Morphology, molecular phylogeny and azaspiracid profile of *Azadinium poporum* (Dinophyceae) from the Gulf of Mexico

Luo Zhaohe ^{1, 2}, Krock Bernd ^{3, *}, Mertens Kenneth ^{4, 8}, Price Andrea Michelle ⁵, Turner Robert Eugene ⁶, Rabalais Nancy N. ⁷, Gu Haifeng ^{2, *}

¹ Jinan Univ, Coll Life Sci & Technol, Guangzhou 510632, Guangdong, Peoples R China.

³ Alfred Wegener Inst Polar & Marine Res, Handelshafen 12, D-27570 Bremerhaven, Germany.

⁵ McGill Univ, Dept Geog, Burnside Hall,805 Sherbrooke St West, Montreal, PQ H3A 0B9, Canada.

⁶ Louisiana State Univ, Dept Oceanog & Coastal Sci, Baton Rouge, LA 70803 USA.

⁷ Louisiana Univ Marine Consortium, Chauvin, LA 70344 USA.

⁸ LER BO, Stn Biol Marine, PI Croix, BP40537, F-29185 Concarneau, France.

* Corresponding author : Bernd Krock, email address : <u>bernd.krock@awi.de</u> ; Haifeng Gu, email address : <u>guhaifeng@tio.org.cn</u>

Abstract :

Azadinium poporum produces a variety of azaspiracids and consists of several ribotypes, but information on its biogeography is limited. A strain of A. poporum (GM29) was incubated from a Gulf of Mexico sediment sample. Strain GM29 was characterized by a plate pattern of po, cp, x, 4', 3a, 6", 6C, 5S, 6"', 2"'', a distinct ventral pore at the junction of po and the first two apical plates, and a lack of an antapical spine, thus fitting the original description of A. poporum. The genus Azadinium has not been reported in waters of the United States of America before this study. Molecular phylogeny, based on large subunit ribosomal DNA (LSU rDNA) and internal transcribed spacer (ITS) sequences, reveals that strain GM29 is nested within the well-resolved A. poporum complex, but forms a sister clade either to ribotype B (ITS) or ribotype C (LSU). It is, therefore, designated as a new ribotype, termed as ribotype D. LSU and ITS sequences similarity among different ribotypes of A. poporum ranges from 95.4% to 98.2%, and from 97.1% to 99.2% respectively, suggesting that the LSU fragment is a better candidate for molecular discrimination. Azaspiracid profiles were analyzed using LC–MS/MS and demonstrate that strain GM29 produces predominantly AZA-2 with an amount of 45 fg/cell. The results suggest that A. poporum has a wide distribution and highlights the risk potential of azaspiracid intoxication in the United States.

² SOA, Inst Oceanog 3, Xiamen 361005, Peoples R China.

⁴ Univ Ghent, Res Unit Palaeontol, Krijgslaan 281 S8, B-9000 Ghent, Belgium.

Highlights

► The genus *Azadinium* is reported for the first time in waters of USA. ► *Azadinium poporum* from the Gulf of Mexico represents a new ribotype. ► *Azadinium poporum* from the Gulf of Mexico produces predominantly AZA-2.

Keywords : AZA-2, AZA-2 phosphate, Biogeography, LC-MS/MS, LSU rDNA, Ribotype D

46 **1. Introduction**

47	The known diversity of the dinophyte genus Azadinium Elbrächter & Tillmann has
48	increased rapidly. Up to ten species have been described in the past five years
49	(Tillmann et al., 2009; Tillmann et al., 2010; Tillmann et al., 2011; Luo et al., 2013;
50	Percopo et al., 2013; Tillmann et al., 2014). Additionally, Amphidoma caudata Halldal
51	has been transferred to Azadinium based on both morphology and molecular
52	phylogeny (Nézan et al., 2012). The genus Azadinium was characterized by a plate
53	pattern of po, cp, x, 3-4', 2-3a, 6", 6C, 5S, 6", 2"" (Tillmann et al., 2009, Luo et al.,
54	2013), in which the presence of anterior intercalary plates and a canal plate resembles
55	the Peridiniales and the presence of six precingular and postcingular plates resembles
56	the Gonyaulacales. In the molecular phylogeny, the genus Azadinium is monophyletic
57	and forms an independent lineage together with Amphidoma Stein, which is classified
58	within the family Amphidomataceae, but its higher level designation remains to be
59	determined (Tillmann et al., 2012 <i>a</i> ; Tillmann et al., 2014).
60	Most Azadinium species were described from samples collected in European waters,
61	but that does not mean that there is a restricted distribution of these small
62	dinoflagellates. For example, A. spinosum was also reported in the Mexican Pacific
63	(Hernández-Becerril et al., 2012), and A. poporum was found in Korea (Potvin et al.,
64	2011), China (Gu et al., 2013), New Zealand (Smith et al., 2015) and Argentina
65	(Tillmann et al., 2016). Azadinium diversity might be underestimated because their
66	cells are rather small and molecular detection is not routinely carried out (Toebe et al.,
67	2013).

