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Abstract :   
 
Our aim in the EU funded JERICO project was to develop a flexible and scalable imaging platform that 
could be used in the widest possible set of ecological situations. Depending on research objectives, both 
image acquisition and analysis procedures may indeed differ. Up to now the attempts for automating 
image analysis procedures have consisted of the development of pieces of software specifically designed 
for a given objective. This led to the conception of a new software: AVIExplore. Its general architecture 
and its three constitutive modules: AVIExplore – Mobile, AVIExplore – Fixed and AVIExplore – ScriptEdit 
are presented. AVIExplore provides a unique environment for video analysis. Its main features include: 
(1) image selection tools allowing for the division of videos in homogeneous sections, (2) automatic 
extraction of targeted information, (3) solutions for long-term time-series as well as large scale image 
acquisition, (4) real time acquisition and in some cases real time analysis, (5) a large range of customized 
image-analysis possibilities through a script editor. The flexibility of use of AVIExplore is illustrated and 
validated by three case studies: (1) Coral identification and mapping, (2) Identification and quantification 
of different types of behaviors in a mud shrimp, and (3) Quantification of filtering activity in a passive 
suspension-feeder. The accuracy of the software is measured comparing with visual assessment. It is: 
90.2%, 82.7%, and 98.3% for the three case studies, respectively. Some of the advantages and current 
limitations of the software as well as some of its foreseen advancements are then briefly discussed. 
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1. Introduction 

 

Imaging technologies are currently used to address different questions related to 

marine benthic ecology (see Solan et al., 2003 for review) including: (1) the 

assessment of benthic biodiversity (Mallet and Pelletier, 2014; Spencer et al., 2005), 

(2) the study of faunal composition (Cuvelier et al., 2012; Duffy et al., 2014), (3) habitat 

mapping (Williams et al., 2012), (4) the characterization and quantification of behaviors 

and biological activities (Grémare et al., 2004; Jordana et al., 2000; Maire et al., 2007a; 

Matabos et al., 2011; Matabos et al., 2015), (5) the quantification of sediment 

reworking (Bernard et al., 2012; Maire et al., 2007b),  and (6) ecological quality 

assessment (Rosenberg et al., 2009).  

 

Imaging is a non-destructive technique that : (1) allows for the saving of initial raw 

information and thus for potential re-analysis, and (2)  records both visible benthic 

organisms and other biological/ biogeochemical parameters resulting from biological 

activity such as the apparent Redox Potential Discontinuity on Sediment Profile 

Images (Romero-Ramirez et al., 2013). The reasons for choosing imaging 

technologies differ depending on the aim of each study. As an example, benthos and 

epibenthos sampling strategies at deep seabed present some difficulties (Jamieson et 

al. 2013): (1) the use of trawls and sleds does not allow for quantitative samplings,  (2) 

the use of traps and suction samplers result in biased samplings resulting from 

differences in feeding regimes and motility, and (3) the use of grabs and box corers is 

complicated by the use of long wires and possible heteregoneities in sediment 

penetrability. Furthermore there are several designs for sampling epibenthos and their 

efficiencies are substrate-dependent (i.e. beam trawls for soft bottoms or suction 

samplers for hard bottoms). None of the sampling gears are recommended as a 

standard for a quantitative epibenthos assessment across all substrate types (Rees 

and Service, 1993). Moreover, some species from the epibenthos community are very 

mobile, making them difficult to capture when sampling. In this context, video and 

image analysis has proven to be an alternative and sometimes the only (i.e. 



hydrothermal vents,(Cuvelier et al., 2012)) in situ tool adequate to assess the 

epibenthos at all substrate types in a qualitative and/or quantitative manner. 

 

 

In or ex situ imaging devices for benthic surveys can be deployed from different 

platforms (Smith and Rumohr, 2013), which can be divided into two main types: static 

platforms such as benthic landers (Roberts et al., 2005), and (2) mobile platforms such 

as Remote Operated Vehicles (ROV) or Autonomous Underwater Vehicles (AUV). 

Each type of platform provides image sequences with their own specificities that have 

to be taken into account during processing. Both static and mobile platforms produce 

series of images often acquired under different light conditions (especially when 

deployed in shallow waters) because of: (1) changes in water turbidity, (2) changes in 

the intensity of natural light, and/or (3) the development of biofilms. In addition the 

series of images derived from mobile platforms need to be geo-referenced to produce 

sound habitat mapping. 

  

Although the use of automated image acquisition systems is clearly currently 

spreading worldwide (Mallet and Pelletier, 2014), corresponding analyses are still most 

often achieved manually/visually (Cuvelier et al., 2012; Matabos et al., 2011; Sarrazin 

et al., 1997; Spencer et al., 2005; Vertino et al., 2010). Significant efforts have been 

made to automatically or semi-automatically process isolated images using either 

generic (Birchenough et al, 2012; de Moura Queirós et al., 2011) or specific software 

(Teixidó et al., 2011; Romero-Ramirez et al., 2013). With the arrival of newer video 

sensors, the tendency towards increasing video duration, image resolution and time 

frequency acquisition,  makes corresponding image analysis very time-consuming 

(Edgington et al., 2006). Locating sequences of images containing important 

information would lighten this task (Lebart et al. 2003). Moreover, the complexity of the 

information contained in each image makes it highly operator-dependent (Cuvelier et 

al., 2012; Germano et al., 2011). There have been some attempts to generate 

automated image-analysis procedures (Aguzzi et al., 2011; Edgington et al., 2006; 

Kannappan and Tanner, 2013; Lebart et al.,2003; Mane and Pujari, 2014; Nowak et 



al., 2008; Romero-Ramirez et al., 2013; Teixidó et al., 2011). These have included 

both the automatic detection (Aguzzi et al., 2011; Edgington et al., 2006; Kannappan 

and Tanner, 2013) and in some cases even the identification of large epibenthic 

organisms on videos using either fixed (Aguzzi et al., 2011) or mobile cameras 

(Edgington et al., 2006). Given the large variety of possible applications of imaging in 

benthic ecology, a flexible software, which could provide users with an assistance for 

the widest possible set of all applications is however clearly still missing. 

 

One of the aims of the JERICO project (http://www.jerico-fp7.eu/) was to develop the 

use of image analysis techniques to monitor a large set of biological components and 

processes recorded either at high frequency and/or over large scales using automated 

or semi-automated procedures. In this context, we report here on the AVIExplore 

software that provides a unique flexible environment for automated video analysis. 

AVIExplore proposes different interfaces to analyze videos originating from imaging 

devices set on mobile and/or fixed platforms. The principal features of AVIEplore are: 

(1) to provide image selection tools allowing for the division of videos in homogeneous 

subsections, (2) to allow for the automatic extraction of targeted information, (3) to 

propose solutions for long-term time-series as well as large scale image acquisition, 

(4) to allow for real time acquisition and in some cases real time analysis, (5) to provide 

a large range of customized image-analysis possibilities through a script editor. This 

paper presents the principles and the structure of the AVIExplore software. Its 

capacities are also illustrated via the presentation of several case studies for which it 

has already been used.  These include an: (1) automated search for coral colonies in 

a video recorded using a mobile imaging platform, (2) automated behavior 

identification of Upogebia pusilla within the sediment column of a thin aquarium based 

on a video recorded using a fixed device, and (3) automated assessment of temporal 

changes in the filtering activity of a passive suspension feeding benthic species based 

on a video of the sediment surface recorded with a fixed device.  

 

 

 



2. AVIExplore  software description 

 

2.1. Generalities and common features 

 

AVIExplore is a software that allows acquisition and analysis of standardised AVI 

videos. It presents a graphical user interface (Fig. 1) that allows access to three 

different modules:  

(1) AVIExplore - Mobile. This module allows the extraction of information from 

videos taken with moving sensors and cameras. It has two working modes: real time 

and recorded video. 

(2) AVIExplore - Fixed. This module allows for the survey of activity on surfaces by 

using videos taken with a fixed camera. It has two working modes: real time and 

recorded video. 

(3) ScriptEdit. This module can be seen as a tool that allows writing and testing 

scripts in view of their use in the other two AVIExplore modules. It is however a 

standalone module that can be used to compute data from videos or images.  

