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Humans and seasonal climate variability threaten
large-bodied coral reef fish with small ranges
C. Mellin1,2, D. Mouillot3,4, M. Kulbicki5, T.R. McClanahan6, L. Vigliola7, C.J.A. Bradshaw2, R.E. Brainard8,

P. Chabanet9, G.J. Edgar10, D.A. Fordham2, A.M. Friedlander11,12, V. Parravicini4,13,14, A.M.M. Sequeira15,

R.D. Stuart-Smith10, L. Wantiez16 & M.J. Caley1

Coral reefs are among the most species-rich and threatened ecosystems on Earth, yet the

extent to which human stressors determine species occurrences, compared with

biogeography or environmental conditions, remains largely unknown. With ever-increasing

human-mediated disturbances on these ecosystems, an important question is not only how

many species can inhabit local communities, but also which biological traits determine

species that can persist (or not) above particular disturbance thresholds. Here we show that

human pressure and seasonal climate variability are disproportionately and negatively

associated with the occurrence of large-bodied and geographically small-ranging fishes within

local coral reef communities. These species are 67% less likely to occur where human impact

and temperature seasonality exceed critical thresholds, such as in the marine biodiversity

hotspot: the Coral Triangle. Our results identify the most sensitive species and critical

thresholds of human and climatic stressors, providing opportunity for targeted conservation

intervention to prevent local extinctions.
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U
nderstanding the processes that generate and maintain
species occurrence is essential for designing interventions
to mitigate biodiversity loss. Yet, identifying the drivers of

species occurrence patterns is challenging, partly due to
confounding natural and human-mediated effects1. The peak in
marine biodiversity observed in the Coral Triangle has been
explained by several non-mutually exclusive hypotheses that
involve the roles of energy2, habitat area3, biogeography4 and
geometric constraints on species range sizes5,6. By contrast, the
impact of cumulative human pressure (combining fisheries,
human density, urban development and climate change
metrics7–9) on global marine biodiversity patterns has long
been overlooked. With the recent development of multifaceted
metrics of cumulative anthropogenic pressures7–9, it is now
possible to disentangle their impacts from ecological and
evolutionary determinants of biodiversity patterns. Doing so
now is critical to help identify and prioritize tractable options for
conservation actions to mitigate accelerating human impacts on
biological communities.

Most studies investigating biodiversity patterns implicitly
consider species as comparable units10. However, the ecological
roles of species also matter, with many species—particularly those
with restricted geographical ranges11 —supporting unique and
indispensable functions12. Furthermore, different subsets of
species respond differently to environmental and human
stressors13, most often in non-linear ways with critical
thresholds. For example, fishing and climate change can
differentially impact the abundance and biomass of fishes
depending on their body sizes14,15. Human pressure also has
the potential to reduce species abundances, which in turn can
cause ecological extinction (that is, when large population
declines prevent species from performing their ecological
roles)16, local extinction (that is, extirpation)17 and, ultimately,
global extinction18. Yet compared with human-mediated
decreases in abundances, the loss of species occurrences under
human pressure remains largely unknown for coral reef fishes
over broad spatial scales19, and cannot be inferred from reduced
local abundance because abundance and occupancy are unrelated
for fishes on coral reefs20. Thus, the extent to which human
stressors shape species occurrence patterns within their
geographical range, once natural and biogeographic factors have
been accounted for, requires urgent assessment—as does the
extent to which these relationships might be modulated by
biological traits such as body size.

Our analyses of coral reef fishes combined data from 906
locations across the Indo-Pacific along with biological traits21,22,
including maximum adult total length, trophic group,
home range size, mobility, diel activity, schooling behaviour
and geographical range size6 estimated as the extent of
occurrence23. Coral reef fishes are ideal for examining
correlates of broad-scale occurrence patterns because they (i)
are species-rich (44,800 species within the Indo-Pacific24), (ii)
respond to environmental gradients at multiple scales6,
particularly in comparison to most other vertebrate taxa and
(iii) include a wide range of body sizes (from a few cm to43m
total length), life histories, and reproductive strategies. We
focused our analyses on 241 well-known and easily detected
species of coral reef fishes that were consistently sampled on reefs
across the Indo-Pacific and that encompass a wide spectrum of
biological traits and geographical range sizes. We assessed how
occurrence patterns in coral reef fishes respond to multiple
indices of human pressure, which included past and present
threats7, the human impact index8 mostly reflecting intense
artisanal fishing and dense human populations and the ocean
health index9. Using machine-learning techniques25 combined
with detectability and null permutation models, we identified the

main correlates of occurrence for each species and their
associated thresholds among (i) indices of human pressure, (ii)
energy proxies, including sea surface temperature and primary
productivity, (iii) habitat area (both present and historical26)
and (iv) biogeography, including distances to land masses and the
Coral Triangle. We considered energy proxies to be potentially
important because temperature influences species occurrence
through phenological and physiological contraints27, while
higher primary productivity supports larger populations that
more effectively resist extinction2. Reef area increases the
probability of colonization from neighbouring reefs, while
biogeographic isolation from the main coral reef habitats
accounts for large-scale connectivity and long-term persistence
through dispersal4,28.