68	The type species of Azadinium (A. spinosum) was related to azaspiracids (AZA-1
69	and AZA-2) and thus was the organism responsible for cases of human intoxication
70	via mussel consumption (Tillmann et al., 2009). Later, two other species (A.
71	dexteroporum, A. poporum) were found to contain AZAs too (Percopo et al., 2013; Gu
72	et al., 2013; Krock et al., 2014). It is worth noting that A. poporum comprises several
73	genetically different ribotypes that are morphologically identical. The strains from
74	Europe and New Zealand share identical sequences and belong to ribotype A, whereas
75	those from Korea, China and Argentina belong to ribotype B or C (Gu et al., 2013;
76	Smith et al., 2015; Tillmann et al., 2016). Additional ribotypes can be expected to be
77	discovered because only a limited number of A. poporum strains have been
78	sequenced.
79	The presence of azaspiracids (AZA) has been reported in mussels of northern
79 80	The presence of azaspiracids (AZA) has been reported in mussels of northern Africa (Taleb et al., 2006), mussels from northern Europe (Satake et al., 1998),
79 80 81	The presence of azaspiracids (AZA) has been reported in mussels of northern Africa (Taleb et al., 2006), mussels from northern Europe (Satake et al., 1998), scallops and mussels from Chile (Lopez-Rivera et al., 2010), a marine sponge from
 79 80 81 82 	The presence of azaspiracids (AZA) has been reported in mussels of northern Africa (Taleb et al., 2006), mussels from northern Europe (Satake et al., 1998), scallops and mussels from Chile (Lopez-Rivera et al., 2010), a marine sponge from Japan (Ueoka et al., 2009), shellfish from China (Yao et al., 2010), shellfish from New
 79 80 81 82 83 	The presence of azaspiracids (AZA) has been reported in mussels of northern Africa (Taleb et al., 2006), mussels from northern Europe (Satake et al., 1998), scallops and mussels from Chile (Lopez-Rivera et al., 2010), a marine sponge from Japan (Ueoka et al., 2009), shellfish from China (Yao et al., 2010), shellfish from New Zealand (Smith et al., 2015) and plankton samples from the Pacific coast of the USA
 79 80 81 82 83 84 	The presence of azaspiracids (AZA) has been reported in mussels of northern Africa (Taleb et al., 2006), mussels from northern Europe (Satake et al., 1998), scallops and mussels from Chile (Lopez-Rivera et al., 2010), a marine sponge from Japan (Ueoka et al., 2009), shellfish from China (Yao et al., 2010), shellfish from New Zealand (Smith et al., 2015) and plankton samples from the Pacific coast of the USA (Trainer et al., 2013). However, AZA producing species have not been reported in
 79 80 81 82 83 84 85 	The presence of azaspiracids (AZA) has been reported in mussels of northern Africa (Taleb et al., 2006), mussels from northern Europe (Satake et al., 1998), scallops and mussels from Chile (Lopez-Rivera et al., 2010), a marine sponge from Japan (Ueoka et al., 2009), shellfish from China (Yao et al., 2010), shellfish from New Zealand (Smith et al., 2015) and plankton samples from the Pacific coast of the USA (Trainer et al., 2013). However, AZA producing species have not been reported in some of these areas, e.g., from the USA. Incubated sediment samples from the
 79 80 81 82 83 84 85 86 	The presence of azaspiracids (AZA) has been reported in mussels of northern Africa (Taleb et al., 2006), mussels from northern Europe (Satake et al., 1998), scallops and mussels from Chile (Lopez-Rivera et al., 2010), a marine sponge from Japan (Ueoka et al., 2009), shellfish from China (Yao et al., 2010), shellfish from New Zealand (Smith et al., 2015) and plankton samples from the Pacific coast of the USA (Trainer et al., 2013). However, AZA producing species have not been reported in some of these areas, e.g., from the USA. Incubated sediment samples from the northern Gulf of Mexico, generated one strain of <i>A. poporum</i> . Its morphology was
 79 80 81 82 83 84 85 86 87 	The presence of azaspiracids (AZA) has been reported in mussels of northern Africa (Taleb et al., 2006), mussels from northern Europe (Satake et al., 1998), scallops and mussels from Chile (Lopez-Rivera et al., 2010), a marine sponge from Japan (Ueoka et al., 2009), shellfish from China (Yao et al., 2010), shellfish from New Zealand (Smith et al., 2015) and plankton samples from the Pacific coast of the USA (Trainer et al., 2013). However, AZA producing species have not been reported in some of these areas, e.g., from the USA. Incubated sediment samples from the northern Gulf of Mexico, generated one strain of <i>A. poporum</i> . Its morphology was examined in detail, and its partial large subunit ribosomal DNA (LSU rDNA) and
 79 80 81 82 83 84 85 86 87 88 	The presence of azaspiracids (AZA) has been reported in mussels of northern Africa (Taleb et al., 2006), mussels from northern Europe (Satake et al., 1998), scallops and mussels from Chile (Lopez-Rivera et al., 2010), a marine sponge from Japan (Ueoka et al., 2009), shellfish from China (Yao et al., 2010), shellfish from New Zealand (Smith et al., 2015) and plankton samples from the Pacific coast of the USA (Trainer et al., 2013). However, AZA producing species have not been reported in some of these areas, e.g., from the USA. Incubated sediment samples from the northern Gulf of Mexico, generated one strain of <i>A. poporum</i> . Its morphology was examined in detail, and its partial large subunit ribosomal DNA (LSU rDNA) and

_

91 **2. Material and methods**

92 2.1. Sample collection and treatment

93	A box core was collected from the northern Gulf of Mexico (29.3250°N,
94	93.4167°W, water depth: 17.3 m) on August 1, 2014. The top 2 cm were sliced off and
95	stored in the dark at 4 °C until further treatment. Approximately 5 g of wet sediment
96	was mixed with 20 mL of filtered sea water and sonicated for 2 min (100 W) to
97	dislodge detrital particles. The watery slurry was incubated directly in a series of
98	small containers in f/2-Si medium (Guillard and Ryther, 1962) at 20 °C, 90
99	$\mu E \cdot m^{-2} \cdot s^{-1}$ under a 12:12 h light: dark cycle (hereafter called "standard culture
100	conditions"). Azadinium cells are characterized by swimming at low speed,
101	interrupted by short, high-speed 'jumps' in various directions (Tillmann et al., 2009).
102	Cells exhibiting such a characteristic swimming behavior were isolated by means of
103	drawn-out Pasteur pipettes and established in clonal cultures. Only one strain (GM29)
104	was established from one container, and it was maintained under standard culture
105	conditions.

106 2.2. Light microscopy (LM)

Live cells were examined under a Zeiss Axio Imager microscope (Carl Zeiss,
Göttingen, Germany) equipped with both differential interference illumination and
epifluorescence. Light micrographs were obtained using a Zeiss AxiocamHRc digital

lution and cell sizes were measured at $400 \times$ magnification. Thirty cells were
easured for the strain GM29.
3. Scanning electron microscopy (SEM)
Mid-exponential batch cultures were collected by centrifugation at 5,000 rpm to use

was transferred to a 1.5 mL microcentrifuge tube, and stained with 1: 100 000 Sybr 111 112 Green (Sigma-Aldrich, St. Louis, USA) for 10 min. The cells were viewed and

camera. Approximately 1 mL of live, healthy culture in mid exponential growth phase

emission LP 515). Cells in mid-exponential growth phase were fixed with 5% Lugol's

for scanning electron microscopy (SEM). The supernatant was removed and the cell

pellet that was re-suspended in 60% ethanol for 1 h at 8 °C to strip off the outer cell

membrane. The cells were pelleted by centrifugation and re-suspended in filtered sea

glutaraldehyde prepared with f/2-Si medium for 3 h at 8 °C. Cell pellets were washed

photographed through a Zeiss Filterset (excitation BP 450-490; beamsplitter FT 510; 113

115 solution

116 measur

110

114

118

119

120

121

122

123

2.3. Sca 117

twice with f/2-Si medium and fixed overnight at 8 °C with 2% OsO4 made up with 124

water for 30 min at 8 °C. Cell pellets were re-suspended and fixed with 2.5%

filtered sea water. The supernatant was removed and the cell pellet was allowed to 125

adhere to a coverslip coated with poly-L-lysine (molecular weight 70,000–150,000). 126

The attached cells were washed for 10 min in a 1:1 solution of distilled water and 127

- 128 filtered sea water, followed by a second wash in distilled water lasting 10 min. The
- samples were then dehydrated in a series of ethanol (10, 30, 50, 70, 90and $3 \times$ in 100%, 129
- 10 min at each step), critical point dried (K850 Critical Point Dryer, Quorum/Emitech, 130

131 West Sussex, UK), sputter-coated with gold, and examined with a Zeiss Sigma FE

132 (Carl Zeiss Inc., Oberkochen, Germany) scanning electron microscope.