 

The three modules of AVIExplore use a similar internal structure (Fig. 2). Images are 

extracted from video sources; each incoming image being called ‘Origin Image’. The 

result of applying an operation (for example contrast enhancement) on an ‘Origin 

Image’ is saved as a ‘Work Image’. If the user needs to apply a second operation, he 

can either save it as ‘Secondary Work Image’ or rewrite on the initial ‘Work Image’. In 

order to speed up operations, it is possible to work with greyscale images, which are 

then saved as a ‘Grey Image’. Operations can be bidirectional as a ‘Work image’ can 

become an ‘Origin Image’. However, in this case, this transformation is not reversible 

as the return to the initial ‘Origin image’ is impossible. A mask is a tool used to select 

a subset of pixels in an image. These masks can be directly drawn by the user or 

computed using a script. Binary hexadecimal masks are used as internal structures to 

store intermediate information. They can be saved and loaded using an external file 

(*.msk). Other Regions Of Interests (ROIs) can also be drawn by the user and saved 



in a different external file (*.roi). ROIs can be converted in internal binary regions for 

computations. 

 

External files are similar within the three modules. They gather different types of 

information (Fig. 3): (1) the AVI input file (main input), (2) script files to process images 

(processing), (3) ROI files to store working areas (service), (4) mask files to get fast 

mask loading (service), (5) data and companion files to store intermediate results 

(information), (6) time and position files which can be of interest for image tracking 

collected with mobile carriers (information), and (7) export information in text files. 

 

The graphic user interfaces of each of the three modules share a similar structure with: 

(1) a displayed window, (2) a strip menu, and (3) a scrollbar for video timing. However, 

depending on the module, the functionalities present on the left side of the window 

may differ (Fig.4). 

 

AVIExplore can be used for different purposes namely: (1) image acquisition, (2) 

testing of image-analysis procedures and image analysis per se (Fig. 5). The user may 

consider AVIExplore real time acquisition mode (which is present within both the 

AVIExplore - Fixed and the AVIExplore - Mobile modules) for acquiring a video to be 

analyzed with another module. During testing, different functions can be tried out in 

order to optimize and automatize the image-analysis procedure, which will then be 

applied to a whole acquisition sequence or a batch of acquisition sequences. The 

AVIExplore - ScriptEdit module indeed allows for saving and then loading back any of 

the so-tested scripts 

 

2.2.  The AVIExplore Real Time acquisition mode 

 

Real time acquisition can be achieved for both mobile and fixed platforms through 

AVIExplore - Mobile and AVIExplore - Fixed modules. The main advantages of 

monitoring real time acquisition using AVIExplore are: (1) an absolute control of image 

frequency acquisition, (2) the possibility for real time video treatments, which includes 



the possibility of applying different filters to incoming images as well as the use of 

masks and the selection of objects. The user may then choose to directly save results 

and no longer original images, which can prove valuable when using acquisition 

memory limited devices. There is however a clear limitation for real time analyses: the 

flow of incoming images cannot be interrupted. Processing time must therefore remain 

less than the time lag between consecutive images. As a consequence, computing 

loops online is not possible. This can be avoided by saving the original video and 

analyzing it afterwards.   

 

2.3.  The AVIExplore – Mobile module  

 

AVIExplore - Mobile handles both the video to be analyzed and a geolocalization file, 

which is used to locate each image and associated identified objects in space. 

Sophisticated Remotely Operated Vehicles (ROVs) usually produce this file when 

acquiring images but other mobile acquisition carriers do not. If the information 

concerning the location of the images is available through another way (e.g. a Log 

book), the user can generate a geolocalization file by himself. If not, the user can still 

proceed with image-analysis but in this case, identified objects will not be 

geographically located. The corresponding format for the geolocalization file is 

specified on Table 1. 

 

The first step when analyzing a video is to extract its images (Fig. 6A). When using 

AVIExplore, it is recommended to first proceed with a global scene analysis. This 

procedure extracts features (Table 2) from the images and generates a companion file 

containing relevant metadata, which are used for a fast comparison between images.  

This process allows for the identification of common: (1) properties, and (2) objects 

between images. It can be used to define sections of the original video where the 

presence of the same specific object is suspected and which therefore can be 

processed using the same image analysis procedure (script). The values of the 

extracted features can be exported on a text file for post-treatment. Object detections 

can be done either on this module or on the Script Editor module. The section on 



AVIExplore - ScriptEdit module describes the type of extracted information that can be 

exported. 

 

2.4.  The AVIExplore - Fixed module 

 

This module allows for surveying biological activity based on videos collected using a 

fixed carrier either in or ex situ. The analysis of a fixed video starts by extracting its 

images, which are then subtracted between each other (Fig. 6B). Three different types 

of subtraction are proposed: (1) ‘Previous’, (2) ‘Gap’, and (3) ‘Reference image’. When 

the ‘previous’ type is selected, the subtraction is carried out between all pairs of 

consecutive images. When the ‘Gap’ type, the subtraction is carried out between all 

pairs of images separated by a fixed number of images. When the ‘Reference image’ 

type is selected, the subtraction is always carried out between the current and a fixed 

reference image (which usually corresponds to the start of the recording and/or to a 

zero level of activity). Subtraction results can be expressed in three different modes: 

(1) absolute values, (2) positive values and (3) negative values. Both the type of 

subtraction and its combination with other parameters (Table 3) must be adjusted by 

the user depending on image quality and desired analyses, although some default 

values are proposed. The user may choose to focus on some areas of the images by 

drawing a ROI or a mask. Image subtractions are then only achieved within the 

selected area and no longer in the whole image. At the end of the analysis a ‘Data File’ 

is created and loaded. The ‘Data File’ is a binary file that can be understood as a 

metadata companion file which allows the user to directly visualize the subtraction 

results. On this module, the user can choose to export those results obtaining two 

different text files. The first file includes for each image the position (barycenter) and 

size (number of pixels) of each isolated region where the subtraction result is bigger 

than the specified threshold. The second file provides the mean position (barycenter 

and standard deviation) and the total size (total number of pixels) of all the regions 

where the subtraction result is bigger than the specified threshold found on an image. 

The section describing the AviExplore - ScriptEdit module provides more examples of 

the extracted information that could be exported. 



2.5. The AVIExplore – ScriptEdit module 

 

The AVIExplore – ScriptEdit module allows writing and testing scripts, which can later 

be used in another AVIExplore module. However the AVIExplore – ScriptEdit module 

is also a standalone program that can proceed with the complete analysis of a video 

and produce a result file. Available functions and commands that can be used within 

this module can be divided into:  

(1) Video management and visualization functions.  

(2) Image processing operations. Some of these operations allows for: color filtering, 

image segmentation, edge detection, image and histogram equalization, 

morphological processing and noise removal. 

(3) Looping. Set of commands that allow applying one operation to a set of images.  

(4) Export and log. Functions that allow either to have a log or a result text file. 

(5) Masks and ROIs. Set of functions allowing the use of masks and ROIs within a 

script. Those masks and ROIs can either be the result of an image processing 

operation or designed by the user.  

 

The detailed description of the high number of functions available is provided in the 

AVIExplore manual, which is embedded in the software and available online 

(http://www.epoc.u-bordeaux.fr/index.php?lang=fr&page=eq_ecobioc_aviexplore).  

 

Depending on the scope of the analysis, dedicated searches must be carried out to 

identify/classify objects. The user can choose which information to export, some 

examples are: the number of objects on an image, the surface and the perimeter of 

each object, the width and the length of the minimum bounding rectangle of an object, 

the position of each object, the mean and standard deviation of all the positions and 

surfaces of all the objects on an image. 

 

The ScriptEdit module proposes a functionality to help the user write scripts. This 

functionality provides the users with the parameters required by all specific functions. 

The current version of the software includes examples of object detection and 

http://www.epoc.u-bordeaux.fr/index.php?lang=fr&page=eq_ecobioc_aviexplore


identification routines (needed for the mobile module) to help the user building their 

own scripts and to provide insights on which kind of operations are relevant to obtain 

specific information. Scripts can be saved within a Microsoft access database and then 

become easily accessible for subsequent analyses. The AVIExplore – ScriptEdit 

module has a complementary utility for video edition, including: (1) cropping, (2) 

reducing duration, (3) reducing resolution, (4) changing frame frequency acquisition, 

(4) extracting images, and (5) building a video from extracted images.  

