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2013): models are used to extrapolate since future environ-
mental conditions are expected to differ from past ones.

The generalizability issue betrays a tension between expla-
nation and prediction (Mac Nally 2000). If recent works 
focused more explicitly on prediction (Elith and Leathwick 
2009), explaining species distributions often remains an 
implicit goal. Ecologists wish to keep models interpretable 
in light of an underlying theory (niche theory; Austin 2007), 
and select models with respect to their predictive ability. 
Following model selection (Buckland et al. 1997, Burnham 
and Anderson 2002), predictions to unsampled areas are 
often attempted (Wilson et al. 2010, Mannocci et al. 2014). 
The rationale for the dual goals of explanation and prediction 
stems from the assumption that a causal model must have 
good prediction abilities (Shmuéli 2010). However, these 
two aims need not necessarily coincide: the best explanatory 
model can be different from the best predictive model (Betts 
et al. 2009, Shmuéli 2010).

Shmuéli (2010) lists 4 major sources of discrepancy 
between explanatory and predictive modelling, of which we 
will only focus on one: the bias-variance trade-off. Under 
a statistical model relating a response variable y to a set of 
predictors x such that the expectation E[y]  f (x) (see nota-
tions below), the expected prediction error under a quadratic 
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Habitat models have become major tools in biodiversity 
and conservation studies (Record et al. 2013, Swanson 
et al. 2013). Habitat models or species distribution models 
(Guisan and Thuiller 2005, Elith and Leathwick 2009) aim 
at quantifying the statistical links between a set of relevant 
environmental covariates (inputs) and a species’ occurrence, 
abundance or biomass (Reineking and Schröder 2005). The 
inferential target is the distribution of a focal species over a 
spatio-temporal domain. The ecological literature on habitat 
modelling is large, encompassing case studies (Wilson et al. 
2010, Buckland et al. 2014) and technical papers about 
estimation methods (Reineking and Schröder 2005, Merow 
et al. 2014). Among practical hurdles, spatially-correlated 
errors (Dormann et al. 2007), variable selection, collinearity 
(Dormann et al. 2007, 2013), and the accurate quantifica-
tion of predictive uncertainties (Rocchini et al. 2011) are 
recurrent. These issues are related to the generalizability of 
models outside their comfort zone (that is, the data used 
for calibration) to obtain accurate predictions for specific 
purposes (Vaughan and Ormerod 2005). An example of 
the latter would be a conservation study looking for cur-
rent abundance maps of an endangered species (Conn et al. 
2015). Another important application is predicting future 
change (Péron et al. 2012, Record et al. 2013, Swanson et al. 
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loss function of a new observation ynew can be decomposed 
into (Shmuéli 2010): 1) a bias term quantifying the mis-
match between the true value ynew and its predicted value 
fˆ(xnew); and 2) a variance term quantifying the uncertainties 
resulting from estimating fˆ from a finite sample rather than 
knowing f.

The bias term quantifies the intrinsic error that arises 
even when f is known before hand or accurately estimated 
(Shmuéli 2010). Estimating fˆ from a sample is the model 
selection problem, which generates additional uncertainty 
to be accounted for (Buckland et al. 1997, Burnham and 
Anderson 2002). The decomposition of expected predic-
tion error highlights the difference between explanatory 
modelling whose aim is to minimize bias with respect to 
theory, and predictive modelling which is more concerned 
about minimizing both variance and bias (Betts et al. 2009, 
Shmuéli 2010). For prediction, introducing bias may be 
acceptable if it is more than offset by a reduction in vari-
ance (Shmuéli 2010): an obviously ‘wrong’ model can 
sometimes provide better predictions than a causally more 
correct model (Bahn and McGill 2007, Betts et al. 2009, 
Shmuéli 2010).

Willingly introducing bias to improve predictions is 
known as shrinkage regression (Reineking and Schröder 
2005, Carvalho et al. 2010, Dahlgren 2010, Polson and 
Scott 2010). From a Bayesian perspective, all posterior esti-
mates are biased: they are a weighted average between the 
data and the prior. With an appropriately chosen prior, 
regression coefficients can be shrunk toward zero to achieve 
variable selection. Such shrinkage priors encapsulate two 
assumptions: sparsity and robustness (Griffin and Brown 
2013). Sparsity is the assumption that many coefficients 
may be set to zero without degrading the predictive abil-
ity of a model (Griffin and Brown 2013). Sparsity relates to 
parsimony and acts against over-fitting by muting irrelevant 
predictors. Robustness relates to the prior distribution tail 
fatness: a heavy-tailed prior allows a few regression coeffi-
cients to escape the gravitational pull towards 0 if the data 
suggest otherwise (Polson and Scott 2010). Shrinkage pri-
ors favour a parsimonious solution to the variable selection 
problem: the majority of regression coefficients will be close 
to zero, but a handful may be away from zero if they relate to 
influential predictors.