133 2.4. PCR amplifications and sequencing

134	The total algal DNA was extracted from 10 mL of exponentially growing
135	Azadinium cultures using a plant DNA extraction kit (Sangon, Shanghai, China)
136	according to the manufacturer's protocol. PCR amplifications were carried out using
137	$1\times$ PCR buffer, 50 μM dNTP mixture, 0.2 μM of each primer, 10 ng of template
138	genomic DNA, and 1 U of ExTaq DNA Polymerase (Takara, Tokyo, Japan) in 50 μL
139	total volume reactions. The total ITS1-5.8S-ITS2 was amplified using ITSA and
140	ITSB primers (Adachi et al., 1996). Approximately 1400 bp of the LSU rDNA
141	(D1–D6) was amplified using the primers of D1R (Scholin et al., 1994) and 28-1483R
142	(Daugbjerg et al., 2000). The PCR protocol was as follows: initial denaturation for 3.5
143	min at 94°C, followed by 35 cycles of 50 s denaturation at 94°C, 50 s annealing at
144	45°C, and 80 s extension at 72°C, plus a final extension of 10 min at 72°C. PCR
145	products were sequenced directly in both directions using the ABI Big-Dye
146	dye-terminator technique (Applied Biosystems, Foster City, CA, USA), according to
147	the manufacturer's recommendations. New sequences were deposited in the GenBank
148	with accession numbers XXXXXX and XXXXXX.

149 2.5. Sequence alignment and phylogenetic analysis

150 Newly obtained LSU rDNA and ITS sequences of *A. poporum* were aligned with

151	the related sequences download from GenBank using the MAFFT v7.110 (Katoh et al.,
152	2005) online program (http://mafft.cbrc.jp/alignment/server/). Alignments were
153	manually checked with BioEdit v. 7.0.5 (Hall, 1999). The program Jmodeltest (Posada,
154	2008) was used to select the most appropriate model of molecular evolution with the
155	Akaike information criterion (AIC). This test chose the TIM1+I+G and TIM2+G
156	models for LSU and ITS, respectively. A Bayesian reconstruction of the data matrix
157	was performed with MrBayes 3.1.2 (Ronquist and Huelsenbeck, 2003) using the
158	best-fitting substitution model. Four Markov chain Monte Carlo (MCMC) chains ran
159	for one million generations, with sampling every 1,000 generations. A majority rule
160	consensus tree was created to examine the posterior probabilities of each clade. The
161	maximum-likelihood (ML) analyses were conducted using RaxML v7.2.6 (Stamatakis,
162	2006) on the T-REX web server (Boc et al., 2012) using the model GTR+G. Node
163	support was assessed with 1,000 bootstrap replicates.

164 **2.6.** Chemical analysis of azaspiracids

165 Cultures of *A. poporum* were grown in 200 mL Erlenmeyer flasks under standard 166 culture conditions to conduct an AZA analysis. About 10^7 cells were collected by 167 centrifugation at the exponential phase. Cell pellets were extracted with 300 µL 168 acetone by reciprocal shaking at 6.5 m s⁻¹ with 0.9 g lysing matrix D (Thermo Savant, 169 Illkirch, France) in a Bio101 FastPrep instrument (Thermo Savant, Illkirch, France) 170 for 45 s. The extracts were then centrifuged (Eppendorf 5415 R, Hamburg, Germany) 171 at 16,100 × g at 4 °C for 15 min. Each supernatant was transferred to a 0.45-µm

172	pore-size spin-filter (Millipore Ultrafree, Eschborn, Germany) and centrifuged for 30
173	s at 800 \times g, and the resulting filtrate was transferred into an LC autosampler vial for
174	LC-MS/MS analysis.
175	2.6.1. Single reaction monitoring (SRM) measurements
176	Water was deionized and purified (Milli-Q, Millipore, Eschborn, Germany) to 18
177	$M\Omega$ cm ⁻¹ or better quality. Formic acid (90%, p.a.), acetic acid (p.a.) and ammonium
178	formate (p.a.) were from Merck (Darmstadt, Germany). The solvents, methanol and
179	acetonitrile, were high performance liquid chromatography (HPLC) grade (Merck,
180	Darmstadt, Germany).
181	Mass spectral experiments were performed to survey for a wide array of AZAs. The
182	analytical system consisted of an AB-SCIEX-4000 Q Trap, triple quadrupole mass
183	spectrometer equipped with a TurboSpray $^{\mathbb{R}}$ interface coupled to an Agilent model
184	1100 LC. The LC equipment included a solvent reservoir, in-line degasser (G1379A),
185	binary pump (G1311A), refrigerated autosampler (G1329A/G1330B), and
186	temperature-controlled column oven (G1316A).
187	Separation of AZAs (5 μ L sample injection volume) was performed by
188	reverse-phase chromatography on a C8 phase. The analytical column (50 \times 2 mm)
189	was packed with 3 μm Hypersil BDS 120 Å (Phenomenex, Aschaffenburg, Germany)
190	and maintained at 20 °C. The flow rate was 0.2 mL min ⁻¹ and gradient elution was
191	performed with two eluants, wherein eluant A was water and B was acetonitrile/water
192	(95:5 v/v), and both contained 2.0 mM ammonium formate and 50 mM formic acid.
193	The initial conditions were 8 min column equilibration with 30% B, followed by a

194	linear gradient to 100% B in 8 min, isocratic elution until 18 min with 100% B, and
195	then returning to the initial conditions until 21 min (total run time: 29 min).
196	The AZA profiles were determined in one period $(0 - 18)$ min with curtain gas: 10
197	psi, CAD: medium, ion spray voltage: 5500 V, ambient temperature; nebulizer gas at
198	10 psi, auxiliary gas was off, the interface heater was on, the declustering potential @
199	100 V, the entrance potential $@$ 10 V, and the exit potential $@$ 30 V. The SRM
200	experiments were carried out in positive ion mode by selecting the transitions shown
201	in table 1. AZAs were calibrated against an external standard solution of AZA-2
202	(certified reference material (CRM) programme of the IMB-NRC, Halifax, Canada)
203	and expressed as AZA-2 equivalents.
204	2.6.2. Precursor ion experiments
205	Precursors of the fragments m/z 348, m/z 360 and m/z 362 were scanned in the
206	positive ion mode from m/z 400 to 950 under the following conditions: curtain gas at
207	10 psi, CAD at medium, ion spray voltage at 5500 V, ambient temperature, a 10 psi
208	nebulizer gas, the auxiliary gas was off, the interface heater was on, a declustering
209	potential of 100 V, a 10 V entrance potential, a 70 V collision energy, and a 12 V exit
210	potential.
211	2.6.3. Collision Induced Dissociation (CID) spectra
212	CID spectra of m/z 856 and m/z 936 were recorded in the Enhanced Product Ion
213	(EPI) mode in the mass range from m/z 150 to 960 in a positive ionization and unit