Using the most extensive data set on tropical reef fish
occurrences (presences and absences) across the entire
Indo-Pacific, we tested whether the vulnerability of fish
occurrence to human pressure is modulated by fish body size
and geographical range size, while controlling for energy, area
and biogeography. We show that (i) the occurrence of relatively
large-bodied tropical reef fishes (450 cm total length) is strongly
and negatively associated with cumulative human pressure and,
to a lesser extent, negatively associated with temperature
seasonality; and that (ii) this effect is most pronounced for the
large-bodied species with the relatively smallest geographical
ranges (that is, within the first quartile of geographic range sizes;
n¼ 13).

Results and Discussion
Quality control of the fish data. We found no evidence of any
consistent data source or temporal effects in the fish occurrence
data (permanova; 999 permutations, P40.05). Conversely, we
found evidence for an effect of body size and behaviour on
fish detectability (Supplementary Table 1; model1; weight of
Akaike’s information criterion corrected for sample samples
(wAICc)40.9). Detectability decreased with maximum body size
(mean effect size±s.e.¼ � 0.006±0.001), high mobility
(� 0.289±0.053), a solitary behaviour (� 0.562±0.049) and
high level in the water column (� 1.035±0.135). However, the
models including geographic variation (model2) or important
correlates (model3) received little support (wAICco0.1;
Supplementary Table 1), and residuals of the first model were
evenly distributed within the study area (Supplementary Fig. 1A).
These results suggest that even though detectability differed
among species, this effect was evenly distributed among samples
and within the correlate space, and did not affect the relationships
between different correlates and fish occurrence patterns. We also
found no effect of fishing intensity on the probability of recording
false absences, either for all species or targeted/large ones
(Supplementary Fig. 1B). Locations with missing fish data were
evenly distributed across the correlate space as indicated by a
principal component analysis (Supplementary Fig. 2) based on
correlates related to biogeography, energy, area and human
pressure, suggesting that species–correlate relationships inferred
by the models were not influenced by missing data.

Main correlates of fish occurrence patterns. Human pressure
and energy had disproportionately large effects on the occurrence
of large-bodied species (450 cm; Fig. 1a), with negative rela-
tionships between occurrence probability and both human impact
and temperature seasonality (the most important human pressure
and energy correlates; Fig. 2). By contrast, occurrences of
smaller-bodied species were best explained by biogeographical
correlates (Fig. 1a), with a positive relationship between reef area
and occurrence probability (Fig. 2). Among large-bodied species,
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which tend to have large geographic ranges (Supplementary
Fig. 2), those with relatively smaller ranges (o90� 106 km2; with
a mean range of 57� 106 km2, equivalent to half that of an
average large-bodied fish) were particularly and negatively
affected by human pressure and energy (Fig. 1a, foreground edge
of the cube and Fig. 2, dotted lines). The total amount of variation
explained in occurrence patterns declined from 71% for the
smallest species to 39% for the largest, with 5 and 10%,
respectively associated with human pressure (Supplementary
Fig. 3) (that is, 8–23% in terms of relative contribution;
Supplementary Fig. 4). Of the total variation explained in
occurrence patterns among species (Supplementary Fig. 5), body
size combined with range size explained 46% (Supplementary
Table 2). These patterns were consistent with the typical trend of
decreasing probability of occurrence (concomitant with decreas-
ing abundance29) as body size increases30,31 (Supplementary
Fig. 6). Other biological traits (for example, diet, home range size)
did not explain additional variation in occurrence patterns
(Supplementary Fig. 7; Supplementary Table 3).

These patterns differed from those expected under a null model
of randomized occurrences within each species’ geographical
range. Null boosted regression trees converged for 121 species
only (B 50% of all species considered) and explained between 1.0
and 23.1% deviance in fish occurrence patterns (mean±standard
deviation¼ 5.3±4.7%). We found no evidence for a relationship
between the total deviance explained and body size
(Supplementary Fig. 8; Supplementary Table 4), or between the
relative contributions of the different correlates and body or
range sizes (Supplementary Fig. 9; Supplementary Table 4).