We will compare and discuss the use of shrinkage regres-
sion for predicting the habitat of three species of small pelagic 
fish in the Gulf of Lions, western Mediterranean, France. 
The Gulf of Lions underwent an ecosystem shift in 2007 
with lower biomasses of important commercial fish species 
(sardine and anchovy) causing an important fishery crisis 
while sprat abundance rose (Saraux et al. 2014, Van Beveren 
et al. 2014). Habitat models can be useful tools to predict the 
spatial distribution of fish biomass and detect potential long-
term changes driven by environmental forcing. Our focus 
was on the predictive accuracy of different habitat models 
evaluated on hold-out data. We considered spatially explicit 
models (Wikle 2003): ignoring spatial autocorrelation can 
result in unreliable inferences, biased environmental correla-
tions and inaccurate predictions (Dormann 2007). To better 
understand the predictive ability of models, we explicitly dis-
tinguished between interpolation and extrapolation (Bahn 

and McGill 2013, Merow et al. 2014, Conn et al. 2015). 
We quantified how the relative interpolation to extrapola-
tion ratio varies as more and more inputs were considered 
in habitats models with a non-parametric method based on 
Gower’s distance (King and Zeng 2007 but see Conn et al. 
2015).

Material

Small pelagic fish biomass

Yearly standardized acoustic and trawl surveys of small 
pelagic fish (PELMED, ‘PÉLagiques MEDiterranée’) have 
been carried out continuously every July since 1993 in the 
Gulf of Lions onboard RV L’Europe. Data were system-
atically collected along 9 parallel transects perpendicular 
to the coastline, 12 nautical miles (nm) apart (22 km). 
Transects are longer in the middle of the Gulf (max. 80 
km), than on the edges (min. 20 km). The vessel navigated 
at depths between 20 and 200 m: beyond the 200 m 
isobaths, small pelagic fish abundance drops dramatically. 
Acoustic data were recorded every 1 nm (Elementary Unit 
Distance Sampling Unit, EDSU) using multi-frequency 
echosounders (Simrad EK500 and ER60), while traveling 
at constant speed of 8 nm h 1. All frequencies were visual-
ized during sampling to decide when to trawl for species 
identification.

When the echosounder detected sufficiently long fish 
traces ( 2 nm) or a change in the echotrace character-
istics, a pelagic trawl was deployed to assess the species 
composition. The content was sorted and the total weight 
of every species caught measured. European anchovy 
Engraulis encrasicolus, European sardine Sardina pilchardus 
and European sprat Sprattus sprattus were classified into 
0.5 cm size classes, and total weight and abundance were 
measured afterwards. When total catch was too large, a 
random subsample (5–10 kg) was taken. Only data col-
lected in 2011 were used in this study, corresponding  
to a cruise of 1704 nm and 42 trawls performed between 
26 June and 31 July.

To estimate fish density, only energies from the 38 kHz 
(typical frequency used for fish) channel were used. Acoustic 
data analyses, such as bottom correction, were performed 
using software Movies (Weill et al. 1993). Species dis-
crimination and echo-partitioning were performed by the 
combination of echotrace classification and trawl outputs 
(Simmonds and MacLennan 2005). In particular, trawl-
EDSU association was done by expert knowledge according 
to a combination of echotrace classification and minimiz-
ing distance. Fish size distributions or repartitions between 
adult and juvenile were attributed to each acoustic EDSU. 
Adult and juvenile fish were separated according to length-
at-maturity (9 cm, 11 cm and 9 cm for anchovies, sardines 
and sprats respectively; Saraux unpubl.). Adult European 
sprats were too few in 2011 to be included in this study. 
Biomass was estimated from acoustic energy using specific 
target strength (Doray et al. 2010). Data are biomass per 
species and per stage (adult or juvenile) in each acoustic sam-
pling point on the 9 transects (Table 1).
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Environmental inputs