- resolution mode. The following parameters were applied: 10 psi curtain gas, medium
- 215 CAD, a 5500 V ion spray voltage, ambient temperature, a 10 psi nebulizer gas, the

auxiliary gas was off, the interface heater was on, there was a 100 V declustering
potential, the collision energy spread was 0 and 10 V, and the collision energy was 70
V.

219 **3. Results**

220 **3.1.** *Morphology*

221	The cells of A. <i>poporum</i> strain GM29 were 11.2–16.0 μ m long (mean=13.3 ±1.2
222	μ m, n=30) and 8.2–11.8 μ m wide (mean=9.8 ±0.9 μ m, n=30) with a median length:
223	width ratio of around 1.4. The large nucleus was spherical to slightly elongated and
224	located in the lower part of the cell (Fig. 1). Up to three pyrenoids were visible in the
225	light microscope, and were located either in the epitheca or hypotheca (Fig. 1A). A
226	single chloroplast was situated in the periphery of the cell (Fig. 1B).
227	The cells had a conical epitheca and a hemispherical hypotheca, interrupted by a
228	deep and wide cingulum, descending less than half the cingulum width (Fig. 2A).
229	Trichocysts were observed on the cell surface, including the cingular and sulcal plates.
230	The cells showed a plate pattern of po, cp, x, 4', 3a, 6", 6C, 5S, 6", 2". The cingulum
231	was composed out of six plates of similar size (Fig. 2A, B). The rounded apical pore
232	was located in the centre of a pore plate (po) and covered by a cover plate (cp) (Fig.
233	2C). There was a distinct ventral pore (vp) located at the junction of the apical pore
234	and the first two apical plates $(1', 2')$ (Fig. 2C). The first apical plate was not
235	symmetrical (Fig. 2C). There were three anterior intercalary plates (1a, 2a and 3a) on
236	the dorsal part of the epitheca. Plates 1a and 3a were pentagonal or hexagonal, much

237	larger than the four-sided 2a (Fig. 2B, D). The first precingular plate was large and in
238	contact with plate 1a (Fig. 2D). The first antapical plate $(1''')$ was much smaller than
239	the second antapical plate and displaced to the left (Fig. 2E). The sulcus was
240	composed of an anterior sulcal plate (Sa), a median sulcal plate (Sm), a right sulcal
241	plate (Sd), a left sulcal plate (Ss), and a posterior sulcal plate (Sp) (Fig. 2F). There
242	was a distinct group of pores located on the dorsal side of the second antapical plate,
243	where 10 to 23 pores were arranged in short rows (Fig. 2G). Cells with aberrant plate
244	patterns (e.g., five apical plates, two anterior intercalary plate, five postcingular plates)
245	were observed in the same culture (Fig. S1).

246 **3.2.** Molecular analysis and phylogeny

ranged from 95.4% to 98.2% and the genetic distances ranged from 0.02 to 0.04. In

contrast, the similarity and genetic distances were around 93% and 0.07 at

250 interspecific level (Table 2). For the ITS sequences, the similarity among the different

- ribotypes of *A. poporum* ranged from 97.1% to 99.2%, and the genetic distances
- ranged from 0.01 to 0.02. In contrast, at the interspecific level, the similarity and
- 253 genetic distances were around 91% and 0.08 (Table 3).
- The ML and BI analysis that are based on LSU sequences generated similar
- 255 phylogenetic trees (Fig. 3). Both Azadinium and A. poporum were monophyletic with
- 256 maximal support (bootstrap=100% in ML and pp=1.00 in BI, respectively).
- 257 Azadinium poporum comprised 3 well-supported clades, referred to as ribotype A, B,

258	and C. The strain	GM29 was a	sister clade	of ribotype C	with strong support
-----	-------------------	------------	--------------	---------------	---------------------

- 259 (bootstrap=100% in ML and pp=0.99 in BI, respectively).
- 260 The ML and BI analysis based on ITS sequences generated similar phylogenetic
- 261 trees (Fig. 4). Azadinium poporum comprised three well-supported clades, referred to
- as ribotype A, B, and C. The strain GM29 was a sister clade of ribotype B with
- 263 maximal support. GM29 belonged to neither ribotype B nor ribotype C and was thus
- 264 designated as a new ribotype, termed as ribotype D.

265 **3.3. AZA profile**

266	Precursor ion experiments of the typical AZA fragments m/z 348, m/z 360 and
267	m/z 362 were performed to test the presence of AZAs. Whereas the m/z 348 and the
268	m/z 360 experiments were negative, the m/z 362 experiment resulted in two peaks
269	with m/z 856 at a retention time of 12.4 min and m/z 936 at 11.5 min. The CID spectra
270	of both masses were recorded and resulted in identical spectra to those of AZA-2 and
271	AZA-2 phosphate (Fig. 5). Quantification of both compounds against an external
272	calibration solution of AZA-2 in the Selected Reaction Monitoring (SRM) mode gave
273	an AZA-2 cell quota of 45 ± 1 fg cell ⁻¹ . AZA-2 phosphate was expressed as AZA-2
274	equivalent and determined as 0.7 ± 0.5 fg cell ⁻¹ .

