Northern 

Tyrrhenian Sea; (b) the Corsica Basin. The Corsica Basin is divided into two sub-basins, the 

Golo Basin to the North and the Orbo Basin to the South. IR: Île-Rousse, C: Corte, S: Solenzara, 

AB: Neogene Aleria Plain, BP: Bastia Plain, SF: Saint-Florent Basin; Go: Gorgona Island, Gi: 

Giglio Island, Ba: Baronie Seamount, E: Etruschi Seamount, C: Cialdi Seamount, V: Vercelli 

Seamount, B: Bastia, A: Aléria, Bo: Bonifacio, Star (Ca): Caprera Seamount. Dashed line: 

detachment fault named 41st parallel zone (Spadini and Wezel, 1994). Bathymetric data 

compilation: BRGM; data sources: SHOM, IFREMER, University of Paris VI. 

 

Fig. 3: Simplified transect across eastern Corsica-Northern Apennines showing the proposed 

structural-stratigraphic setting of the Corsica Basin in the Middle Miocene (not to scale, modified 

from Cornamusini and Pascucci, 2014). Note that the EPR is not yet well developed and the 

marine depositional environments of the proto-Corsica Basin seem to correspond to shelf or 

shallow sea. 

 

Fig. 4: Synthetic logs of the Neogene infilling of (a) the Neogene Aleria Plain (Loÿe-Pilot and 

Ferrandini, 2014; Serrano et al., 2013) and (b) the EPR (Cornamusini and Pascucci, 2014). 

 

Fig. 5: Locations of existing seismic surveys and geological data. The tectonic structures of the 

Tuscan Shelf are taken from Carmignani et al. (2004). AP: Neogene Aleria Plain; BP; Bastia 

Plain; Black triangle: Agip industrial wells (Martina 1 and Mimosa 1); Black circle: Rock samples 

(BS77-2 and BS78-20) by coring. 
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Fig. 6: Seismic facies of the “Messinian Fm” (BU) in the Corsica Basin on analogue low-

resolution BCO seismic profiles, described and previously referred to as M by Aleria (1979). PQ: 

Plio-Quaternary unit. The BU unit lies between the seismic unit PQ dated as Plio-Quaternary 

and the pre-MSC seismic unit correlated with the pre-MSC Miocene deposits. 

 

Fig. 7: Seismic profile (BS97-22; see location on Fig. 8), oriented WNW-ESE, showing the 

sedimentary filling and incision system of the Corsica Basin, as well as markers of the MSC (BU1 

unit, BU2 unit, MES, TES, BES and IES). At the edges of the basin, the TES and IES join up with 

the BES to form a single surface, the MES. The box is presented in Fig. 15. 

 

Fig. 8: Pre-Pliocene geological Map at 1:250,000 scale showing the distribution of formations 

cropping out beneath the Plio-Quaternary cover of the margin and Corsica Basin. AP: Neogene 

Aleria Plain; BP; Bastia Plain. The isochrons of the depth of the MES and of the TES, 

corresponding to the base of the Plio-Quaternary unit, are also represented on this map. The 

Plio-Quaternary formations are not shown. Bold solid lines represent the seismic line traces 

presented in this study. 

 

Fig. 9: Isopach map (time in twtt (ms)) of the (a) BU1 unit and (b) the BU2 unit, built from the 3D 

geological model (Calcagno et al., 2004), showing in particular the thickness of these units in the 

Orbo basin. The depositional depocentre migrated westwards between the deposition of BU1 

and BU2. The incised paleovalley network and main tectonic structures are shown on the map. 

The southern limit of the BU1 and BU2 units coincides with the main tectonic structures: the 

Solenzara Fault and the Caprera fault. The other main tectonic structures, such as the St-

Antoine and Scoglio d'Affrica faults, seem to delimit minor depositional depocentres. AP: 

Neogene Aleria Plain. 

 

Fig. 10: Isopach maps of the Plio-Quaternary unit derived from the 3D geological model 

(Calcagno et al., 2004). Map a: the whole Corsica Basin; the main depocentre is located in the 
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Golo Basin; minimum thicknesses are located on the EPR, on the upper continental slope and 

on the shelf of the East-Corsica margin, except in front of the Bastia Plain . Map b: Detail of the 

Orbo Basin (MNT grid = 50 m). The PQ infilling highlights the complex incised paleovalley 

network which cut the syn- and pre-MSC formations. The Caprera Canyon, oriented NE-SW, 

flows into the North Tyrrhenian basin, south of the Caprera seamount. The East-Corsica 

paleovalley network appears to be interrupted by the Caprera seamount. The western channel 

system seems to connect into the onshore fluvial systems of East Corsica. 

 

Fig. 11: Seismic cross-sections (see location on Fig. 8) showing the Margin Erosion Surface 

(MES): (a) across the narrow North-East Corsica margin (Co01bf107 line). Note the occurrence 

of chaotic bodies on the MES at the foot of the continental slope off Cap Corse; (b) across the 

Aleria continental shelf (L187 line). Note the occurrence of major incised valleys filled by Plio-

Quaternary deposits. The pre-MSC unit is faulted. PQ: Pliocene- Quaternary unit. Q: Quaternary 

unit.  