Environmental inputs were cautiously selected either due to 
previous findings on sardine and anchovy distribution in the 
Mediterranean Sea (Giannoulaki et al. 2011, 2013, Tugores 
et al. 2011) or because they represented proxies of potentially 
important phenomena, such as mixing or frontal structures 
known to concentrate phytoplankton and zooplankton. 
Bathymetry (Bathy, in meters), its gradient (GBathy) and 
seabed substrate (SED, 5 categories) are topographic features 
affecting fish distribution (Giannoulaki et al. 2006). Inputs 
related to chlorophyll a concentrations (CHLA concentra-
tion in mg m–3, gradient of CHLA, GCHLA and standard 
deviation of CHLA, SDCHLA) were proxies of the spatio-
temporal dynamic of primary productivity which controls 
the distribution of zooplankton, the main prey of small 
pelagic fish in the Gulf of Lions (Palomera et al. 2007). The 
remaining inputs were related to sea surface temperature 
(SST in°C; gradient GSST and variance SDSST). They are 
dynamic predictors typically used to describe water masses 
that affect the distribution of primary productivity and low 
trophic levels.

Dynamic variables were downloaded on a monthly basis 
to match the response variable. Weekly grids of SST and 
CHLA were downloaded to compute monthly SDSST and 
SDCHLA, which reflected water masses’ stability. Squared 
terms of SST and CHLA included to account for optima 
rather than linear increases or decreases. Spatial gradi-
ents were calculated with software Surfer. A low-pass filter 
(Gaussian 3  3 moving window) was first applied to SST 
and CHLA to remove high-frequency noise (measurements 
error) in satellite images. A gradient calculator was then used 
across the filtered SST and CHLA grids as well as Bathy grids 
using a 3  3 moving window. When environmental vari-
ables had different spatial resolution (Supplementary mate-
rial Appendix 1, Table A1), raster grids were upscaled using 
bilinear interpolation to match a grid of 0.05  0.05° (5.5 
km) cell size. All predictors were assumed to be measured 
without error and values were extracted for each haul from 
the 0.05  0.05° grid before standardisation. In total, we 
considered 9 different inputs: Bathy, GBathy, SST, GSST, 
SDSST, CHLA, GCHLA, SDCHLA, SED and squared terms 
for SST and CHLA, resulting in 15 predictors. Following 
King and Zeng (2007), inputs were distinguished from pre-
dictors: for example SST or CHLA were inputs contributing 
2 predictors (SST and SST2, CHLA and CHLA2), and SED 
contributed 5 predictors.

Methods

We modelled the spatial distribution of small pelagic fish 
biomass (in tons) within a Bayesian framework. To assess col-
linearity, we computed the condition number of the predic-
tor correlation matrix (k), which is the largest to the smallest 
eigenvalue ratio. A large k ( 100) indicates collinearity. 
Biomass data were highly skewed with a large proportion of 
zeros or small values, and few large ones. Variance increased 
with the mean, a proportionality effect we removed with a 
logarithmic transform:

y  log(1  Biomass) (1)

For each species and each size class, we partition the data 
(response variable and inputs) into 2 different sets: 1) a cali-
bration dataset (n  200, k  22) to estimate model para-
meters; and 2) a validation dataset (n  72, k  33) to assess 
model predictive ability. One datum every 4 collected along 
transects was kept for validation. The 4:1 ratio between cali-
bration and validation data is arbitrary, but was chosen to 
balance precise estimation and accurate validation of models. 
Upon model fitting, we predicted the response variable from 
inputs, and compared this prediction to actual biomass value. 
The latter was not seen by the model and provided ‘inde-
pendent’ (with respect to parameter estimation) data to assess 
predictive ability. To further assess the quality of prediction, 
10-fold cross validation was also performed by randomly 
splitting the data into calibration and validation datasets.

Finally, we used a third dataset for pure prediction 
(n  542, k  33). We restricted this dataset to a grid of 
0.05° cell size above the  200 m isobath. The final sample 
size of the prediction dataset was determined by the resolu-
tion of the chosen grid, and the availability of inputs. All 
these datasets showed moderate collinearity with condition 
numbers greater than 20 but lower than 100.

Notation

E[y] and V[y] are respectively the mean and variance of the 
random variable y. U(l,u) denotes the uniform distribution 
with lower bound l and upper bound u. N(m,s) denotes the 
normal distribution of mean m and scale s.C(m,s) denotes 
the Cauchy distribution of mean m and scale s. C(m,s) 
denotes the positive half-Cauchy distribution of mean m and 
scale s. T(m,s,n) denotes the Student-t distribution of mean 
m, scale s and n degrees of freedom.

Table 1. Descriptive statistics of fish biomass (in tons).