 

3. Case studies 

 

3.1.  AVI-Explore – Mobile: Mapping of deep corals 

 

3.1.1. General context  

In the last decade live deep-water corals have been reported in the Ionian Sea at 

the Santa Maria de Luca (SML) Province (Taviani et al., 2005; Tursi et al., 2004). 

The most reported predominant species in this area are Lophelia pertusa and 

Madrepora oculata, both species present a multi-branch morphology that can 

provide ecological niches, refuges and substrates for a multitude of other species 

(Tursi et al., 2004). The SML Province contains living and dead isolated colonies 

of those deep-water corals as well as coral patches (Savini et al., 2005; Vertino et 

al., 2010). Different tools have been used to identify and characterize both 

macrofauna and habitats within the SML province (Mastrototaro et al., 2010; Tursi 

et al., 2004, Savini and Corselli, 2010, Taviani et al., 2005).   

 

In this context, video imagery acquired with ROVs has been used to detect 

macrohabitat and determine main seafloor features that includes the percentage of 

recognizable dead and/or live coral colonies (Vertino et al., 2010). This last analysis 

was achieved but at a low spatial resolution and apparently by direct visual video 

observation (Vertino et al., 2010). We report here on the use of the AVIExplore 

software to analyze another video collected in the same area. Our specific aims 



consisted in automatically: (1) detecting corals, and (2) differentiating between 

apparently dead and living coral patches. 

   

3.1.2. Materials and methods 

The analyzed video was recorded with a remotely operated vehicle (ROV) Victor-

6000 during the MEDECO cruise, which took place aboard the French R/V 

Pourquoi Pas? This ROV was equipped with a SONY DXC990 3 CCD camcorder 

(resolution of 720x576 pixels, frame rate of 25fps, duration 2 hours and 5 seconds). 

The study area covers 0.022 km².  The video contained a total of 180,133 images. 

Because of the deployment of an automatic flash device, overexposed images 

were removed every 298 images. A total of 179,529 images were thus considered 

for the analysis. The video was processed using the AVIExplore – Mobile module. 

A region of Interest (ROI) was created to exclude imbedded text from the analysis 

(Fig. 7). Two different scripts were executed to assess the surface of: (1) apparently 

dead and living corals within each image (Table 4A), and (2) only apparently living 

corals within each image (Table 4B). The main feature used to determine living 

corals was its white-color (Fig. 8). A visual assessment was completed on a 

subsection (1330 images) to validate the so-obtained results. Images were then 

visually classified as: images with corals and images without corals. A comparison 

between the two assessment modes (visual and automatized via AVIExplore) was 

achieved. Total accuracy was computed as the number of images for which both 

classification modes were similar divided by the total number of compared images. 

An analysis of the types of errors and their frequency of occurrence was also 

carried out. False positive errors corresponded to the fact that AVIExplore classified 

an image as containing corals whereas the same image was visually classified as 

not containing corals. False negative errors corresponded to the fact that 

AVIExplore classified an image as not containing corals whereas the same image 

was visually classified as containing corals.  

 

3.1.3. Results 



The dissimilarity in the Grey-Level Co-occurrence Matrix (GLCM) computed from 

each image on the video was computed during the global scene analysis (Table 2). 

This allowed us to identify (Fig. 7) a continuous sequence of images featuring high 

dissimilarity of their GLCM. The direct visualization of those images showed that 

they were recording the water column and no longer the water-sediment interface. 

They were thus discarded and only 161,000 images were considered for the 

identification of corals. An example of the results of the two executed scripts is 

shown in Fig.8. These results were combined with the geolocalization file allowing 

for the mapping of apparently dead and apparently living coral colonies (Fig. 9). 

Agreement between images classified by the software and visually was achieved 

for 90.2% of the 1330 tested images. False positive and false negative error 

frequencies were 5.4 and 4.3%, respectively. Main sources of false positive errors 

were the presence of: (1) other megafauna, (2) fishes and (3) suspended sediment. 

Negative errors were mainly due to small corals and/or bad light conditions. Also, 

in some cases, corals were not so clearly visible but the human operator tended to 

infer their existence because the same corals could be seen on the previous image.  

 

3.2.  AVIExplore – Fixed: Identification and quantification of different types of 

behaviors in the mud shrimp Upogebia pusilla 

 

3.2.1. General context  

Burrowing crustaceans are among the most efficient bioturbators inhabiting 

marine soft sediments (Pillay and Branch, 2011). These organisms dig large 

galleries deep (up to 1m) in the sediment column and therefore rework large 

amount of particles. They also strongly increase the rate of exchanges between 

the sediment column and the overlying water through the ventilation of their 

burrows (Coelho et al., 2000; Webb and Eyre, 2004). High frequency time series 

of ventilation by burrowing invertebrates have been collected both in situ using 

pressure  sensors (Volkenborn et al., 2012; Wethey and Woodin, 2005; Wethey et 

al., 2008) and ex situ using planar optodes (Volkenborn et al., 2007; Volkenborn et 

al., 2010; Volkenborn et al., 2012). Corresponding studies however remain largely 



descriptive since ventilation is highly dependent on animal behavior, which is very 

difficult to monitor in burrowing crustaceans because these organisms spend most 

of their time in their burrow. Up to now the description or the identification of 

different types of behaviors of burrowing crustaceans has only been achieved 

visually (Coelho et al., 2000; Dworschak, 1987; Stamhuis et al., 1996). The 

establishment of a quantitative relationship linking activity and sediment reworking, 

such as the one recently established by Maire et al., (2007d) for sediment 

reworking by the bivalve Abra ovata, is therefore still lacking for these bioturbators 

in spite of their potentially major role in the functioning of some coastal ecosystems. 

Here, we report on the use of AVIExplore to automatically assess and quantify 

different behaviors by the mud shrimp Upogebia pusilla, which is common within 

the seagrass meadows of the Arcachon Bay (France). Our study is based on a 

video of a lateral view of a flat aquarium recorded in the laboratory.  

 

3.2.2. Materials and methods 

Our experiment was carried out in a large flat aquarium (40 × 25 × 2 cm) 

filled with 25 cm of natural sieved (0.5 mm mesh) sediment overlaid with 15 cm of 

aerated seawater. The sediment was left to settle for 48 h in the aquarium and the 

mud shrimp was introduced 1 week prior the beginning of the video recording the 

experiment to fully establish its burrow. The video (duration: 13h 20min, frequency 

of image acquisition: 0.1Hz, resolution: 2560 × 1920 pixels) was then recorded 

under infra-red light using a µEye camera (IDS®) controlled by a computer. The 

visual analysis of this movie allowed for the identification of several types of 

behaviors, namely: ‘Resting/ventilating’, ‘Burrowing’ and ‘Walking’. During 

‘Resting/ventilating’, the mud shrimp remains at the same location within its burrow 

and its movements are restricted (e.g. to abdomen contractions and pleopod 

beating). During ‘Burrowing’, the mud shrimp moves within its burrow but only over 

a limited distance and it occasionally displaces sediment. During ‘Walking’, the mud 

shrimp moves within its burrow over large distances. During the present study, we 

used the AVIExplore – Fixed module to automatically analyze the video and to 

quantify these three behaviors. A ROI corresponding to the visible part of the 



burrow was first drawn (Fig.10A). Each image was then subtracted from the 

preceding one and pixels featuring a positive differences higher than 30 (threshold 

value on an overall scale between 0 and 255 set after preliminary trials) were 

identified. For each pair of consecutive images, the AVIExplore – Fixed module 

generated: (1) the number of pixels within the ROI differing between the two 

images, and (2) the barycenter of those pixels. A signal treatment combining these 

two pieces of information was then defined to assess the behavior of the mud 

shrimp at each given time of the monitoring (Fig. 11). If the shape of the signal 

related to the number of pixels modified between two images is flat or consists 

either in a single peak or consecutive isolated peaks, then the attributed behavior 

for the corresponding images is ‘Resting/Ventilating’. If the signal has another 

shape, the range of positions of related pixels is used to differentiate between 

‘Burrowing’ (small range) and ‘Walking’ (large range).   

The results were compared with those originating from a visual analysis of 

the video. Accuracy was assessed as the proportion of images which were 

attributed the same behavior by the two procedures. An error analysis is carried 

out to understand the sense of miss classified behaviors.  