 

Fig. 12: Seismic profiles (see location on Fig. 8) across (a) the North-East Corsica continental 

shelf and (b) northern edge of the Golo Basin (HR02D314 line), showing deformation of the thick 

PQ sedimentary cover (HR02D315-312 line). The faults with a normal component affect the pre-

MSC basement. Some of these faults affect the PQ unit with a reverse component. 

 

Fig. 13: Seismic cross-section (BS97-13; see location on Fig. 8) showing erosive character of 

the BES and IES. The erosive character of IES is picked out by the presence of small gully-type 

incisions. The BES highlights weak topographic relief covered by the onlapping BU1 unit. The 

BU2 unit, which onlaps onto the IES, contains three major sub-units (a, b and c). Minor faults 

affect the PQ cover directly beneath the N-S incised valley system. 

 

Fig. 14: HR seismic cross-section (BS97-10; see location on Fig. 8) illustrating channel system 

(V2) following a NNE-SSW axis, and stratigraphic architecture of the Plio-Quaternary unit. 
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Fig. 15: Seismic cross-section (BS97-22, Fig. 8), oriented WNW-ESE, showing relationships 

between the Messinian remarkable surfaces (TES, IES, BES and MES) at the western edge of 

the Corsica Basin at the foot of the Eastern Corsica continental slope. Basinward, the MES 

divides into three distinct unconformities (BES, TES and IES). BU1 onlaps onto the BES at the 

edges of the Corsica Basin. Unit PQ exhibits many internal unconformities. V2 is the 

westernmost channel system of the East-Corsica incised paleovalley network. 

 

Fig. 16: HR seismic cross-sections (see location on Fig. 8). (a) BS98-34; (b) BS97-03; (c) BS98-

42b, showing details of the MSC markers (BU1 unit, BU2 unit, MES, TES, BES and IES) and 

morphology of the N-S-trending valley (V1, Fig. 18) from north (a) to south (c). Note that the 

width and depth of the valley increase from North to South. Note also that the flanks of the valley 

display small terraces suggesting a change/stagnation during the incision. Within the P unit, 

several disconformities are observed in the axis of the valley. P: Lower Pliocene; PQ: Plio-

quaternary. 

 

Fig. 17: A HR seismic cross-section (BS99-54; see location on Fig. 8) oriented E-W, across the 

south end of the Corsica Basin incised paleovalley network (V3). The incised valley (V3, Fig. 18) 

is obstructed by a structural high, called here the Caprera Seamount. This structural high is 

bounded by the Caprera Fault. The PQ formation is affected by deformation. P: Lower Pliocene; 

PQ: Pliocene-Quaternary; S: undifferentiated basement.  

 

Fig. 18: (a) Map of the incised paleovalley network in the Corsica Basin with, in the northern 

part, the N-S-trending valley to the east (V1) and the channel system (V2) to the west. The 

southern part of the network is characterized by a single wide and deep valley (V3). Minor 

incisions are observed: on the North-Sardinian margin (Caprera Canyon), on the Bonifacio slope 

(Bo), in the prolongation of the main canyons of the Neogene Aleria Plain (Vc). M: mouth of the 

incision system of the Corsica basin. The location of the seismic lines is indicated. (b) Depth 
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profile (twtt (s)) of the base of the N-S-trending valley axis (dashed line in box a) from north to 

south along the EPR. The equilibrium profile of the N-S-trending valley is disturbed. A relative 

uplift of at least 110 m is observed in the north and south. 

 

Fig. 19: Interpreted synthetic cross-section of the MSC units and erosion surfaces of the Corsica 

Basin (this study), correlated with the deposition sequence of the deep Mediterranean basins 

(simplified from Gorini et al., 2015). The junction between the TES and BES is at a depth of 1.4 

twtt (s) (black dot) and the junction between the reflooding and MES in the deep Tyrrhenian 

basin is at 2.5 twtt (s). pre-MSC= pre-MSC Miocene formations. MLM: Messinian upper 

megasequence (from Gorini et al., 2015), not yet observed in the deep Tyrrhenian basins. MUM: 

Messinian upper megasequence (from Gorini et al., 2015). 

 

Fig. 20: Sketch illustrating Neogene evolution of the Corsica Basin. The points A - G refer to the 

stages of development explained in section 5.6. of the text.  
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Figure 2 

  



Thinon et al. In press 2016 - Seismic markers of the Messinian Salinity Crisis in an intermediate-depth basin: data for 
understanding the Neogene evolution of the Corsica Basin (Northern Tyrrhenian Sea) – Marine and Petroleum Geology 

47 

 

 

Figure 3 
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Figure 4   
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Figure 5 
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Figure 6  
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Figure 7 
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Figure 8  
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Figure 9 
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Figure 10  
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Figure 11 
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Figure 12 
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Figure 13  
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Figure 16 
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Figure 17 
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Figure 18  
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Figure 19  
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Figure 20 