Our findings indicate an increasing negative influence of
human pressure and temperature seasonality on fish occurrence
as body size increases and species range size decreases. Small
species tend to disperse less than large ones32, and their
occurrences are primarily a function of biogeography,
suggesting that isolation from source populations (decreasing

dispersal rates) plays an important role in shaping their regional-
scale occurrences28. For larger species with slower growth rates,
fishing or habitat degradation can more effectively reduce fish
stocks, affecting local and regional patterns of population size and
biomass15. Our results show that human pressure and
temperature seasonality can potentially affect not only local
population size, but also regional occurrence patterns of
large-bodied and small-ranging fishes in particular.

Human impact and fish occurrence patterns. Large fishes tend
to occur less frequently on human-impacted reefs (Fig. 3b),
highlighting a gradient of increasing occurrence with distance
from the Coral Triangle. This pattern contrasts with the well-
known gradient in marine biodiversity2 that peaks in the Coral
Triangle. Large species occurrence was negatively related to the
human impact index8 (the most important human pressure
variable we examined). This pattern was stronger for
large-bodied, relatively small-ranging fishes (Fig. 2) for which
the contribution of human impact was greatest (Fig. 1a). Owing
to the non-linear and negative relationship between human
impact and the occurrence of large-bodied fishes, high occurrence
probabilities of large-bodied and small-ranging species were only
observed where human impact was low to moderate (Fig. 2 and
Supplementary Fig. 10) with critical thresholds (Table 1). This
means that under such thresholds, even a small reduction in
human impact was associated with a much higher probability of
encountering those large fish species. More specifically, reefs
subject to a human impact index 49.9 (equivalent to conditions
encountered in the Solomon Archipelago and currently
representing 30% of all Indo-Pacific coral reefs) have a
probability o0.3 of hosting large fishes. This low probability of
occurrence represents a 60% reduction (67% for large-bodied,
small-ranging fishes) from the greatest occurrence probabilities
(0.7) that characterize less impacted reefs in New Caledonia or on
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the Great Barrier Reef (Fig. 3). This spatial gradient of large fish
occurrence probabilities due to decreasing human impact from
the Coral Triangle towards the south-west Pacific contrasts with
the gradient of fish species richness3 and corroborates recent
results33 showing that large species, and large-bodied and
small-ranging fishes in particular, might contribute only
marginally to high local species richness within the Coral
Triangle, but much more to the richness of less-diverse
assemblages at its periphery. Conversely, human pressure was
in general positively, but weakly, associated with the occurrence
of small-bodied species (Fig. 2), with small fishes tending to be
more frequent on impacted reefs (that is, subject to a human
impact 436.4; Table 1). This result corroborates previous studies
documenting an increase in the relative abundances of small
fishes on highly disturbed or fished reefs34–36.

Climate seasonal variability and fish occurrence patterns. The
probability of occurrence of large (and small-ranging) fishes was
also greater where sea surface temperatures were less seasonally
variable (Fig. 2). This generally resulted in higher probabilities of
occurrence at low latitudes (Fig. 3d); although large species,
which tend to have larger ranges than smaller ones32, are still
likely to occur in more variable environments than smaller
species (as a consequence of their generally larger ranges)37.
Temperature can affect marine organisms through (i) an

advanced onset of growing or breeding season due to earlier
springs and later autumns, (ii) a temporal mismatch between
food requirement and availability and (iii) temperature extremes
exceeding thermal tolerance thresholds38–40. Our results support
the contention that large-bodied species are not only more
susceptible to over-fishing14, they are also more sensitive to
climate-induced shifts in the timing of seasonal events, which are
exacerbated in habitats of low temperature seasonality such as the
Coral Triangle40. Even for tropical species, temperature
seasonality is a major phenological driver (for example, spring
temperatures trigger spawning aggregations in the coral trout
Plectropomus leopardus41). Any future shifts in such seasonal
events could thus have pronounced deleterious effects on
recruitment, in particular if environmental conditions are then
unsuitable for larval survival and growth38. Direct effects of
climate change such as seasonal shifts and climate velocity are
particularly affecting the Coral Triangle40, leading to forecasts of
high extirpation rates, redistribution of biodiversity, and the
formation of no-analogue communities in the near future42,43.
While we found limited evidence for temporal variation in
temperature over the 12 years considered here (Southern Oceania
only; Supplementary Fig. 11), recent evidence suggests that, in
addition to seasonal shifts, the frequency of both El Niño and La
Niña events is increasing, resulting in more frequent temperature
extremes44,45. Finally, future studies should examine other critical
aspects of climate change not included here such as ocean
acidification46 and tropical cyclones47,48, and their potential
impact on coral reef fishes (now and in the future), which would
require data at finer spatial and temporal resolutions than those
used in this study.