 

3.2.2.1. Results 

Temporal changes in the occurrence of the three types of behaviors are shown 

in Fig. 10B. The mud shrimp spent most of its time (i.e., 70.1%) 

‘Resting/ventilating’, versus 26.1% ‘Burrowing’ and only 3.7% ‘Walking’. These 

figures can be compared with those originating from the visual observation of the 

video: 67.5% ‘Resting/ventilating’, 30.2% ‘Burrowing’, and 2.3% ‘Walking’. The total 

accuracy was 82.7% with higher discrepancies between the two methods 

corresponding to confusion between ‘Burrowing’ with either ‘Resting/ventilating’ 

(Table 5). Except for ‘Resting/ventilating’, we observed that there was a lag of a 

few images between the end of each period of time corresponding to a given 

behavior as recorded visually and using AVIExplore. This discrepancy was 

attributed to differences in sensitivity between the sensor and the eye of the 

operator. When adjusting this lag for ‘Burrowing’ and ‘Walking’, there was only a 



slight improvement in the overall accuracy (83.7%). The existence of these lags 

therefore cannot be considered as the main source of discrepancies between 

automated and visual analyzes. Besides this general agreement, the analysis of 

the time series derived from automated and visual assessments clearly showed 

some difficulties in assessing positive ‘Walking’ and to a lesser extent positive 

‘Burrowing’ behaviors. The proportions of agreement between automatically and 

visually detected positive behaviors were indeed 89.2, 75.2 and only 13.1% for 

‘Resting/ventilating’, ‘Burowing’ and ‘Walking’, respectively. 

 

 

3.3. AVIExplore – Fixed: Quantification of filtering activity in the passive 

suspension-feeding polychaete Ditrupa arietina 

 

3.3.1. General context 

The composition of littoral benthic macrofauna show major temporal changes 

in the Gulf of Lions apparently in relation with climatic oscillation such as the North 

Atlantic Oscillation (Grémare et al., 1998a; Grémare et al., 1998b) and the Western 

Mediterranean oscillation (Bonifácio, 2015). Within the Littoral Fine Sands 

community (Labrune et al., 2008), the polychaete Ditrupa arietina is by far the 

species featuring the largest changes in abundances with densities between 0 and 

more than 11,000 individuals.m-2 (Grémare et al., 1998b). This species may have 

an impact on carbon fluxes through: (1) the construction of its calcareous tusk-

shaped tube (Medernach et al., 2000), and (2) nutrition. The corresponding impact 

depends on the intensity of filtering activity. Jordana et al. (2000) have therefore 

described and quantified the filtering activity of this species using a software 

specifically designed. During the present study, we use AVIExplore to analyze one 

of their videos and to show the ability of this new software to quantify the filtering 

activity of D. arietina in a completely automatized way. 

  

3.3.2. Materials and methods 

The experimental setup is described in (Jordana et al., 2000). Briefly, worms 

were collected by dredging and kept in the laboratory in tanks filled with a thin layer 



of well-sorted fine sand supplied with running ambient sea water. During the 

experiment per se, 15 worms were geometrically positioned upward, with tube 

openings, 1 cm above the sediment surface (Fig. 12A) in a 60.3 x 40.3 x 20 cm 

aquarium filled with a 10cm thick layer of well sorted fine sand and 30 l of filtered 

seawater. Polychaete worm filtering activity was monitored during 9 h using a CCD-

ICS059 AI video sensor (VLSI Vision Ltd®) with an image frequency acquisition of 

0.017 Hz.  The video was analyzed using the AVIExplore – Fixed module. Fifteen 

ROIs were drawn close to the shadow of the extremity of each tube, where the 

openings of gills crowns were most visible (Fig. 12B). A fixed reference image with 

all gill crowns fully retracted was subtracted from each current images. ‘Dark’ pixels 

featuring negative differences lower than -30 (threshold fixed after preliminary 

trials) were identified and considered as indicative of gill crown deployment. They 

were summed for each ROI and the corresponding data were exported as text files. 

Filtering activity was defined as the ratio of the current number of ‘dark’ pixels 

divided by the maximum number of ‘dark’ pixels recorded at any given time within 

the corresponding ROI. Assuming, that maximal extension of the gill crown was 

achieved for all 15 worms during the observation period, this index allows for direct 

comparisons between worms irrespective of their size and position within the 

recorded field.   

Validation was achieved on one of the 15 specimens and accuracy was 

assessed as the proportion of images for which there was an agreement between 

visual and AviExplore assessment.    

 

 

3.3.3. Results  

 

Temporal changes in the filtering activity of each of the 15 studied worms are 

shown in Fig. 12C. The general pattern and the degree of cycle were clearly worm 

dependent.  The level of synchronicity between individual worms was low since the 

number of simultaneously filtering worms varied between 2 and 13 and did not 

follow any clear pattern (Fig. 13A). The cumulated time devoted to filtration also 



varied strongly between individuals as indicated by the fact that, by the end of the 

9 h monitoring period, the time spent filtering by each worm was between 1 h 33 

min and 7 h 10 min. (Fig. 13B). Overall, these results and conclusions are in full 

agreement with those of Jordana et al. (2000).  

Accuracy was 98.3%. A systematic error has been identified; the filtering activity 

of the analyzed specimen started one image before when visually assessed. 

 

 

4. Discussion 

 

The increase of the use of imaging in benthic ecology has resulted in a high diversity 

of image acquisition modes (including mobile and fixed platforms as well as ex and in 

situ deployments) and image characteristics (stability or variability in illumination and 

image quality). Image analysis, especially when applied to video clearly constitutes a 

bottleneck when using imaging for ecological studies. Another possible flaw of this 

technique is that it may prove highly operator-dependent due to the complexity of the 

information: (1) contained, and (2) to be extracted from each image (Cuvelier et al., 

2012). Software developments may clearly help overcoming these two drawbacks. At 

present such developments have been mostly customized to specific acquisition 

procedures and ecological applications. Along this line, and within JERICO, our own 

research group has recently produced the SPIArcBase software, which is specifically 

dedicated to the processing of sediment profile images (Romero-Ramirez et al., 2013). 

The aim of the development of the AVIExplore is much more ambitious.  The goal is to 

provide a single platform flexible enough to automate the image analysis procedures 

requested by the largest possible sets of image acquisition platforms and ecological 

implications. In order to do so, we have followed a  three-pronged approach: (1) building 

two modules specifically designed to process the video acquired with mobile and fixed 

image acquisition platforms and to tackle associated ecological questions, and (2) 

providing a module specifically designed to elaborate and test new specific image 

analysis procedures, which could prove necessary to tackle specific ecological 

questions, and (3)  leaving the software open to new developments through the 



possibility of including new libraries depending on their compatibility with the 

AVIExplore. The three case studies carried out aimed at showing the real flexibility of 

the AVIExplore software. The following discussion will show some of the advantages 

of having used the AVIExplore software based on the experiments gained during these 

trials. 

 

4.1. The AVIExplore – Mobile module 

Edgington et al. (2006) emphasized the fact that the potential of ROVs and underwater 

observatories for collecting long-term observations is constrained by the time and 

effort to view and quantify the data. They thereby underlined the need for new software 

developments for processing videos obtained from mobile platforms. A first difficulty 

when processing those videos is that they often cover different habitats, which may 

correspond to very different images, which may therefore require different image 

analysis procedures.  Applying all of those procedures to the whole video may rapidly 

become time consuming and could possibly lead to significant errors as well. 

AVIExplore therefore offers the possibility of defining sections of videos that are 

composed of similar images, and therefore can be processed using the same script. 

This is based on image comparison achieved on the Grey-Level Co-occurrence Matrix. 

Moreover, this procedure may prove useful even when a single habitat is monitored. 

This was the case during the coral mapping case study, where it facilitated the 

reduction of the number of analyzed images from 179,529 to 161,000 (i.e., by 10%) of 

the images to analyze. The reason for that was that the video recorder was no longer 

recording the sediment water interface but the water column by the end of the video. 

We strongly believe that in the future, this procedure will also prove useful in defining 

section of videos characterized by dissimilarities due to various characteristics 

including:  light conditions, image quality levels, angle of view, contrast, clarity, and 

presence of objects.  