276 **4. Discussion**

277 4.1. Morphology and biogeography

278	This is the first report of the toxic genus Azadinium in waters of the United States.
279	In contrast to the high diversity of Azadinium in Europe (up to 9 species) (Tillmann et
280	al., 2009; Tillmann et al., 2014), there are only a few species recovered in Asian
281	waters (A. poporum, A. dalianense) (Gu et al., 2013; Luo et al., 2013), Argentinean
282	waters (A. cf. spinosum, A. poporum (Akselman and Negri, 2012; Tillmann et al.,
283	2016), the Mexican Pacific (A. spinosum) (Hernández-Becerril et al., 2012), and New
284	Zealand waters (A. poporum) (Smith et al., 2015), probably because they are small
285	and are not included in most routine monitoring. A. poporum seems to be the most
286	widely distributed species with reports from the northeast Atlantic (Tillmann et al.,
287	2010), the northwest Pacific (Potvin et al., 2011; Gu et al., 2013), southwest Atlantic
288	(Argentina, Tillmann et al., 2016) and southwest Pacific (New Zealand, Smith et al.,
289	2015). These species require more attention because of their toxicity, which causes
290	azaspiracid shellfish poisoning (AZP). This occurred through consumption of AZA
291	contaminated mussels that were cultured in Ireland and consumed in several other
292	countries (Satake et al., 1998; Twiner et al., 2008; Klontz et al., 2009). But, as in
293	many countries, the mouse bioassay is still used for seafood control, and azaspiracid
294	shellfish poisoning may have been misidentified as diarrhetic shellfish poisoning
295	(DSP) because the symptoms of both poisonings in mice are the same. Only mass
296	spectral analysis of contaminated shellfish can discriminate between AZP and DSP

- -

297	events. Therefore, insufficient attention has been paid to this group of dinoflagellates
298	in other areas and higher diversities can be expected to be found in the near future.
299	The key morphological characters of the genus Azadinium include the
300	presence/absence of an antapical spine, the arrangement of the first precingular plate
301	(whether in contact with the first anterior intercalary plate or not), and the location of
302	the ventral pore (Tillmann et al., 2014). The distinct position of the ventral pore
303	located at the junction of the pore plate and the first two apical plates is characteristic
304	of A. poporum (Tillmann et al., 2011), but such a kind of ventral pore was also
305	observed in A. dalianense and A. trinitatum (Luo et al., 2013; Tillmann et al., 2014). A.
306	dalianense has only three apical plates and two anterior intercalary plates (Luo et al.,
307	2013), whereas A. trinitatum shares an identical plate pattern with that of A. poporum
308	(Tillmann et al., 2014). However, A. trinitatum has an antapical spine and the left side
309	of the suture $po/1'$ is farther away from the apical pore than A. <i>poporum</i> . Based on the
310	location of the ventral pore and the absence of an antapical spine and configuration of
311	plate 1", the strain GM29 can be safely classified as A. poporum. A group of pores on
312	the dorsal side of the second antapical plate was observed in the Gulf of Mexico strain,
313	which was likewise present in a Korea strain (ribotype B) (Potvin et al., 2011), and
314	many Argentinean and Chinese strains (ribotype C) (Tillmann et al., 2016; Gu
315	personal observations), suggesting that this is a common feature of A. poporum
316	although it was not mentioned in the original description. The strain GM29 was
317	obtained by incubating surface sediments from the Gulf of Mexico directly,
318	supporting the idea that A. poporum has a cyst stage (Gu et al., 2013), although there

319 was no direct observation of such a cyst. The cysts might be too small, too

320 inconspicuous and rare, thus escaping microscopic detection during routine plankton

surveys and cyst studies so far. In line with previously observations (Gu et al., 2013;

322 Tillmann et al., 2011), the Gulf of Mexico strain *Azadinium poporum* cells also

323 sometimes show aberrant plate patterns in culture.

Before this study, *Azadinium poporum* was reported in the North Sea (ribotype A),

325 Yellow Sea, East China Sea, South China Sea (ribotype B, C), New Zealand (ribotype

A) and Argentina (ribotype C) (Tillmann et al., 2011; Gu et al., 2013; Smith et al.,

327 2015; Tillmann et al., 2016). The distribution of A. poporum is extended to the Gulf of

328 Mexico, suggesting that this is a widespread species. A. poporum of various ribotypes

329 share identical thecate morphology, are relevant to toxicity, and thus highlight the

330 necessity to develop molecular-based assays for targeting all ribotypes.

331 4.2. Phylogeny and genetic differentiation

332 The results support the monophyly of the genus *Azadinium* and *A. poporum* (Gu et

al., 2013; Tillmann et al., 2014). However, the phylogenetic position of A. poporum

334 strain GM29 is not consistent, and forms a sister clade either to ribotype B (LSU) or

ribotype C (ITS), whereas phylogenetic positions of other strains of A. poporum are

consistent. Thus GM29 was recognized as a new ribotype. More ribotypes can be

337 expected as still limited sequences from a few geographical areas are available for this

338 species. Unlike other dinoflagellates, the genetic distances of LSU rDNA among *A*.

339 *poporum* ribotypes are greater than those of ITS sequences (Tables 2, 3), supporting

the idea that LSU is a better fragment for molecular discrimination (Toebe et al.,

341	2013). However, whether the primers and probes for European <i>A. poporum</i> are also
342	applicable for other ribotypes remains to be confirmed.
343	4.3. Toxin profiles
344	AZAs have been reported in shellfish of Pacific USA origin, but no details were
345	provided (Trainer et al., 2013). AZA-2 was found in three plankton samples collected
346	in Washington State (northeast Pacific), although neither AZA-1 nor AZA-3 were
347	detected there (Trainer et al., 2013). AZA-1 was the dominant toxin profile in
348	plankton samples collected in the North Sea (Krock et al., 2009), which was later
349	ascribed to Azadinium spinosum (Tillmann et al., 2009). For all available A. spinosum
350	strains, AZA-2 is present only in conjunction with AZA-1 (Tillmann et al., 2009;
351	Tillmann et al., 2012b). For the potential toxic A. dexteroporum, abundance of
352	azaspiracid is very low and neither AZA-1 nor AZA-2 were produced (Percopo et al.,
353	2013). A. poporum is the only known Azadinium species producing exclusively or
354	predominantly AZA-2 (Krock et al., 2014; Tillmann et al., 2016; present study), thus
355	it is likely responsible for the toxin from the plankton sample collected in Washington
356	State (Trainer et al., 2013). AZAs were also present in shellfish from eastern Canada
357	(Twiner et al., 2008), suggesting that toxic species (e.g., A. poporum, A. spinosum)
358	might be present there too. In addition, the toxin profile of the A. poporum isolate
359	from the Gulf of Mexico is identical with the profile of A. poporum from Argentinean
360	shelf waters including the recently discovered AZA-2 phosphate (Tillmann et al.,
361	2016), even though both isolates belong to different ribotypes: C (Argentinean isolate)
362	and D (Gulf of Mexico isolate). In contrast, only AZA-1 was detected in mussels