Vulnerability of large-bodied fishes with small ranges. Large-
bodied, small-ranging fishes represent only 7% of all the species
we examined here (Supplementary Data 1), yet because of their
unique functional roles and ecosystem services they provide11,
their greater sensitivity to human pressure could have cascading
effects on entire reef ecosystems. Some of these species are
commercially exploited and sustain local artisanal fisheries in
many developing nations, but their conservation status remains
largely unassessed49. This oversight is partly due to the recent
focus of conservation strategies to protect particular functional
groups like herbivores, which are deemed to play an essential role
in the prevention of phase shifts from coral- to algae-dominated
states50,51. However, we found no evidence that herbivore
occurrences were particularly affected by human pressure at the
scale of the entire Indo-Pacific, possibly because the broad spatio-
temporal scales at which these data were aggregated masked the
importance of recent environmental changes at individual reefs,
to which trophic affiliation often regulates species responses50,51.
Instead, the combination of large body size (usually associated
with slow growth rates) and restricted geographical range
(suggesting limited physiological tolerance) puts these species at
higher risk of local extinction, irrespective of their other traits.

Large-bodied, small-ranging fishes are likely to be particularly
susceptible to local extinction over the coming decades because (i)
their restricted geographical ranges imply that any additional
stressors would have a disproportionate effect on their occurrence
patterns compared with more widely distributed species, and (ii)
such stressors are expected to increase over the coming decades.
The vulnerability of coral reef fishes to global change might thus
depend strongly on the interplay between the body sizes and
geographic range sizes of these species. Our results strongly
indicate that these potential drivers of extinction urgently need to
be incorporated into conservation strategies aimed at minimizing
local biodiversity loss and thus maximizing ecosystem resilience
to future disturbances.
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Methods
Fish occurrence data and biological traits. We obtained fish occurrence
(presence/absence) data from 9,828 samples, of which 93% were transects and the
remaining point counts, from 906 locations of similar spatial extent within the
Indo-Pacific (Supplementary Fig. 12; Supplementary Table 5). These data were
collected by underwater visual census based on either fixed-length belt transects52

or stationary point counts53 in shallow reef habitats (depth 0–30m), where all
fishes sighted in the survey area were recorded on an underwater slate by divers. A
detailed description of the methods used for fish sampling is provided in
Supplementary Table 5 and references therein.

We selected 241 species from 10 families (Supplementary Data 1) for analysis
based on the following criteria: (i) they satisfied minimum detection criteria (that
is, we excluded cryptic and rare species, and those o3 cm total maximum length),
and (ii) they covered the broadest range of life-history traits21 and geographical

ranges32 possible with minimal uncertainty around those estimates. We used an
independent data set of expert-verified checklists24 to delineate each species’
geographical range (convex hull, defined as the smallest convex polygon containing
all species records) as the basis for calculations of geographic range sizes (i.e.,
extent of occurrence23; in 106 km2). For each species, we calculated range size
(defined as the total area of the convex hull minus total land area) in ArcGis 10.0
using a global equal-area Behrmann projection. For each species, we also collated
the following life-history traits21,22: trophic group, body size (i.e., maximum adult
total length, in cm), home range, mobility, diel activity pattern and schooling
behaviour. Some species were occasionally not sampled because two data sets
(WCS and PROCFish; Supplementary Table 5) used a restricted species list. This
resulted in 8% of all records missing; therefore, we did not use these records during
model calibration and verified that missing data did not affect our analyses (see
‘Missing fish data’ section).
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Environmental and anthropogenic variables. We selected environmental corre-
lates related to major hypotheses attempting to explain variation in fish diversity in
previous studies and based on general ecological theory. Considering the spatially
aggregated nature of our data, we focused on large-scale environmental correlates
that were mostly relevant to our analysis of occurrence patterns across locations
(typically 10–100 km apart), instead of finer-scale environmental correlates (for
example, benthic cover) that were inconsistently available across all sites. We con-
sidered the following large-scale environmental correlates: (i) biogeography, because
it is related to dispersal rates through local connectivity; (ii) habitat area, because it is
related to the probability of colonization from neighbouring reefs or patches within
reefs and export to other reefs; and (iii) energy, because its availability can constrain
species occurrence based on their physiological tolerances and because greater energy
availability can sustain larger populations. We also considered a range of proxies for
(iv) human pressure (past and present threat7, human impact8 and ocean health
index9) to account for potential pressures on coral reefs resulting from fisheries
exploitation, pollution, urban development, aquaculture and past thermal stress
(Supplementary Table 6), which can affect coral reef ecosystems at a global scale2,54.
We extracted these environmental data from global data sets (Supplementary
Table 6) and matched them to the locations where fishes were sampled. Details for
individual correlates and data sources are provided below.

