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Supplementary Figure 1. Maps of (a) the western Pacific, and (b) topography of 
Papua New Guinea (PNG) and surrounding ocean basins. Symbols denote locations 
of the marine sediment core MD05-2925 in this study (blue circle), PNG coastal coral16 
(green triangle), PNG coastal seawater7 (white diamond), surface seawater of the Coral 
Sea17 (black diamond), Great Barrier Reef coral18 (white triangle), and Gregory Lakes19 
(brown). 
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Supplementary Table 1. AMS 14C dates of core MD05-2925 

Depth 

(cm) 

Conventional ages 

14C age (yr) ± error 

Calendar ages 

Dates ± error (2σ) 

AMS Lab 

2 1516 58 1023 141 U. Arizona1

5 1737 30 1223 79 GNS2 

22 3534 41 3345 104 U. Arizona 

35 4068 30 4013 123 GNS 

72 6588 47 7027 138 U. Arizona 

90 7751 35 8150 124 GNS 

102 8030 65 8441 139 U. Arizona 

117 8823 50 9414 111 GNS 

127 10306 70 11259 159 U. Arizona 

147 10411 70 12854 110 U. Arizona 

157 12066 60 13392 84 GNS 

172 13117 71 14973 309 U. Arizona 

180 13748 35 16283 453 GNS 

192 14080 74 16746 223 U. Arizona 

207 15616 75 18201 175 GNS 

217 16470 81 19083 90 U. Arizona 

262 18985 94 22167 180 U. Arizona 

272 20960 150 24411 167 U. Arizona 

292 24650 78 25304 339 U. Arizona 

 
1 NSF-Arizona AMS Laboratory in University of Arizona (U. Arizona), Tucson, USA. 
2 Rafter Radiocarbon Laboratory, Institute of Geological and Nuclear Science (GNS), New Zealand. 
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Supplementary Table 2. Planktonic foraminifera and sediment Nd isotopic composition of core 
MD05-2925 

Sample Depth (cm) Age (kyr BP) Number of tests 143Nd/144Nd* Nd* 

Foraminifera         
G. ruber 472-477 49.5-50.1 580 0.512584 ± 0.000016 -1.06 ± 0.32 
G. ruber 537-542 58.8-60.6 250 0.512571 ± 0.000012 -1.30 ± 0.24 

 472-473 49.5 - 0.512673 ± 0.000017 0.68 ± 0.32 
Sediment 477-478 50.1 - 0.512642 ± 0.000020 0.08 ± 0.39 

 537-538 58.8 - 0.512673 ± 0.000016 0.68 ± 0.31 
 542-543 60.6 - 0.512655 ± 0.000013 0.34 ± 0.25 

* Errors are 2 of the mean. 
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Supplementary Note 1 

Replicated foraminiferal REE/Ca records 

To demonstrate the fidelity of MD05-2925 REE records, we performed a 

replication test on planktonic foraminifera G. ruber REE/Ca time series in the 

sedimentary core, ODP-1115B (9o11’S, 151o34’E; water depth 1149 m), from an 

adjacent site within the same climatic zone, 19 km north of the MD05-2925 site. For 

each 5-cm interval of the upper 486 cm of this core, 20-30 foraminiferal tests of 

down-core planktonic foraminifera G. ruber (white, s.s. 250-300 μm) were picked for 

measuring oxygen stable isotopes (Supplementary Fig. 6) to establish an age model. 

Trace elements over the past 34 kyr were analyzed (Supplementary Fig. 6). G. ruber 

REE/Ca variations in ODP-1115B are coherent with the MD05-2925 record 

(Supplementary Fig. 6). This synchroneity of two REE/Ca sequences demonstrates the 

robustness of our methodology and interpretations. 

 
Evaluation of different factors on foraminiferal REE contents 

Serious influences of metallic oxides on foraminiferal REE contents were reported 

for the marine sedimentary cores and traps, especially in the Atlantic1-3. Under an 

oxidative condition, Fe/Ca ratios in our samples (<50 µmol mol-1) are much lower than 

the reported values (>100 µmol mol-1) for the diagenetically contaminated foraminiferal 

test from anoxic sites4. Previous studies showed that REE and Fe are positively 

correlated due to authigenic coatings1,3,5. An absence of a relationship between Nd/Ca 

and Fe/Ca (Supplementary Fig. 3b) also suggests that foraminiferal test REE/Ca 

variation is not attributed to this coating phase. 
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The average Nd concentration of towed open-ocean planktonic foraminifera is 

~0.1 ppm6, which is free from diagenetic contamination. Nd levels in foraminiferal 

calcite lattice at our study site with massive inputs of terrestrial materials should be 

larger than the average value. The low Nd content of our foraminifera is ~0.2 ppm. 

Using the Nd value of modern PNG coastal surface seawater (8.35 pmol kg-1)7 and Kd 

values of 200–500 (refs. 4), the Nd/Ca in foraminiferal calcite is expected to be about 

0.16-0.41 µmol mol-1, which is consistent with the core-top foraminifera G. ruber 

values of 0.19-0.41 µmol mol-1 (Supplementary Fig. 2). A lower Kd values of 16-52 (ref. 