 

The AVIExplore – Mobile module also presents a high potential for assessment of 

benthic (mega)fauna. The visual assessment of benthic epibenthos is indeed often 

restricted to presence/absence data or to operator-dependent semi-quantitative data, 



which led Cuvelier et al. (2012) to plea for the development of automated image 

analysis procedures. A difficulty then consists in correcting the surfaces within the 

image to account both for the altitude and the inclination of the camera. During the 

‘Coral mapping’ case study, the surface of corals was only quantified as pixel² because 

the information regarding both sensor altitude and inclination were lacking. Should 

such information be available during future uses, we would recommend to proceed to 

appropriate corrections (e.g., as briefly described in Robert and Juniper, 2012) on the 

raw surface data exported by AVIExplore. Along the same line, during the ‘Coral 

mapping’ study, we did not account for possible overlap between images. Here again, 

this could be handled through appropriate post-treatments (e.g. according to Morris et 

al., 2014) of AVIExplore exported raw surfaces.    

 

 

4.2.  The AVI – Explore – Fixed module 

The AVIExplore – Fixed module gathers the experience gained by our research 

group through the developments of pieces of software specifically designed to process 

videos in view of assessing movements and activities of several benthic invertebrates 

and communities (Bernard et al., 2012; Duchêne et al., 2000; Duchêne and Queiroga, 

2001; Duchêne and Rosenberg, 2001; Grémare et al., 2004; Hollertz and Duchêne, 

2001; Maire et al., 2007a; Maire et al., 2007c). In its present form the AVIExplore – 

Fixed module mainly involves image subtraction procedures, which can first be 

achieved between the current image and a fixed reference image. This procedure is 

especially appropriate for the quantitative assessment of activity as was for example 

the case in the ‘Quantification of filtering activity in the passive suspension-feeding 

polychaete Ditrupa arietina’ case study. However, when used alone, it is clearly limited 

in the recognition of different kinds of behavior, which would require a time-series 

analysis of the so-recorded activity, such as achieved during the mud shrimp case 

study or by Grémare et al. (2004) for categorizing inhalant siphon activity by the 

deposit-feeding clams Abra ovata and A. nitida.  

 



The AVIExplore – Fixed module offers a much more straightforward possibility to 

assess movements and to categorize activities. It consist in achieving subtraction 

between each pair of consecutive (or separated by a constant lag) images. This 

procedure was used during the ‘Identification and quantification of different types of 

behaviors in the mud shrimp Upogebia pusilla’ case study. It generated a limited 

number of parameters including the distance of the barycenters of the pixels modified 

between two consecutive pairs of images, which proved efficient in attributing three 

different types of behavior to the mud shrimp Upogebia pusilla. However, we believe 

that the use of other features and/or machine learning algorithms may result on better 

classification results.  

One clear limitation of the proposed method was that we were not able to clearly 

distinguish between ‘Resting’ and ‘ventilating’, which may result from a too low: (1) 

frequency acquisition (0.1 Hz) relative to the beating frequency of pleopods (0.5 Hz, LP 

personal observation), and (2) number of considered movement characteristics. 

Regarding this last point, a complexity of the number and characteristics of considered 

parameters (i.e., a holistic feature extraction approach) may certainly prove very useful 

as it has already been the case in several other imagery fields (Madhvanath and 

Govindaraju, 2001; Rodriguez et al., 2007; Turk and Pentland, 1991).  

 

In its present forms the AVIExplore – Fixed module allows for the assessment of the 

trajectory of isolated objects/organisms through the plots of the position of consecutive 

barycenters of modified pixels identified by image subtraction. Such a capacity has 

proven useful in the assessment of swimming capacities in pelagic larvae of benthic 

organisms (Duchêne and Nozais, 1994; Nozais et al., 1997). Benthic ecologists are 

nevertheless more and more interested in the study of individual movements occurring 

within groups of objects/organisms. Bernard et al. (2012) for example developed a 

specific application to monitor the individual displacement of fluorescent sediment 

particles (luminophores). This requires the elaboration of a complex research algorithm 

(involving both the analysis of distances and directions of movements between 

consecutive pairs of images), which are currently not included in the AVIExplore – Fixed 



module. Depending on the interaction with future users, we may integrate such an 

approach within later version of AVIExplore. 

  

 

4.3. The AVI – Explore – ScriptEdit module 

 

The Avi-Explore – ScriptEdit module allows for the analysis, processing and 

visualization of videos and images.  In its current version, it includes a large set of 

functions for analyzing individual images.  As demonstrated during the present study, 

it already constitutes a powerful tool that can be used for different purposes, e.g.,: 

detection and quantification of organisms (see the Deep corals case study) and the 

detection/quantification of different kinds of activities. Other applications can be 

already foreseen such as: (1) the analysis of swimming (fishes and benthic 

invertebrate larvae) patterns, and (2) the study of specific processes such as the 

dynamics of benthic settlement and early recruitment.  

 

As it stands, the Avi-Explore – ScriptEdit module nevertheless does not allow for the 

quantitative assessment of some specific processes. As an example, recent imaging 

applications in benthic ecology have included the 2D analysis of sediment reworking, 

which requires the establishment of vertical profiles of luminophores concentrations. 

The first step of this procedure consists in defining the water-sediment interface, which 

can either be achieved manually or (Romero-Ramirez et al., 2013). Its second step 

consists in flattening this interface (Maire et al., 2006), which consists in transferring 

its position to the first pixel row of each pixel column. At present, none of the 

corresponding procedures are included in the AVIExplore – ScriptEdit module. Here 

again, and depending on interactions with future users, we may integrate them within 

a later version of AVIExplore. 
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Figure Captions 

Fig. 1.  AVIExplore graphical user interface: (1) AVIExplore – Mobile module, (2) 

AVIExplore – Fixed module, (3) AVIExplore – ScriptEdit module, (4) summary of system 

characteristics, (5) extension files for future versions, and (6) software manual and 

information. 

Fig. 2. Internal structure of AVIExplore. Origin, Work and Secondary Work images are 24 

bit bitmaps for color images and video frames. Grey images are 8 bit images. Regions Of 

Interest (ROIs) and Masks are structures saved in external files, which can be loaded on 

demand. Op: Operation 

Fig. 3. External files generated by AVIExplore. Continuous arrows refer to files that must 

to be loaded by the user. Dashed arrows refer to files automatically loaded by the 

software. 

Fig. 4. AVIExplore – Mobile, AVIExplore – Fixed and AVIExplore – ScriptEdit module’s 

general graphic user interface: (1) video display window, (2) strip menu, (3) video time 

scrollbar, and (4) area differing between modules. 

Fig. 5. Interactions between different modules and modes of AVIExplore.  

Fig. 6. A: AVIExplore – Mobile: Typical flowchart of a video obtained with a mobile device, 

B: AVIExplore – Fixed: Typical flowchart of a video obtained with a fixed device. 

Fig. 7. Coral mapping case study: dissimilarities of Grey-Level Co-occurrence Matrix for 

each image of the video. Numbered vertical dashed lines indicate different images which 

are shown on the right. 1 and 2: images of the water-sediment interface, 3: image of the 

water-sediment interface at high altitude and 4: image of the water column.   

Fig. 8. Coral mapping case study: results of the execution of the two scripts on a single 

image. (A) Original image showing the delimitation of ROI in yellow, (B) image with white 

overlay covering apparently dead and living corals, and (C) image with a red overlay 

covering only apparently living corals. 

Fig. 9. Coral mapping case study: Mapping of (A) apparently dead and living corals, and 

(B) apparently living corals 

Fig. 10. Mud shrimp case study: (A) Example of an image extracted from the video with 

an ROI corresponding to the delimitation of the visible part of the burrow, (B) Automatic 

and (C) Visual assessment of the temporal changes in the occurrence of the three 

monitored behaviors: ‘Resting/ventilating’, ‘Burrowing’ and ‘Walking’ 

Fig. 11. Mud shrimp case study: Combination of AVIExplore extracted features to assess 

the three different behaviors of Upogebia pusilla.  



Fig. 12. Passive suspension-feeder case study:  (A) Reference image showing the 

disposition of the 15 studied worms with their retracted gill-crowns, (B) Localization of the 

15 ROIs around the shadow of the top extremity of the tubes where extended gill-crowns 

(10 worms) can be observed, (C) Temporal changes in individual filtering activities.  