363	collected from Baja California, Mexico (García-Mendoza et al., 2014), consistent with
364	the fact that A. spinosum is present in the Mexican Pacific (Hernández-Becerril et al.,
365	2012). Interestingly, shellfish samples from Morocco (Taleb et al., 2006) and Portugal
366	(Vale et al., 2008) show an AZA-profile with predominant AZA-2, followed by
367	AZA-1, quite different from any shellfish sample from Ireland, Norway, Spain or
368	France (Twiner et al., 2008). Identification of genes involved in saxitoxin biosynthesis
369	contributed to a rapid and accurate molecular method to quantify toxic Alexandrium
370	species from marine waters (Murray et al., 2011). However, AZA-related genes have
371	not been identified yet, and their knowledge will contribute to a promising approach
372	for monitoring and studying toxic Azadinium in future studies.
373	5. Conclusions
374	The first record of Azadinium poporum in the Gulf of Mexico supports a wide
374 375	The first record of <i>Azadinium poporum</i> in the Gulf of Mexico supports a wide distribution of this species. Further efforts are needed to examine if it is also present in
374375376	The first record of <i>Azadinium poporum</i> in the Gulf of Mexico supports a wide distribution of this species. Further efforts are needed to examine if it is also present in the Atlantic coast of the USA and Canada. <i>A. poporum</i> in the Gulf of Mexico is
374375376377	The first record of <i>Azadinium poporum</i> in the Gulf of Mexico supports a wide distribution of this species. Further efforts are needed to examine if it is also present in the Atlantic coast of the USA and Canada. <i>A. poporum</i> in the Gulf of Mexico is genetically different from strains from elsewhere, and thus represents a new ribotype.
 374 375 376 377 378 	The first record of <i>Azadinium poporum</i> in the Gulf of Mexico supports a wide distribution of this species. Further efforts are needed to examine if it is also present in the Atlantic coast of the USA and Canada. <i>A. poporum</i> in the Gulf of Mexico is genetically different from strains from elsewhere, and thus represents a new ribotype. This strain, however, produces predominantly AZA-2 and AZA-2 phosphate, identical
 374 375 376 377 378 379 	The first record of <i>Azadinium poporum</i> in the Gulf of Mexico supports a wide distribution of this species. Further efforts are needed to examine if it is also present in the Atlantic coast of the USA and Canada. <i>A. poporum</i> in the Gulf of Mexico is genetically different from strains from elsewhere, and thus represents a new ribotype. This strain, however, produces predominantly AZA-2 and AZA-2 phosphate, identical to the profiles produced by the Argentinean strains (Tillmann et al., 2016).
 374 375 376 377 378 379 380 	The first record of <i>Azadinium poporum</i> in the Gulf of Mexico supports a wide distribution of this species. Further efforts are needed to examine if it is also present in the Atlantic coast of the USA and Canada. <i>A. poporum</i> in the Gulf of Mexico is genetically different from strains from elsewhere, and thus represents a new ribotype. This strain, however, produces predominantly AZA-2 and AZA-2 phosphate, identical to the profiles produced by the Argentinean strains (Tillmann et al., 2016). Acknowledgements
 374 375 376 377 378 379 380 381 	The first record of <i>Azadinium poporum</i> in the Gulf of Mexico supports a wide distribution of this species. Further efforts are needed to examine if it is also present in the Atlantic coast of the USA and Canada. <i>A. poporum</i> in the Gulf of Mexico is genetically different from strains from elsewhere, and thus represents a new ribotype. This strain, however, produces predominantly AZA-2 and AZA-2 phosphate, identical to the profiles produced by the Argentinean strains (Tillmann et al., 2016). Acknowledgements We thank Urban Tillmann and an anonymous reviewer for constructive suggestions
 374 375 376 377 378 379 380 381 382 	The first record of <i>Azadinium poporum</i> in the Gulf of Mexico supports a wide distribution of this species. Further efforts are needed to examine if it is also present in the Atlantic coast of the USA and Canada. <i>A. poporum</i> in the Gulf of Mexico is genetically different from strains from elsewhere, and thus represents a new ribotype. This strain, however, produces predominantly AZA-2 and AZA-2 phosphate, identical to the profiles produced by the Argentinean strains (Tillmann et al., 2016). Acknowledgements We thank Urban Tillmann and an anonymous reviewer for constructive suggestions that improved the ms. Haifeng Gu was supported by the National Natural Science
 374 375 376 377 378 379 380 381 382 383 	The first record of <i>Azadinium poporum</i> in the Gulf of Mexico supports a wide distribution of this species. Further efforts are needed to examine if it is also present in the Atlantic coast of the USA and Canada. <i>A. poporum</i> in the Gulf of Mexico is genetically different from strains from elsewhere, and thus represents a new ribotype. This strain, however, produces predominantly AZA-2 and AZA-2 phosphate, identical to the profiles produced by the Argentinean strains (Tillmann et al., 2016). Acknowledgements We thank Urban Tillmann and an anonymous reviewer for constructive suggestions that improved the ms. Haifeng Gu was supported by the National Natural Science Foundation of China (41376170, 41306171) and the Public Science and Technology

385	postdoctoral fellow of FWO Belgium. Andrea M. Price was supported by a Natural
386	Science and Engineering Research Council of Canada (NSERC) doctoral scholarship
387	(CGS-D3). Sample collection was supported by the National Oceanic and
388	Atmospheric Administration, Center for Sponsored Coastal Ocean Research, under

- award NA09NOS4780204 to Louisiana Universities Marine Consortium and award
- 390 NA09NOS4780230 to Louisiana State University.

391 **References**

392	Adachi, M., Sako, Y., Ishida, Y., 1996. Analysis of Alexandrium (Dinophyceae)
393	species using sequences of the 5.8S ribosomal DNA and internal transcribed
394	spacer regions. J. Phycol. 32(3), 424–432.
395	Akselman, R., Negri, R.M., 2012. Blooms of Azadinium cf. spinosum Elbrächter et
396	Tillmann (Dinophyceae) in northern shelf waters of Argentina, Southwestern
397	Atlantic. Harmful Algae 19, 30–38.
398	Boc, A., Diallo, A.B., Makarenkov, V., 2012. T-REX: A web server for inferring,
399	validating and visualizing phylogenetic trees and networks. Nucleic Acids Res.
400	40(W1), W573–W579.
401	Daugbjerg, N., Hansen, G., Larsen, J., Moestrup, Ø., 2000. Phylogeny of some of the
402	major genera of dinoflagellates based on ultrastructure and partial LSU rDNA
403	sequence data, including the erection of three new genera of unarmoured
404	dinoflagellates. Phycologia 39(4), 302-317.
405	García-Mendoza, E., Sánchez-Bravo, Y.A., Turner, A., Blanco, J., O'Neil, A.,
406	Mancera-Flores, J., Pérez-Brunius, P., Rivas, D., Almazán-Becerril, A.,
407	Peña-Manjarrez, J.L., 2014. Lipophilic toxins in cultivated mussels (Mytilus
408	galloprovincialis) from Baja California, Mexico. Toxicon 90, 111–123.
409	Gu, H., Luo, Z., Krock, B., Witt, M., Tillmann, U., 2013. Morphology, phylogeny and
410	azaspiracid profile of Azadinium poporum (Dinophyceae) from the China Sea.
411	Harmful Algae 21-22, 64–75.
412	Guillard, R.R.L., Ryther, J.H., 1962. Studies of marine planktonic diatoms. I.