(i) We used biogeographic correlates as proxies for connectivity and relative
position within a species’ geographical range, and included the shortest distance
(km) to the nearest landmass54 4105 km2, the shortest distances to the edge of the
continental shelf (km) and to the nearest species range margin (km). Following
previous studies6, we defined the continental shelf as the sea bottom to 200m depth
using the Shuttle Radar Topography Mission SRTM30_PLUS bathymetry (http://
topex.ucsd.edu/WWW_html/srtm30_plus.html). We also included the relative
distance to the nearest range margin, defined as the absolute distance to the range
margin (km) divided by half the distance between the farthest two range
endpoints32; the relative distance is therefore 0 at the range margin, and 1 halfway
between the farthest range endpoints. To account for the relative position with the
range, we calculated the relative longitude and latitude as varying between � 1 for
the easternmost (or southernmost) endpoint and 1 for the westernmost (or
northernmost) endpoint. Finally, we included the distance to the Indo-Australian
Archipelago (km) where fish diversity peaks5.

(ii) Area correlates included the area of the sampled reef (km2) and its
perimeter (km; to account for increased habitat availability on reefs with complex
shapes), total reef area within 10- and 50-km kernels centred on the sampling
location (to account for potential diversity of nearby reefs and its possible influence
on the sampled reef through local connectivity), and the total area of continental
shelf within a 50-km kernel. We considered shelf area to be an appropriate estimate
of historical habitat availability because it provides an approximate estimate of the
coastal waters during the Pleistocene low sea-level stands5. We chose 10 and 50 km
as cut-off kernel radii28 because such distances (i) are representative of larval
dispersal distances for a variety of reef fishes, typically estimated as ranging
between of 0 and 100 km and (ii) resulted in the most complete landscape
description within the vicinity of reefs while minimizing pseudo-replication due to
kernel overlap among neighbouring locations. We calculated area correlates in
ArcGIS 10.0 from a reef contour shapefile7 derived from remote sensing.

(iii) We used energy correlates to account for both kinetic (temperature) and
potential energy (primary productivity); these included sea surface temperature
(SST, in �C) and chlorophyll a concentration (Chl a, in mg m� 3). At a global scale,
SST and Chl a are strongly correlated with other satellite-derived energy proxies55

such as photosynthetically active radiation and light attenuation, and have

commonly been used as predictors of fish diversity2,54 because they facilitate larger
population sizes (for example, through enhanced larval survival) thereby reducing
the probability of local extinctions and supporting the persistence of niche
specialists2. For both SST and Chl a, we calculated the climatological (annual)
mean, winter and summer means and the annual thermic variation (seasonality),
defined as the s.d. in monthly means56 and averaged across years, at sampled
locations from MODIS Aqua monthly climatology (between 2002 and 2013) at a 9-
km resolution. Seasonality describes within year variation (in SST or Chl a), or how
different seasonal conditions are throughout the year.

(iv) Human pressure correlates included past and present threat7, human
impact8, ocean health index9 to account for potential pressures on coral reefs
resulting from fisheries exploitation, pollution, urban development, aquaculture
and climatic stress (Supplementary Table 6), which can affect coral reef ecosystems
at a global scale2,54. Many coastal centres of high species richness overlap with
regions of medium to high human impact2. Human population density correlates
with fishing and coastal development; and land-use stressors disproportionately
impact fish biomass at more diverse reefs54. Specifically, the present local threat to
coral reefs7 (from ‘low’ to ‘very high’) combines threats from overfishing and
destructive fishing, coastal development, watershed- and marine-based pollution
and damage. The present integrated threat that accounts for past climatic stress7

(from ‘low’ to ‘very high’) additionally incorporates severe thermal stress
potentially responsible for mass coral bleaching events between 1997 and 2008.

For coral reefs, the human impact8 model is mostly driven by three main factors:
artisanal fishing (FAO-based artisanal catch rates), climate change (frequency and
intensity of sea temperature anomalies between 1985 and 2005) and direct human
impact (population density). The human impact model also incorporates other
factors, such as commercial fishing, pollution and species invasions, although these are
relatively less important for coral reefs compared with other marine ecosystems8. The
human impact model has been validated for coral reefs with cumulative human
impact being highly correlated with the current condition of coral reefs worldwide and
based on the relative abundance of a suite of indicator species (see Online Material8).