Fig. 13. Passive suspension-feeder case study: (A) Temporal changes in the number of 

worms filtering (B) Temporal changes in individual cumulated filtering activities. 
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Table 1. Format of Geolocalization File: (1)Explanation, (2) Example 

 

Number of images 1340  
Date and time [mm/dd/yyyy 
hh:mm:ss.ss] 

10/14/2007 21:35:04.10 

Complementary information Device info 
Date and time [mm/dd/yyyy 
hh:mm:ss.ss] Latitude Longitude 
Depth  

10/14/2007 21:35:04.10     39,5655667     18,4361983     548 
10/14/2007 21:35:09.10     39,5655667     18,43618         548   
… 

(1) (2) 



Table 2. List of extracted features by the AVIExplore - Mobile module. In (1-6) i,j are the 

horizontal and vertical coordinates in the Greylevel Co-occurrence Matrix, P is the cell value. 

 

 

 

List of Extracted Features Description 

Number of objects (SURF) The number of objects found on an image when using 
“Speeded Up Robust Feature” for object detection  

Object size (SURF) The size of objects found on an image when using “Speeded 
Up Robust Feature” for object detection 

Spatial moment Weighted average of the intensities of the image pixels 

Variance Mean variance of the greyscale image 

Hu1 First Hu moment for pattern recognition (Hu, 1962) 

Hu2 Second Hu moment for pattern recognition (Hu, 1962) 

Angular second moment 
(GLCM) 

Also known as uniformity, it is the sum of squares of entries in 
the greylevel co-occurrence matrix (GLCM) (1): 

∑ 𝑃𝑖,𝑗 2𝑁−1
𝑖,𝑗=0   

Energy (GLCM) Square root of the angular second moment 

Entropy (GLCM) Amount of information of the image needed for the image 
compression, it represents spatial disorder (2):  

∑ −𝑃𝑖,𝑗 ln 𝑃𝑖,𝑗
𝑁−1
𝑖,𝑗=0  

Contrast (GLCM) Measure of the intensity contrast between a pixel and its 
neighbor over the whole image.  Sum of squares variance in 

the GLCM (3):  ∑ 𝑃𝑖,𝑗  (𝑖 − 𝑗)2𝑁−1
𝑖,𝑗=0    

Dissimilarity (GLCM) Measure that defines the variation of grey level pairs (pixel 

and its neighbor)  in an image (4): ∑ 𝑃𝑖,𝑗 |𝑖 − 𝑗|𝑁−1
𝑖,𝑗=0  

Inverse Difference Moment 
(GLCM) 

Also called homogeneity.  Measures of the closeness of the 
distribution of elements in the GLCM to the GLCM diagonal 

(5):  
∑ ∑ 𝑃𝑖,𝑗

𝑁−1
𝑗−1

𝑁−1
𝑖−1

1+(𝑖−𝑗)2  

Mean_i (GLCM) The mean based on the reference pixels (µi)  

Mean_j (GLCM) The mean based on the neighbor pixels  (µj ) 

Variance_i (GLCM) 
Variance_j (GLCM) 

Measures the dispersion around the mean, of values within 
the GLCM (σi,σj) 

Correlation (GLCM) Measure of how correlated a pixel is to its neighbor over the 

whole image (6):  ∑ 𝑃𝑖,𝑗 [
(𝑖−𝜇𝑖)(𝑗−𝜇𝑗)

√𝜎𝑖
2+𝜎𝑗

2
]𝑁−1

𝑖,𝑗=0   

Hue The Hue histogram 

R The red channel histogram 

G The green channel histogram 

B The blue channel histogram 

Grey The greylevel histogram 



Table 3. List of parameters to select for analyzing when using the AVIExplore - Fixed 

module. 

 

Parameters 
to adjust 

Description 

Diff Mode Type of subtractions 

diffType Expression of subtraction 

Th Threshold for subtraction difference 

Min Sz Minimum size of search objects 

Max Sz Maximum size of search objects 

Use ROI Use of a drawn region of interest 

Use Mask Use of a drawn Mask 

Gap  Number of images between subtraction  
Reference image number 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4. Coral mapping case study: Details of the two scripts used to: detect, quantify the 

surface, visualize and save each analyzed image. For (A) apparently living and dead 

corals, and (B) apparently living corals.  

 

A) Living and dead corals B) Living corals 
 
openLogFile true 
repeat 0,NbImg 
 

getRawHSLMask 80,200,true,110,350, 
0.1,1.0,0.1,1.0 
CopyOriginToBinBuf 
DilateMask binBuf 
eraseMaskBlobs 1,600,100000 
fillBinBufHoles 140 
reloadCurAVIImage 

ShowMask Origin,binBuf,0 

CountPixelsInMask 1 

WriteOneINTTextValue 
saveJpeg (DirectoryFolder\),100 
showNextAVIImage 1 
 

endRepeat 
closeLogFile 
 

 
openLogFile true 
repeat 0,NbImg 
 

getRawHSLMask 50,200,true,110,350, 
0.1,1.0,0.1,1.0 
CopyOriginToBinBuf 
DilateMask binBuf 
eraseMaskBlobs 1,300,100000 
fillBinBufHoles 140 
reloadCurAVIImage 

BinarizeRGB 100,255,150,255,150,255, 
1,1,1,0,0,true,Mask,Origin,true 
CountPixelsInMask 0 

WriteOneINTTextValue 
saveJpeg (DirectoryFolder\),100 
showNextAVIImage 1 
 

endRepeat 
closeLogFile 
 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5. Mud shrimp case study: Frequency of occurrence of the different types of 

discrepancies between the visual and the automated analysis.  

  Visual Analysis 

  Resting or 
ventilating 

Burrowing Walking 

A
u

to
m

a
te

d
 

A
n

a
ly

s
is

 

‘Resting/ 
ventilating’ 

 
 

7.9 % 0.8% 

‘Burrowing’ 4.1 %  1.2 % 

‘Walking’ 2.0% 1.1 %  

 

 

  



 

References 

Aguzzi, J., Costa, C., Robert, K., Matabos, M., F., A., Juniper, S.K., Manesatti, P., 2011. 
Automated Image Analysis for the Detection of Benthic Crustaceans and Bacterial Mat Coverage 
Using the VENUS Undersea Cabled Network. Sensors 11, 10534-10556. 
 
Bernard, G., Grémare, A., Maire, O., Lecroart, P., Meysman, F.J.R., Ciutat, A., Deflandre, B., 
Duchêne, J.C., 2012. Experimental assessment of particle mixing fingerprints in the deposit-
feeding bivalve Abra alba (Wood). Journal of Marine Research 70, 689-718. 
 
Birchenough S.N.R., Parker R.E., McManus E., Barry  J., 2012. Combining bioturbation and redox 
metrics: Potential tools for assessing seabed function. Ecological Indicators 12, 8-16. 
 
Bonifácio, P., 2015. Étude de l'état actuel et des variations temporelles de la composition de la 
macrofaune benthique des substrats meubles du golfe du Lion, Mediterranée occidental, École 
doctorale sciences et environnements écologie évolutive, fonctionnelle et des communautés. 
University of Bordeaux. 
 
Coelho, V.R., Cooper, R.A., de Almeida Rodrigues, S., 2000. Burrow morphology and behavior of 
the mud shrimp Upogebia omissa (Decapoda: Thalassinidea: Upogebiidae). Marine Ecology 
Progress Series 200, 229-240. 
 
Cuvelier, D., de Busserolles, F., Lavaud, R., Floc'h, E., Fabri, M.-C., Sarradin, P.-M., Sarrazin, J., 
2012. Biological data extraction from imagery “How far can we go?” A case study from the Mid-
Atlantic Ridge. Marine Environmental Research 82, 15-27. 
 
de Moura Queirós, A., Hiddink, J., Johnson, G., Cabral, H., Kaiser, M., 2011. Context dependence 
of marine ecosystem engineer invasion impacts on benthic ecosystem functioning. Biological 
Invasions 13, 1059-1075. 
 
Diaz, R.J., Trefry, J.H., 2006. Comparison of sediment profile image data with profiles of oxygen 
and Eh from sediment cores. Journal of Marine Systems 62, 164-172. 
 
Duchêne, J.C., Jordana, E., Charles, F., Grémare, A., Amouroux, J.M., 2000. Experimental study 
of filtration activity in Ditrupa arietina (Annelida Polychaeta) using an automated image analysis 
system. Oceanologica Acta 23, 805-8017. 
 
Duchêne, J.C., Nozais, C., 1994. Light influence on larval emission and vertical swimming in the 
terebellid worm Eupolymnia nebulosa. Mémoires du Muséum National d'Histoire Naturelle 
Zoologie 162, 405-412. 
 