Species Stage Dataset Mean Median % zeros Moran’s I observed Moran’s I expected p value

Anchovy Juv. calibration 2.7 0.1 11.0  0.032  0.005 2.0  10 16

Anchovy Ad. calibration 3.9 1.0 22.5  0.009  0.005 2.0  10 01

Sardine Juv. calibration 8.7 0.0 39.5  0.026  0.005 4.9  10 11

Sardine Ad. calibration 2.3 0.1 27.5  0.007  0.005 4.8  10 01

Sprat Juv. calibration 7.2 1.2 18.5  0.036  0.005 5.8  10 21

Anchovy Juv. validation 2.7 0.2 5.0  0.049  0.014 1.5  10 04

Anchovy Ad. validation 3.0 1.0 16.7  0.009  0.014 6.4  10 01

Sardine Juv. validation 13.3 0.1 38.9  0.033  0.014 3.9  10 02

Sardine Ad. validation 2.7 0.1 30.5  0.025  0.014 2.2  10 01

Sprat Juv. validation 10.1 1.8 13.9  0.055  0.014 9.0  10 06



552

where d0 is a degenerate distribution with all its mass at 0; 
F(.) is the standard normal cdf (probit link); a0 is an inter-
cept, and ak are slope parameters. No spatial structure was 
assumed for the process generating excess zeros. Separate 
Horseshoe priors were assumed for ak and bk.

5) Finally, model M5 is a simplified version of M4 with 
no spatial effects:

y N xs s s k
p

k k

s

s( ) ( ) ( )

( )

( ) ( , )
( )

∼

∼

θ δ θ β β σ

θ
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Φ α α0 + ∑ ×





 =k
p

k kx
s1
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Horseshoe priors were again assumed for slope parameters. 
M5 is another benchmark model to assess whether the 
predictors xk were sufficient for prediction.

Calibration data sample size was 200 with 9 inputs for 
fitting different model structure (spatial, zero-inflation): 
the range of the datum-to-parameter ratio for estimation is 
roughly between 50 (model M1) and 6 (model M4). A stan-
dard half-Cauchy prior was always assumed for snugget. For 
spatial models, a standard half-cauchy prior was assumed for 
ssill and a uniform prior for r∼u (0.1,200). For M2, M3 and 
M4, we assumed random spatial effects were uncorrelated 
to any of the inputs. Zero-inflated models M4 and M5 were 
heavily parametrized (large p, small n setting) and we only 
considered shrinkage priors.

Model fitting

We used cmdstan 2.8.0 (Stan Development Team 2015). 
Three chains were initialized with random starting values. 
After burn-in (1000 iterations), convergence was assessed 
using the Gelman–Rubin potential scale reduction factor r̂ 
(Cowles and Carlin 1996). Inferences are based on a poste-
rior sample of 3000 iterations. STAN codes are available as 
supplementary materials. Predictions were performed with 
R 3.2.1 (R Development Core Team) on a HP Compaq 
LA2306x desktop (Intel (R), Xeon (R) CPU E5-2630, 2.30 
GHZ, 32 Go RAM).

Predictive ability

For each combination of species-stage, 75% of data were 
used for calibration, and the remaining 25% kept for 
cross-validation. To assess the usefulness of spatial effects, 
the validation sample was not selected at random, but 
chosen to reflect the data collection mechanism (Wang 
and Gelman 2014) in order to test specifically whether 
taking into account neighbouring locations improved pre-
dictions. We also performed 10-fold cross-validation by 
randomly splitting data, thereby ignoring the data collec-
tion design to confirm results. Model M predictive ability 
was assessed with posterior predictive loss (Gelfand and 
Ghosh 1998): DM  GMPM, where GM measures good-
ness of fit and PM penalizes models that make imprecise 
predictions.

For both the calibration and validation datasets, goodness 
of fit was:
G y yM s s s= ∑ −( ) ( ) ( )( )obs pred 2  (9)

Model building

We considered 5 spatial generalized linear mixed models. 
Spatial effects z(s) were modelled with a stationary Gaussian 
Process (GP) of mean 0 and isotropic Matèrn covariance 
function of order 3/2 (Juntunen et al. 2012). Schmidt et al. 
(2008) concluded of a limited influence of different correla-
tion functions on predictions. The spatial correlation cor(s,s′) 
between two locations s and s′ separated by geodetic distance 
d(s,s′) (Banerjee 2005) is:

cor( , )
( )( , ) ( )/( , )s s
d

es s d s s′
ρ

′ ρ′= +
×





× − ×1

3 3  (2)

where r  0 is the range. The spatial covariance is 
cov( , ) ( , ).s s s s′ σ ′= ×sill cor2  Spatial effects z(s) were modelled 
(Banerjee 2005):
z GPs( ) ( , )∼ 0 2σsill cor(.)×  (3)

Let y(s) denotes the value of the response variable and xk s( )
 

the value of the kth predictor variable (or input) x at location s.
1) Model M1 is a benchmark model without covariates 

but with a spatial effect (‘simple kriging’, Wikle 2003):
y N zs s( ) ( )( , )∼ β σ0 + nugget  (4)

where b0 is an intercept with a Student-t prior b0 ∼ T(0,10,7) 
(Gelman et al. 2008). σ2

nugget  is the residual variance, or 
nugget effect in geostatistics.