The ocean health index9, available for every coastal country, reflects ten diverse
public goals for a healthy coupled human-ocean system. These goals include (i) food
provision, including fisheries and mariculture, (ii) artisanal fishing opportunity,
(iii) natural products, (iv) carbon storage, (v) coastal protection, (vi) tourism and
recreation, (vii) coastal livelihoods and economies, (viii) sense of place (including
iconic species and lasting special places), (ix) clean waters and (x) biodiversity,
including habitats and species. The main ocean index score is a synthetic metric that
results from the aggregation of these public goals. Each of these ten goals (and their
sub-components) comprising the index can be considered separately or aggregated
into the overall score. The overall index score for the global ocean is 60 out of 100,
with non-random spatial variation9. Because conclusions based on a single goal will
deviate from those derived from the index’s portfolio assessment9, and because we
considered that some of the ten public goals were more relevant in coral reefs than
others, we considered both the ocean health index and some of its sub-components,
namely ‘food provision/fisheries’, ‘artisanal fisheries’, ‘coastal livelihoods and
economies’, ‘sense of place’, ‘biodiversity’ and ‘coastal protection’. We used principal
component analysis (Supplementary Fig. 13) and analysed the resulting correlation
matrix to ensure that correlations among the ocean health sub-components we
considered here were reasonably low. We did this because, like most statistical
modelling techniques, boosted regression trees are sensitive to high multicollinearity
among predictors57, so Pearson’s correlation coefficient r should ideally be kept
under 0.7. For all correlations among the ocean health index sub-components we
considered, ro0.7 (range¼ (� 0.46; 0.69); mean¼ 0.23; median¼ 0.27).

Table 1 | Critical thresholds in the probability of occurrence of fish species of increasing body size in response to biogeography,
energy, area-related correlates and human impact.

Fish body size (cm) Hypothesis Correlate Unit Threshold (T) Rate of change

Before T After T

o15 Biogeography Dist2Land km 494.1±13.0 � 1.40 �0.08
o15 Area ReefArea50 km2 1006.0±25.4 1.20 � 1.91
o15 Area ReefArea50 km2 1109.0±36.7 0.26 �0.93
o15 Energy SSTsdev �C 3.4±0.1 1.53 0.00
o15 Human pressure Human impact — 36.3±0.8 0.00 1.10
15–50 Biogeography Dist2Land km 2868.0±56.7 0.03 0.71
15–50 Area ReefArea50 km2 1021.0±30.3 1.05 �0.02
15–50 Energy SSTsdev �C 1.2±0.05 � 2.42 0.22
15–50 Human pressure Human impact — 30.6±0.6 �0.06 0.88
450 Biogeography Dist2Land km 2771.0±42.7 0.17 1.35
450 Area ReefArea50 km2 956.0±24.8 0.95 0.03
450 Energy SSTsdev �C 1.2±0.0 � 3.71 0.33
450 Human pressure Human impact — 9.85±0.1 � 2.53 �0.32

Dist2Land: distance to nearest land mass; ReefArea50: reef area; SSTsdev: seasonal deviation (that is, seasonality) in sea surface temperature. Rate of change represents the slope of a linear relationship with
all x axes rescaled to the [0; 1] interval to facilitate comparisons.
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Data management and quality control of fish data. Data classification and data
source effects. The extent and quality of the data used in the study has only been
possible by merging different data sets that have been collected and published
independently (Supplementary Table 5). Merging these data required a set of
sample qualifiers (for example, country, island and location), reclassification of
each data set according to these qualifiers, and testing for potential data source
effects, and potential temporal effects that could result from differences in the
timing of data collection.

We defined country based on geopolitical units (for example, French Polynesia),
which included multiple islands typically 100–1,000 km apart, and with different
sampled locations on each island (for example, ocean-facing barrier reef) typically
10–100 km apart. Most countries comprised archipelagos or sets of islands and
could easily be classified according to this scheme; however, for larger countries
with extended reef systems (for example, Australia), a set of reefs (for example,
Cairns) was classified as the island and a particular reef within that set (for
example, Green Island Reef) as the location. This allowed us to keep a consistent
definition of the spatial extent and resolution corresponding to each qualifier across
data sets. Within each location, a sample typically corresponded to a site or a
station where several replicates (transects or stationary point counts) were
collected, across which we pooled the fish data for analysis. For the analysis,
location was used as the sampling unit (corresponding to an average total sampled
area of 2,760m2, range 1,200–4,000m2), which allowed us to minimize issues of
spatial autocorrelation and random sampling error.