Duchêne, J.C., Queiroga, H., 2001. Use of an intelligent CCD camera for the study of endogenous 
vertical migration rhythms in first zoeae of the crab Carcinus maenas. Marine Biology 139, 901-
909. 
 
Duchêne, J.C., Rosenberg, R., 2001. Marine benthic faunal activity patterns on a sediment surface 
assessed by video numerical tracking. Marine Ecology Progress Series 223, 113-119. 



Duffy, G.A., Lundsten, L., Kuhnz, L.A., Paull, C.K., 2014. A comparison of megafaunal 
communities in five submarine canyons off Southern California, USA. Deep Sea Research Part II: 
Topical Studies in Oceanography 104, 259-266. 
 
Dworschak, P.C., 1987. Feeding behaviour of Upogebia pusilla and Callianassa tyrrhena 
(Crustacea, Decapoda, Thalassinidea). Investigación Pesquera 51(1), 421-429. 

 
Edgington, D.R., Danelle, E., Cline, E., Davis, D., 2006. Detecting, Tracking and Classifying 
Animals in Underwater Video, OCEANS IEEE, Boston,1-5. 
 
Germano, J.D., Rhoads, D.C., Valente, R.M., Carey, D.A., Solan, M., 2011. The use of sediment 
profile imaging (SPI) for environmental impact assessment and monitoring studies: Lessons 
learned from the past four decades. Oceanography and Marine Biology: An annual Review 49, 
235-297. 
 
Grémare, A., Amouroux, J.M., Vétion, G., 1998a. Long-term comparison of macrobenthos within 
the soft bottoms of the Bay of Banyuls-sur-mer (northwestern Mediterranean Sea). Journal of Sea 
Research 40, 281-302. 
 
Grémare, A., Duchêne, J.C., Rosenberg, R., David, E., Desmalades, M., 2004. Feeding behaviour 
and functional response of Abra ovata and A. nitida compared by image analysis. Marine Ecology 
Progress Series 267, 195-208. 
 
Grémare, A., Sarda, R., Medernach, L., Jordana, E., Pinedo, S., Amouroux, J.M., Martin, D., 
Nozais, D., Charles, F., 1998b. On the Dramatic Increase of Ditrupa arietina O.F. Mueller 
(Annelida: Polychaeta) Along Both the French and the Spanish Catalan Coasts. Estuarine Coastal 
and Shelf Science 47, 447-457. 
 
Hollertz, K., Duchêne, J.C., 2001. Burrowing behaviour and sediment reworking in the heart urchin 
Brissopsis lyrifera Forbes (Spatangoida). Marine Biology 139, 951-957. 
 
Hu, M.K., 1962. Visual pattern recognition by moments invariants. IRE transaction of information 
theory, 179-187. 
 
Jamieson, A.J., Boorman, B., Jones, D.O.B., 2013. Deep-Sea Benthic Sampling, in: Methods for 
the Study of Marine Benthos. Fourth Edition. Blackwell Science LtD, Oxford, p. 285-347. 
 
Jordana, E., Charles, F., Grémare, A., Amouroux, J.M., Chretiennot-Dinet, M.J., 2001a. Food 
sources, ingestion and absorption in the suspension-feeding polychaete Ditrupa arietina (O.F. 
Müller). Journal of Experimental Marine Biology and Ecology 266, 219-236. 
 
Jordana, E., Duchêne, J.-C., Charles, F., Grémare, A., Amouroux, J.-M., 2000. Experimental study 
of suspension-feeding activity in the serpulid polychaete Ditrupa arietina (O.F. Müller). Journal of 
Experimental Marine Biology and Ecology 252, 57-74. 
 
Jordana, E., Grémare, A., Lantoine, F., Courties, C., Charles, F., Amouroux, J.M., G., V., 2001b. 
Seasonal changes in the grazing of coastal picoplankton by the suspension-feeding polychaete 
Ditrupa arietina (O.F. Müller). Journal of Sea Research 46, 246-259. 
 
Kannappan, P., Tanner, H.G., 2013. Automated detection of scallops in their natural environment, 
Control & Automation (MED), 2013 21st Mediterranean Conference on, pp. 1350-1355. 



 
Labrune, C., Grémare, A., Amouroux, J.-M., Sardá, R., Gil, J., Taboada, S., 2008. Structure and 
diversity of shallow soft-bottom benthic macrofauna In the Gulf of Lions (NW Mediterranean). 
Helgoland Marine Research 62, 201-214. 
 
Lebart, K.,Smith, C., Trucco, E., Lane, M., 2003. Automatic indexing of underwater survey video: 
algorithm and benchmarking method, IEEE Journal of Oceanic Engineering 28(4), 673-686. 
 
Madhvanath, S., Govindaraju, V., 2001. The Role of Holistic Paradigms in Handwritten Word 
Recognition. IEEE Transaction on Pattern analysis and machine intelligence 23 (2), 149-164. 
 
Maire, O., Duchêne, J.C., Rosenberg, R., Braga de, M., J.B., Antoine, G., 2006. Effects of food 
availability on sediment reworking in Abra ovata and A. nitida*. Marine Ecology Progress Series 
319, 135-153. 
 
Maire, O., Amouroux, J.-M., Duchêne, J.-C., Grémare, A., 2007a. Relationship between filtration 
activity and food availability in the Mediterranean mussel Mytilus galloprovincialis. Marine Biology 
152, 1293-1307. 
 
Maire, O., Duchêne, J.C., Grémare, A., Malyuga, V.S., Meysman, F.J.R., 2007b. A comparison of 
sediment reworking rates by the surface deposit-feeding bivalve Abra ovata during summertime 
and wintertime, with a comparison between two models of sediment reworking. Journal of 
Experimental Marine Biology and Ecology 343, 21-36. 
 
Maire, O., Duchêne, J.C., Amouroux, J.M., Grémare, A., 2007c. Activity patterns in the terebellid 
polychaete Eupolymnia nebulosa assessed using a new image analysis system. Marine Biology 
151, 737-749. 
 
Maire, O., Duchêne, J.C., Bigot, L., Grémare, A., 2007d. Linking feeding activity and sediment 
reworking in the deposit-feeding bivalve Abra ovata with image analysis, laser telemetry, and 
luminophore tracers. Marine Ecology Progress Series 351, 139-150.  
 
Mallet, D., Pelletier, D., 2014. Underwater video techniques for observing coastal marine 
biodiversity: A review of sixty years of publications (1952-2012). Fisheries Research 154, 44-62. 
 
Mane, K.T., Pujari, V.G., 2014. A Novel Approach for Species Detection from Oceanographic 
Video, Advanced Computing & Communication Technologies (ACCT), 2014 Fourth International 
Conference on, pp. 42-46. 
 
Mastrototaro, F., D'Onghia, G., Corriero, G., Matarrese, A., Maiorano, P., Panetta, P., Gherardi, 
M., Longo, C., Rosso, A., Sciuto, F., Sanfilippo, R., Gravili, C., Boero, F., Taviani, M., Tursi, A., 
2010. Biodiversity of the white coral bank off Cape Santa Maria di Leuca (Mediterranean Sea): An 
update. Deep Sea Research Part II: Topical Studies in Oceanography 57, 412-430. 
 
Matabos, M., Aguzzi, J., Robert, K., Costa, C., Menesatti, P., Company, J.B., Juniper, S.K., 2011. 
Multi-parametric study of behavioural modulation in demersal decapods at the VENUS cabled 
observatory in Saanich Inlet, British Columbia, Canada. Journal of Experimental Marine Biology 
and Ecology 401, 89-96. 
 
Matabos, M., Piechaud, N., De Montigny, F., Sarradin, P.-M., Sarrazin, J., 2015. The VENUS 
cabled observatory as a method to observe fish behaviour and species assemblages in a hypoxic 



fjord, Saanich Inlet (British Columbia, Canada). Canacian Journal of Fisheries and Aquatic 
Sciences 72, 24-36. 
 
Medernach, L., Jordana, E., Grémare, A., Nozais, C., Charles, F., Amouroux, J.M., 2000. 
Population dynamics, secondary production and calcification in a Mediterranean population of 
Ditrupa arietina (Annelida: Polychaeta). Marine Ecology Progress Series 199, 171-184. 
 