413	Cyclotella nana Hustedt and Detonula confervacea Cleve. Can. J. Microbiol.
414	8(2), 229–239.
415	Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and
416	analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.
417	Hernández-Becerril, D.U., Barón-Campis, S.A., Escobar-Morales, S., 2012. A new
418	record of Azadinium spinosum (Dinoflagellata) from the tropical Mexican
419	Pacific. Rev. Biol. Mar. Oceanogr. 47(3), 553-557.
420	Katoh, K., Kuma, K., Toh, H., Miyata, T., 2005. MAFFT version 5: improvement in
421	accuracy of multiple sequence alignment. Nucleic Acids Res. 33(2), 511-518.
422	Klontz, K.C., Abraham, A., Plakas, S.M., Dickey, R.W., 2009. Mussel-associated
423	azaspiracid intoxication in the United States. Ann. Intern. Med. 150(5), 361.
424	Krock, B., Tillmann, U., John, U., Cembella, A.D., 2009. Characterization of
425	azaspiracids in plankton size-fractions and isolation of an azaspiracid-producing
426	dinoflagellate from the North Sea. Harmful Algae 8(2), 254–263.
427	Krock, B., Tillmann, U., Witt, M., Gu, H., 2014. Azaspiracid variability of Azadinium
428	poporum (Dinophyceae) from the China Sea. Harmful Algae 36, 22–28.
429	Lopez-Rivera, A., O'Callaghan, K., Moriarty, M., O'Driscoll, D., Hamilton, B.,
430	Lehane, M., James, K., Furey, A., 2010. First evidence of azaspiracids (AZAs):
431	A family of lipophilic polyether marine toxins in scallops (Argopecten
432	purpuratus) and mussels (Mytilus chilensis) collected in two regions of Chile.
433	Toxicon 55(4), 692–701.

434 Luo, Z., Gu, H., Krock, B., Tillmann, U., 2013. Azadinium dalianense, a new

435	dinoflagellate species from the Yellow Sea, China. Phycologia 52(6), 625-636.
436	Murray, S.A., Wiese, M., Stüken, A., Brett, S., Kellmann, R., Hallegraeff, G., Neilan,
437	B.A., 2011. sxtA-based quantitative molecular assay to identify
438	saxitoxin-producing harmful algal blooms in marine waters. Appl. Environ.
439	Microbiol. 77(19), 7050–7057.
440	Nézan, E., Tillmann, U., Bilien, G., Boulben, S., Chèze, K., Zentz, F., Salas, R.,
441	Chomérat, N., 2012. Taxonomic revision of the dinoflagellate Amphidoma
442	caudata: transfer to the genus Azadinium (Dinophyceae) and proposal of two
443	varieties, based on morphological and molecular phylogenetic analyses. J.
444	Phycol. 48(4), 925–939.
445	Percopo, I., Siano, R., Rossi, R., Soprano, V., Sarno, D., Zingone, A., 2013. A new
446	potentially toxic Azadinium species (Dinophyceae) from the Mediterranean Sea,
447	A. dexteroporum sp. nov. J. Phycol. 49(5), 950–966.
448	Posada, D., 2008. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 25(7),
449	1253–1256.
450	Potvin, É., Jeong, H.J., Kang, N.S., Tillmann, U., Krock, B., 2011. First report of the
451	photosynthetic dinoflagellate genus Azadinium in the Pacific Ocean:
452	Morphology and molecular characterization of Azadinium cf. poporum. J.
453	Eukaryot. Microbiol. 59(2), 145–156.
454	Ronquist, F., Huelsenbeck, J.P., 2003. MrBayes 3: Bayesian phylogenetic inference
455	under mixed models. Bioinformatics 19(12), 1572–1574.
456	Satake, M., Ofuji, K., Naoki, H., James, K.J., Furey, A., McMahon, T., Silke, J.,

457	Yasumoto, T., 1998. Azaspiracid, a new marine toxin having unique spiro ring
458	assemblies, isolated from Irish mussels, Mytilus edulis. J. Am. Chem. Soc.
459	120(38), 9967–9968.
460	Scholin, C.A., Herzog, M., Sogin, M., Anderson, D.M., 1994. Identification of group-
461	and strain-specific genetic markers for globally distributed Alexandrium
462	(Dinophyceae). II. Sequence analysis of a fragment of the LSU rRNA gene. J.
463	Phycol. 30(6), 999–1011.
464	Smith K.F., Rhodes L., Harwood D.T., Adamson J., Moisan C., Munday R., Tillmann U.,
465	2015. Detection of Azadinium poporum in New Zealand: the use of molecular
466	tools to assist with species isolations. J. Appl. Phycol. In press.
467	Stamatakis, A., 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic
468	analyses with thousands of taxa and mixed models. Bioinformatics 22(21),
469	2688–2690.
470	Taleb, H., Vale, P., Amanhir, R., Benhadouch, A., Sagou, R., Chafik, A., 2006. First
471	detection of azaspiracids in mussels in north west Africa. J. Shellfish Res. 25(3),
472	1067–1070.
473	Tillmann, U., Elbrächter, M., Krock, B., John, U., Cembella, A., 2009. Azadinium
474	spinosum gen. et sp. nov. (Dinophyceae) identified as a primary producer of
475	azaspiracid toxins. Eur. J. Phycol. 44(1), 63-79.
476	Tillmann, U., Elbrächter, M., John, U., Krock, B., Cembella, A., 2010. Azadinium
477	obesum (Dinophyceae), a new nontoxic species in the genus that can produce
478	azaspiracid toxins. Phycologia 49(2), 169–182.

