Ocean waves across the Arctic: attenuation due to dissipation dominates over scattering for periods longer than 19 s

Type Article
Date 2016-06
Language English
Author(s) Ardhuin FabriceORCID1, Sutherland Peter4, Doble Martin2, Wadhams Peter3
Affiliation(s) 1 : Univ Brest, CNRS, LOPS, IRD,Ifremer,IUEM, Brest, France.
2 : Polar Sci Ltd, Appin, Scotland.
3 : Univ Cambridge, Dept Appl Maths & Theoret Phys, Cambridge, England.
Source Geophysical Research Letters (0094-8276) (Amer Geophysical Union), 2016-06 , Vol. 43 , N. 11 , P. 5775-5783
DOI 10.1002/2016GL068204
WOS© Times Cited 49
Keyword(s) ocean waves, sea ice, Tara, DAMOCLES
Abstract The poorly understood attenuation of surface waves in sea ice is generally attributed to the combination of scattering and dissipation. Scattering and dissipation have very different effects on the directional and temporal distribution of wave energy, making it possible to better understand their relative importance by analysis of swell directional spreading and arrival times. Here we compare results of a spectral wave model – using adjustable scattering and dissipation attenuation formulations – with wave measurements far inside the ice pack. In this case, scattering plays a negligible role in the attenuation of long swells. Specifically, scattering-dominated attenuation would produce directional wave spectra much broader than the ones recorded, and swell events arriving later and lasting much longer than observed. Details of the dissipation process remain uncertain. Average dissipation rates are consistent with creep effects but are 12 times those expected for a laminar boundary layer under a smooth solid ice plate.
Full Text
File Pages Size Access
Publisher's official version 26 1 MB Open access
Top of the page