Morris, K.J., Bett, B.J., Durden, J.M., Huvenne, V.A.I., Milligan, R., Jones, D.O.B., McPhail, S.D., 
Robert, K., Bailey, D.M., Ruhl, H.A., 2014. A new method for ecological surveying of the abyss 
using autonomous underwater vehicle photography. Limnology and Oceanography 12, 795-809. 
 
Nowak, B.M., Whitney, T., Ackley, S.F., 2008. Analysis of ROV video imagery for krill identification 
and counting under Antarctic sea ice, Autonomous Underwater Vehicles, 2008. AUV 2008. 
IEEE/OES, pp. 1-9. 
 
Nozais, C., Duchêne, J.C., Bhaud, M., 1997. Control of position in the water column by the larvae 
of Poecilochaetus serpens, (Polychaeta): the importance of mucus secretion. Journal of 
Experimental Marine Biology and Ecology 210, 91-106. 
 
Pillay, D., Branch, G.M., 2011. Bioengineering effects of burrowing thalassinidean shrimps on 
marine soft-bottom ecosystems. Oceanography Marine Biology Annual Review 49, 137-192. 
 
Rees, H.L., Service, M.A., 1993. Development of improved strategies for monitoring the 
epibenthos at sewage sludge disposal sites, in Aquatic Environment Monitoring Report. 
Directorate of fisheries Research, Lowestoft, pp. 55-65. 
 
Robert, K., Juniper, S.K., 2012. Surface-sediment bioturbation quantified with cameras on the 
NEPTUNE Canada cabled observatory. Marine Ecology Progress Series 453, 137-149. 
 
Roberts, J.M., Peppe, O.C., Dodds, L.A., Mercer, D.J., W.T., T., Gage, J.D., Meldrum, D.T., 2005. 
Monitoring environmental variability around cold-water coral reefs: the use of a benthic 
photolander and the potential of seafloor observatories, in: Freiwald, A., Roberts, J.M. (Eds.), 
Cold-Water Corals and Ecosystems. Springer Berlin Heidelberg, pp. 483-502. 
 
Rodriguez, R.V., Evans, N.W.D., Lewis, R.P., Fauve, B., Mason, J.S.D., 2007. An experimental 
study on the feasibility of footsteps as a biometric, Signal Processing Conference, 2007 15th 
European, pp. 748-752. 
 
Romero-Ramirez, A., Grémare, A., Desmalades, M., Duchêne, J.C., 2013. Semi-automatic 
analysis and interpretation of sediment profile images. Environmental Modelling & Software 47, 
42-54. 
 
Rosenberg, R., Magnusson, M., Nilsson, H.C., 2009. Temporal and spatial changes in marine 
benthic habitats in relation to the EU Water Framework Directive: The use of sediment profile 
imagery. Marine Pollution Bulletin 58, 565-572. 
 
Sarrazin, J., Robigou, V., Juniper, S.K., Delaney, J.R., 1997. Biological and geological dynamics 
over four years on a high-temperature sulfide structure at the Juan de Fuca Ridge hydrothermal 
observatory. Marine Ecology Progress Series 153, 5-24. 
 



Savini, A., Bue, N.L., Malinverno, E., Corselli, C., Geronimo, I.D., Rosso, A., Tursi, A., 2005. 
Carbonate mounds on the apulian continental slope: morphology, distribution and their relation 
with dead and living deep water corals 23° GNGTS, Rome. 
 
Savini, A., Corselli, C., 2010. High-resolution bathymetry and acoustic geophysical data from 
Santa Maria di Leuca Cold Water Coral province (Northern Ionian Sea - Apulian continental slope). 
Deep Sea Research Part II: Topical Studies in Oceanography 57, 326-344. 
 
Smith, C.J., Rumohr, H., 2013. Imaging Techniques, in: Methods for the Study of Marine Benthos. 
Fourth Edition. Blackwell Science LtD, Oxford, p. 97. 
 
Solan,M., Germano,J.D., Rhoads,D.C., Smith,C., Michaud, E., Parry, D., Wenzhöfer, F., Kennedy, 
B., Henriques, C., Battle,E., Carey, D., Iocco,L., Valente, R., Watson, J., Rosenberg, R., 2003. 
Towards a greater understanding of pattern, scale and process in marine benthic systems: a 
picture is worth a thousand worms. Journal of Experimental Marine Biology and Ecology, 285-
286, 313-338. 
 
Spencer, M.L., Stoner, A.W., Ryer, C.H., Munk, J.E., 2005. A towed camera sled for estimating 
abundance of juvenile flatfishes and habitat characteristics: Comparison with beam trawls and 
divers. Estuarine, Coastal and Shelf Science 64, 497-503. 
 
Stamhuis, E., Reede-Dekker, T., van Etten, Y., de Wiljes, J., Videler, J., 1996. Behaviour and time 
allocation of the burrowing shrimp Callianassa subterranea (Decapoda, Thalassinidea). Journal 
of Experimental Marine Biology and Ecology 204, 225-239. 
 
Taviani, M., Remia, A., Corselli, C., Freiwald, A., Malinverno, E., Mastrototaro, F., Savini, A., Tursi, 
A., 2005. First geo-marine survey of living cold-water Lophelia reefs in the Ionian Sea 
(Mediterranean basin). Facies 50, 409-417. 
 
Teixidó, N., Albajes-Eizagirre, A., Bolbo, D., Le Hir, E., Demestre, M., Garrabou, J., Guigues, L., 
Gili, J.M., Piera, J., Prelot, T., Soria-Frisch, A., 2011. Hierarchical segmentation-based software 
for cover classification analyses of seabed images (Seascape). Marine Ecology Progress Series 
431, 45-53. 
 
Turk, M., Pentland, A., 1991. Eigenfaces for recognition. Journal of Cognitive Neuroscience 3, 72-
86. 
 
Tursi, A., Mastrototaro, F., Matarrese, A., Maiorano, P., D'Onghia, G., 2004. Biodiversity of the 
white coral reefs in the Ionian Sea (Central Mediterranean). Chemistry and Ecology 20, 107-116. 
 
Vertino, A., Savini, A., Rosso, A., Di Geronimo, I., Mastrototaro, F., Sanfilippo, R., Gay, G., Etiope, 
G., 2010. Benthic habitat characterization and distribution from two representative sites of the 
deep-water SML Coral Province (Mediterranean). Deep Sea Research Part II: Topical Studies in 
Oceanography 57, 380-396. 
 
Volkenborn, N., Polerecky, L., Hedtkamp, S.I.C., Van Beusekom, J., Beer, D.d., 2007. Bioturbation 
and bioirrigation extend the open exchange regions in permeable sediments. Limnology and 
Oceanography 52, 1898-1909. 
 



Volkenborn, N., Polerecky, L., Wethey, D.S., DeWitt, T.H., Woodin, S.A., 2012. Hydraulic activities 
by ghost shrimp Neotrypaea californiensis induce oxic-anoxic oscillations in sediments. Marine 
Ecology Progress Series 455, 141-156. 
 
Volkenborn, N., Polerecky, L., Wethey, D.S., Woodin, S.A., 2010. Oscillatory porewater 
bioadvection in marine sediments induced by hydraulic activities of Arenicola marina. Limnology 
and Oceanography 55, 1231-1247. 
 
Webb, A., Eyre, B., 2004. Effect of natural populations of burrowing thalassinidean shrimp on 
sediment irrigation, benthic metabolism, nutrient fluxes and denitrification. Marine Ecology 
Progress Series 268, 205-220. 
 
Wethey, D.S., Woodin, S.A., 2005. Infaunal hydraulics generate porewater pressure signals. 
Biological Bulletin 209, 139-145. 
 
Wethey, D.S., Woodin, S.A., Volkenborn, N., Reise, K., 2008. Porewater advection by hydraulic 
activities of lugworms, Arenicola marina: A field, laboratory and modeling study. Journal of Marine 
Research 66, 255-273. 
 
Williams, S.B., Pizarro, O.R., Jakuba, M.V., Johnson, C.R., Barrett, N.S., Babcock, R.C., Kendrick, 
G.A., Steinberg, P.D., Heyward, A.J., Doherty, P.J., Mahon, I., Johnson-Roberson, M., Steinberg, 
D., Friedman, A., 2012. Monitoring of Benthic Reference Sites: Using an Autonomous Underwater 
Vehicle. Robotics & Automation Magazine, IEEE 19, 73-84. 
 

 
 