479	Tillmann, U., Elbrächter, M., John, U., Krock, B., 2011. A new non-toxic species in
480	the dinoflagellate genus Azadinium: A. poporum sp. nov. Eur. J. Phycol. 46(1),
481	74–87.
482	Tillmann, U., Salas, R., Gottschling, M., Krock, B., O'Driscoll, D., Elbrächter, M.,
483	2012a. Amphidoma languida sp. nov. (Dinophyceae) reveals a close relationship
484	between Amphidoma and Azadinium. Protist 163(5), 701–719.
485	Tillmann, U., Soehner, S., Nézan, E., Krock, B., 2012b. First record of the genus
486	Azadinium (Dinophyceae) from the Shetland Islands, including the description
487	of Azadinium polongum sp. nov. Harmful Algae 20, 142–155.
488	Tillmann, U., Gottschling, M., Nézan, E., Krock, B., Bilien, G., 2014. Morphological
489	and molecular characterization of three new Azadinium species
490	(Amphidomataceae, Dinophyceae) from the Irminger Sea. Protist 165(4),
491	417–444.
492	Tillmann, U., Borel, C. M., Barrera, F., Lara, R., Krock, B., Almandoz, G. O., Witt, M.,
493	Trefault, N., 2016. Azadinium poporum from the Argentine continental shelf,
494	southwestern Atlantic, produces azaspiracid-2 and azaspiracid-2 phosphate.
495	Harmful Algae 51: 40–55.
496	Toebe, K., Joshi, A.R., Messtorff, P., Tillmann, U., Cembella, A., John, U., 2013.
497	Molecular discrimination of taxa within the dinoflagellate genus Azadinium, the
498	source of azaspiracid toxins. J. Plankton Res. 35(1), 225–230.
499	Trainer, V.L., Moore, L., Bill, B.D., Adams, N.G., Harrington, N., Borchert, J., Da
500	Silva, D.A., Eberhart, B.T.L., 2013. Diarrhetic shellfish toxins and other

501	lipophilic toxins of human health concern in Washington State. Mar. Drugs
502	11(6), 1815–1835.
503	Twiner, M.J., Rehmann, N., Hess, P., Doucette, G.J., 2008. Azaspiracid shellfish
504	poisoning: a review on the chemistry, ecology, and toxicology with an emphasis
505	on human health impacts. Mar. Drugs 6(2), 39–72.
506	Ueoka, R., Ito, A., Izumikawa, M., Maeda, S., Takagi, M., Shin-ya, K., Yoshida, M.,
507	van Soest, R.W.M., Matsunaga, S., 2009. Isolation of azaspiracid-2 from a
508	marine sponge <i>Echinoclathria</i> sp. as a potent cytotoxin. Toxicon 53(6),
509	680–684.
510	Vale, P., Bire, R., Hess, P., 2008. Confirmation by LC-MS/MS of azaspiracids in
511	shellfish from the Portuguese north-western coast. Toxicon 51(8), 1449–1456.
512	Yao, J., Tan, Z., Zhou, D., Guo, M., Xing, L., Yang, S., 2010. Determination of
513	azaspiracid-1 in shellfishes by liquid chromatography with tandem mass
514	spectrometry. Chin. J. Chromatogr. 28(4), 363-367 (in Chinese).
514 515	spectrometry. Chin. J. Chromatogr. 28(4), 363–367 (in Chinese).

517 Figure captions

536

518	Fig. 1. LM of live cells of Azadinium poporum strain GM29. (A) Ventral view,
519	showing a large nucleus (N) and several pyrenoids (P). (B) Ventral view,
520	showing a putative large chloroplast. (C) Ventral view, showing a large nucleus
521	(Sybr Green staining).
522	
523	Fig. 2. A scanning electron micrograph of vegetative cells of Azadinium poporum
524	strain GM29. (A) Ventral view, showing the conical epitheca and round
525	hypotheca. (B) Dorsal view, showing three anterior intercalary plates (1a, 2a,
526	3a). (C) Apical view, showing the first apical plate (1'), pore plate (po), cover
527	plate (cp) and ventral pore (vp). (D) Apical view, showing four apical plates
528	(1'-4'), three intercalary plates and six precingular plates $(1''-6'')$. (E) Antapical
529	view, showing six postcingular plates (1"'-6"') and two antapical plates (1"", 2"")
530	of unequal size. (F) Detail of plate 2"", showing a group of pores on the dorsal
531	side. (G) Sulcal plates, showing an anterior sulcal plate (Sa), a median sulcal
532	plate (Sm), a right sulcal plate (Sd), a left sulcal plate (Ss), and a posterior sulcal
533	plate (Sp).
534	
535	Fig. 3. Phylogeny of Azadinium poporum inferred from partial LSU rDNA sequences

scale bar indicating the number of nucleotide substitutions per site. Numbers onbranches are statistical support values to clusters on the right of them (left: ML

27

using maximum likelihood (ML). Branch lengths are drawn to scale, with the

т.
_

Mass transition	Toxin	Collision energy (CE) [V]
716>698	AZA-33	40
816>798	AZA-39	40
816>348	AZA-39	70
828>658	AZA-3	70
828>810	AZA-3	40
830>812	AZA-38	40
830>348	AZA-38	70
842>672	AZA-1	70
842>824	AZA-1, AZA-41	40
844>826	AZA-4, AZA-5	40
846>828	AZA-37	40
856>672	AZA-2	70
856>838	AZA-2	40
858>840	AZA-7, AZA-8, AZA-9, AZA-10, AZA-36	40
868>362	Undescribed	70
870>852	Me-AZA-2	40
872>854	AZA-11, AZA-12	40
936>918	AZA-2 phosphate	40

2 Table 1. Mass transitions m/z (Q1>Q3 mass) and their respective AZAs.

Table 2. Partial LSU sequences comparison of Azadinium poporum strain GM29 from the Gulf of Mexico with those of related species from

elsewhere. The percentage refers to the similarity out of partial LSU sequences (701bp); the numeral in brackets refers to pairwise genetic distance.

	GM29	G25	G66	G42	UTHC5	AZCH02
GM29 (ribotype D)	-					
G25 (ribotype B)	97.7%(0.02)	-				
G66 (ribotype B)	97.8%(0.02)	98.2%(0.02)	-			
G42 (ribotype C)	98.2%(0.02)	97.7%(0.02)	97.5%(0.02)	-		
UTHC5 (ribotype A)	95.4%(0.04)	96.2%(0.04)	96.4%(0.03)	96.5%(0.03)	-	
AZCH02 (A. dalianense)	92.7%(0.07)	91.7%(0.08)	92.2%(0.07)	93.2%(0.06)	92.7%(0.06)	-

Table 3. ITS sequences comparison of Azadinium poporum strain GM29 from the Gulf of Mexico with those of related species from elsewhere.

The percentage refers to the similarity out of ITS region sequences; the numeral in bracket refers to pairwise genetic distance.

	GM29	G25	G66	G42	UTHC5	AZCH02
GM29 (ribotype D)	-					
G25 (ribotype B)	98.8%(0.01)	-				
G66 (ribotype B)	98.7%(0.01)	99.2%(0.01)	-			
G42 (ribotype C)	98.4%(0.02)	98.2%(0.02)	97.7%(0.02)	-		
UTHC5 (ribotype A)	97.6%(0.02)	97.3%(0.02)	97.1%(0.02)	97.3%(0.02)	-	
AZCH02 (A. dalianense)	90.8%(0.08)	90.6%(0.08)	90.8%(0.08)	90.6%(0.08)	91.3%(0.08)	-