We tested for potential data source effects using countries and species that were
sampled in multiple data sets. These countries included, for example, French
Polynesia, New Caledonia, Tonga, Samoa. We compared the probability of
presence of each species in each country, according to each data set, and tested for
potential differences among data sets by using a permutational multivariate
analysis of variance using distance matrices58 (permanova; function ‘adonis’ in
R package vegan). Similarly, for data sets with temporal replicates (for example,
New Caledonia, Solomon Islands, Lord Howe Island), we tested for both seasonal
and interannual differences in species’ probabilities of occurrence using
permanova.

Missing fish data. The PROCFish and WCS data sets included unavailable
records for 91 species and 1,650 samples, and 175 species and 247 samples
respectively, out of 241 species and 9,828 samples in the entire data set. For several
species with incomplete sampling, some PROCFish and WCS locations fell beyond
their geographic range, which thus limited the impact of missing data for such
species. This resulted in 973 locations with all (potentially present) species sampled,
and 103 locations with 15–59% species sampled. For such species, missing data
represented on average 13% of all records (median 2%), which in some cases
prevented model convergence; such species were thus not considered in further
analyses (i.e., generalized linear mixed-effect models).

Detectability models. We ran detectability models before the occurrence models
to assess whether sampled area (which differed among data sets) affected the
detection of different species based on their body size or behaviour, and whether
this effect varied across the geographical or correlate space (in which case
detectability could have interfered with our models). Whereas detectability and
occupancy can in theory be predicted simultaneously in occupancy models based
on a joint probability distribution59, current modelling packages do not handle
variable transect-level replication as is the case here; in such situations decoupling
of processes is recommended (A. MacNeil, Australian Institute of Marine Science,
Townsville, Australia; personal communication).

As a proxy for detectability, we calculated the proportion of replicate samples
where each species was recorded at each location (P), given that it was present at
that location. That is, at a given location, a species sighted on 1/4 of all transects
(P¼ 0.25) was deemed less detectable than a species sighted on 4/4 of all transects
(P¼ 1) this also depends on individual transect size, which we accounted for as an
offset in the models. In the first model, we tested the idea that detectability would
depend on body size and behaviour21 (i.e., mobility, schooling behaviour and water
level). In the second model, we tested the idea that detectability would additionally
vary depending on the geographical location, through the inclusion of two
covariates: the region (Western Indian Ocean, Indo-Australian Archipelago or
Western Pacific) and distance to the Coral Triangle. In the subsequent models, we
tested whether detectability would additionally vary depending on the most
important correlates of the presence models (distance to nearest land mass, total
reef area within a 50-km radius, seasonality in sea surface temperature, human
impact). We used hierarchical logistic regression (generalized linear mixed-effects
with a binomial error distribution and a logit link) including random effects coding
for the data set (to account for the non-independence of samples collected with the
same methodology in a same data set) and for the genus nested within the family
(to account for phylogenetic relationships among taxa).

We also tested whether potential behavioural avoidance of divers by fish could
inflate the probability of recording false absences (missing a species when it is
present) in heavily fished locations, particularly for targeted species that also tend
to be large-bodied. We tested this hypothesis on a subset of our data for which
distance-sampling observations were available. That is, fishes were also recorded
beyond the 5-m wide transect on 3,630 of the GASPAR transects spanning a wide
range of fishing pressure in New Caledonia, Fiji, Tonga and French Polynesia—
these data have been published elsewhere60. Our hypothesis was that fishes
recorded beyond 5m are little affected by the presence of the diver and, in case of

behavioural avoidance under fishing pressure, would only (or mostly) be recorded
at such distances. We thus calculated the probability of recording false absences
within 5m as the proportion of transects where a species was only recorded beyond
5m and, therefore, considered absent within 5m. We compared the probability of
recorded false absences along a gradient of fishing intensity (from 1: no or weak
fishing to 5: intense fishing), both for all species and targeted/large ones.