6) and 4-302 (ref. 8) were also reported by other studies. These discrepancies could be 

caused by that seawater and foraminifera samples were not from the same sampling 

position6,8. However, using the high end range of these lower Kd, our data are still 

consistent with the predicted range of Nd levels. 

Foraminiferal test Nd has been used to reconstruct seawater neodymium isotopic 

composition in the past6,9,10. However, the source of Nd in sedimentary foraminifera is 

debated. Sedimentary planktonic foraminiferal Nd isotopes have been argued to record 

the bottom water Nd isotopic composition, testifying to the formation of authigenic 

coatings in bottom water or pore water, even in samples that have been subjected to 

chemical cleaning11. Our Nd data tend to support that a surface water signal was 

recorded in the cleaned test in this study. The radiogenic Nd values of planktonic 

foraminifera G. ruber are -1.06 ± 0.32 at ~50 kyr BP with low REE levels and -1.30 ± 

0.24 at ~60 kyr BP with high REE contents (Supplementary Fig. 2). The Nd values are 

different from 0.1~0.7 for the surrounding sediment (Supplementary Table 2) and -4 for 
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the seawater below 600 m depths near the Solomon Sea (stations of EUC-Fe 30, 

FLUSEC 43 and FLUSEC 22 in the ref. 7). Although the sites in the Solomon Sea are 

~500 km away from our site, the Nd value (-4) can show the local deep seawater 

compositions at our site and be used for comparison. The reason is that the deep western 

boundary current always flows northwestward along the east coast of PNG7 and our site 

is located at the current path among stations of EUC-Fe 30, FLUSEC 43 and FLUSEC 

22. REE concentration and Nd isotope data of planktonic foraminifera tests from 

plankton tows and sediment traps in the NW Atlantic show 80% of Nd is associated 

with authigenic metal oxides and organic matter, which form in the water column3. In 

our study area, the planktonic foraminiferal Nd isotope data, however, do not reflect 

those of deep to bottom waters. The evidence also suggests that the foraminiferal test 

REE source is not from deep/bottom seawater or sediment by post-depositional 

diagenesis. 

If planktonic foraminiferal REE of MD05-2925 were from different surface water 

masses associated with seasonal ocean circulation, different Nd values would be 

expected on the basis of wide range of +2 to -2 for modern surface water Nd values in 

the equatorial Pacific7. Indistinguishable Nd values (Supplementary Fig. 2, 

Supplementary Table 2) at two different ages of 49.5-50.1 kyr BP with low 

foraminiferal Nd levels of 0.30-0.32 mol mol-1 and 58.8-60.6 kyr BP with high 

foraminiferal Nd contents of 0.88-0.97 mol mol-1 suggest a single dominant source. 

Could boundary exchange12, a mechanism involving the release of dissolved 

REEs to seawater from particulates in the marine shelf setting, result in planktonic 
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foraminifera G. ruber REE variability? It is unlikely given the difference in isotopic 

composition between the regional seawater and local lithologies with very radiogenic 

Nd7,12. Neither is there any reason to expect that boundary exchange could change 

significantly over the past 282 kyr, as our REE patterns (Supplementary Fig. 5) and Nd 

data (Supplementary Fig. 2) in the foraminifera do not show any change. 

The Australian continent is the largest aeolian dust source in this region. However, 

the aeolian dust is not expected to be transported to our study site13. Dust deposition 

from the remote East Asian continent is also negligible13. Besides, the shale-normalized 

flat REE pattern of aeolian dust14 is distinctively different from the planktonic 

foraminiferal pattern (Supplementary Fig. 5). 

A noticeable in-phase correlation between Nd/Ca and Mn/Ca variations is 

observed in Supplementary Figures 3c and 4. This relationship could conceivably imply 

redox-induced micron-scale precipitation of MnCO3 (ref. 3). High Mn and REE 

concentrations in planktonic foraminifera could be caused by oxide dissolution under 

reducing conditions and re-mobilization of redox sensitive ions3. These diagenetic 

source of Mn and REE are accompanied by positive Ce anomalies [Ce* = 

(3CeSN)/(2LaSN + NdSN)]. However, there is no clear correlation (R2 = 0.069) between 

records of Mn/Ca and Ce anomalies (Supplementary Fig. 4b, 4c) and the Ce anomalies 

is always negative. This is also supported by the lack of correlation between Mn/Ca and 

Fe/Ca. The close correlation of Mn and Fe is a common feature of diagenetic source or 

authigenic coatings3,5. These features suggest that such a reaction is not manifest in our 

REE/Ca records. Planktonic foraminiferal Mn/Ca ratios have been considered as a tracer 
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for dissolved terrestrial input15. In-phase variations of Mn/Ca and REE/Ca are here 

attributed to common terrestrial sources from PNG. 
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