Mesoscale SST–wind stress coupling in the Peru–Chile current system: Which mechanisms drive its seasonal variability?

Type Article
Date 2016-10
Language English
Author(s) Oerder Vera1, Colas François1, Echevin Vincent1, Masson Sebastien1, Hourdin Christophe1, Jullien SwenORCID1, 2, Madec Gurvan1, 3, Lemarie Florian4
Affiliation(s) 1 : UPMC, IRD, CNRS, UMR7159,LOCEAN,IPSL, Paris, France.
2 : IFREMER, LOS, Plouzane, France.
3 : Natl Oceanog Ctr, Marine Syst Modelling Grp, European Way, Southampton SO14 3ZH, Hants, England.
4 : Univ Grenoble Alpes, CNRS, INRIA, LJK, F-38000 Grenoble, France.
Source Climate Dynamics (0930-7575) (Springer), 2016-10 , Vol. 47 , N. 7-8 , P. 2309-2330
DOI 10.1007/s00382-015-2965-7
WOS© Times Cited 30
Keyword(s) Ocean-atmosphere interactions, Mesoscale SST-wind stress coupling, Regional coupled modeling, Eastern Boundary Upwelling System
Abstract Satellite observations and a high-resolution regional ocean–atmosphere coupled model are used to study the air/sea interactions at the oceanic mesoscale in the Peru–Chile upwelling current system. Coupling between mesoscale sea surface temperature (SST) and wind stress (WS) intensity is evidenced and characterized by correlations and regression coefficients. Both the model and the observations display similar spatial and seasonal variability of the coupling characteristics that are stronger off Peru than off Northern Chile, in relation with stronger wind mean speed and steadiness. The coupling is also more intense during winter than during summer in both regions. It is shown that WS intensity anomalies due to SST anomalies are mainly forced by mixing coefficient anomalies and partially compensated by wind shear anomalies. A momentum balance analysis shows that wind speed anomalies are created by stress shear anomalies. Near-surface pressure gradient anomalies have a negligible contribution because of the back-pressure effect related to the air temperature inversion. As mixing coefficients are mainly unchanged between summer and winter, the stronger coupling in winter is due to the enhanced large-scale wind shear that enables a more efficient action of the turbulent stress perturbations. This mechanism is robust as it does not depend on the choice of planetary boundary layer parameterization.
Full Text
File Pages Size Access
22 7 MB Access on demand
Author's final draft 48 6 MB Open access
Top of the page

How to cite 

Oerder Vera, Colas François, Echevin Vincent, Masson Sebastien, Hourdin Christophe, Jullien Swen, Madec Gurvan, Lemarie Florian (2016). Mesoscale SST–wind stress coupling in the Peru–Chile current system: Which mechanisms drive its seasonal variability? Climate Dynamics, 47(7-8), 2309-2330. Publisher's official version : , Open Access version :