Modelling. Occurrence models. We used boosted regression trees25 (BRT) to
identify the main correlates of occurrence patterns for each species within its range.
We chose BRTs over other techniques because (i) they can handle a large number
of predictors without over parameterizing; (ii) they are robust to moderate
multicollinearity among predictors57 (Pearson’s rB0.7; in our case Pearson’s
ro0.7 for 95% of the among-predictor paired correlations), and (iii) they can fit
non-linear relationships between response and predictor variables, as is often the
case with ecological data61. We fitted BRT for each species using species presence/
absence at each location as the response variable (n¼ 906) and the range of
correlates described above as predictors. We used a binomial (logistic) error
distribution with a logit link. The total number of trees was determined by
cross-validation61 and we set all other parameters to BRT default options
(tree complexity of 3, learning rate of 0.01 and a bag fraction of 0.5) to make
model outputs readily comparable among species. BRT outputs consisted of the
cross-validated percent deviance explained in the response variable, percent
contribution of each correlate to the deviance explained, and marginal plots of the
partial effect of each correlate on species probability of occurrence61. We fitted
BRT in R 3.0.1 (ref. 62) using the package {gbm} and the functions provided
in Elith et al.61

Influence of life-history traits on occurrence model outputs. After excluding the
species for which BRTs did not converge (n¼ 32, 13.7% of all species, consisting of
15 infrequent species and 17 species not specifically associated with coral reef
habitats), we used generalized linear mixed-effect models (GLMM) to analyse the
outputs of the BRTs (that is, cross-validated percent deviance explained in the
probability of the occurrence of each species and the relative contribution (%) of
each correlate to the total deviance explained) as a function of a species life-history
traits (for example, body size, range size, diet, mobility) and their interactions.
We first summed the relative contributions across correlates related to the same
hypothesis to calculate the relative contribution of each hypothesis (biogeography;
area; energy; human pressure) to the deviance explained in species’ occurrence
patterns. The relative contribution of each of these four hypotheses, in addition to
the total deviance explained, resulted in five response variables that we modelled
using five separate GLMMs. Models included a random effect coding for genus
nested within family as a partial control for phylogenetic non-independence among
taxa32. Taxonomic hierarchies provide a valid proxy for phylogenetic relationships
when molecular phylogenies are not available63, which was the case here. For each
response variable, we assumed a Gaussian error distribution with a log link
function and checked the normal distribution of model residuals using the
normalized scores of standardized residual deviance64. We assessed GLMM
performance using the marginal R2 (Rm, variance explained by the fixed effects),
and the conditional R2 (Rc, variance explained by both the fixed and random
effects) to provide an index of the model’s goodness-of-fit65, Akaike’s information
criterion corrected for small sample sizes (AICc) to provide an index of Kullback-
Leibler information loss and corresponding weights (wAICc) that assign relative
strengths of evidence to the different competing models66. This information-
theoretic approach offers a more robust method than standard regression
techniques for testing alternative hypotheses because it uses a multimodel inference
framework without arbitrary thresholds such as P values67. For each response
variable, the first model sets included all individual life-history traits (for example,
body size, range size, diet, mobility), in addition to the null (intercept-only) model.
Among these models, we only included in the final model sets those for which
wAICc was higher than for the null model (zero) as well as their paired linear
combinations, with and without interactions. We fitted GLMM using the function
lmer {lme4} in R 3.0.1 (ref. 62).

Based on the final model sets, we used the GLMM to predict the percent
deviance explained in species occurrence patterns and the relative contributions
(%) of the different hypotheses across the full range of life-history traits and their
interactions. We used a model-averaging procedure where predictions from each
model were weighted by its wAICc and summed across the model set66. Response
surfaces were plotted in three-dimensional space using the function persp in R
3.0.1 (ref. 62).

Null models. To test the null hypothesis that the patterns we observed were not
different from those expected by chance, we ran null models where we randomized
the presences and absences of each species within its range. We then repeated
the (i) BRT and (ii) GLMM analyses as described above. We applied a single
randomization of the 241 species-specific BRT (to keep the time required to
compute all models reasonable), thus corresponding to 241 species-specific null
models.

Relationship between range and body sizes. We predicted geographical range size
as a function of body size (that is, maximum adult total length) using separate
GLMM with a Gaussian error distribution and a log link function, and other
parameters as described above.

Partial effects of occurrence correlates and mapping of global patterns. We
identified the strongest correlates of occurrence and plotted their partial effects
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(individual correlate effect, once the effect of other correlates had been accounted
for) for each species. We then plotted the mean partial effects, averaged across
species of three body size classes (r15, 16–50,450 cm), along with their 95%
confidence intervals. For each body size class, we also plotted the mean partial
effects for small-ranging species, defined as species within the first quartile of
geographic range sizes. We tested for critical thresholds in these partial effects
using the Davies test and, where present (Po0.05), identified their values based on
a segmented linear regression68,69. We mapped a raster surface of the mean partial
effect of human impact and temperature seasonality on the occurrence of large
tropical reef fishes (450 cm body size) across the Indo-Pacific using bilinear
interpolation in ArcGIS 10.0.
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