2) Model M2 is a full model including all p predictors and 
a spatial effect (‘universal kriging’, Wikle 2003):

y N x zs k k sk

p

s( ) ( )( , )
( )

∼ β β σ0 1
+ × +

=∑ nugget  (5)

where bk are regression coefficients (slope) with independent 
Student-t priors bk ∼T(0,2.5,7) (Gelman et al. 2008).

3) Model M3 is similar to model M2 with a shrinkage 
prior on bk. A well-known shrinkage prior is the LASSO 
(Park and Casella 2008). One shortcoming of the latter is 
its light tails which can lead to excessive shrinkage. Priors 
with heavy tails, such as the Horseshoe prior (Carvalho et al. 
2010), avoid this pitfall. The latter owes its name to the shape 
of the distribution it induces on the shrinkage coefficient 
(Supplementary material Appendix 1, Fig. A1). It has an 
infinite spike at zero (to screen out the noise) and heavy tails 
to accommodate true signals (which are left unshrunk). The 
Horseshoe prior favours a parsimonious variable selection 
by shrinking toward zero small bk effects yet leaving larger 
bk effects unshrunk. It belongs to the class of Global–Local 
shrinkage priors (Polson and Scott 2010). It involves a global 
variance σglobal

2  that handles the noise, and local variances 
σlocalk

2  to identify robust signals; both having a standard half-
Cauchy distribution:
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4) Model M4 is an elaboration of M3, allowing for an 
excess of zeros (Martin et al. 2005): it is a zero-inflated spatial 
GLM with a Horseshoe prior.
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selection (excluding 10-fold cross-validation) is summarized 
in Table 2, 3 and 4 for European anchovies, sardines and 
sprats respectively. Semi-variograms revealed that anchovy, 
juvenile sardine and sprat biomasses were spatially structured 
(Fig. 2, Supplementary material Appendix 1, Fig. A4–A8). In 
contrast, no spatial pattern was visible for adult sardines (Fig. 
2, Supplementary material Appendix 1, Fig. A7). Models 
M3 and M4, with the Horseshoe prior for automatic vari-
able selection, performed well both for the calibration and 
validation datasets (Fig. 3). The full model M2 performed 
reasonably well with the calibration data (small GM), but its 
predictive performance deteriorated with the validation data, 
especially when predicting outside the convex hull.

Predictive ability with the validation data

For validation data, 56 and 16 points fell inside and outside 
the convex hull respectively. For spatially structured species, 
spatial random effects unsurprisingly improved predictions. 
M5 (without spatial effects) often performed worse with vali-
dation data, both outside and inside the hull. Exceptions 
were juvenile sardines (validation outside) and adult sardines 
(validation inside), probably due to sardines showing less 
spatial structuring than anchovies or sprats. M2 was the worst 
model (Fig. 3). The simple M1 was often best when predict-
ing outside the convex hull (Fig. 3). Spatial models with a 
Horseshoe prior (M3 and M1) had a more stable rank across 

and penalty (Gelfand and Ghosh 1998, Schmidt et al. 
2008):

P V yM s s= ∑( ) ( )[ ]pred  (10)

GM and PM quantify respectively the bias and variance of 
model M predictions: DM thus reflects a bias-variance trade-
off (Shmuéli 2010).

Predictions: inter- or extrapolation

The relative contribution of inter- and extrapolation when 
predicting fish biomass at unsampled locations was quan-
tified with King and Zeng (2007)’ approach implemented 
in R package WhatIf (Stoll et al. 2009). Using Gower’s dis-
tance, a combination of input values is determined to lie 
inside or outside the calibration dataset convex hull. Figure 1  
illustrates how, albeit most data can fall within the range of 
each individual input xk, the combination of several inputs 
can rapidly result in predicting outside the convex hull. 
We assessed how the ratio of interpolation to extrapola-
tion changed as inputs were added. To reduce computation  
burden, we excluded seabed substrate.

Conn et al. (2015) assessed extrapolation using model-
based convex hulls defined from a generalization of 
Cook’s distance. In contrast the nonparametric approach 
of King and Zeng (2007) does not require any model fit-
ting: only the inputs are required and the convex hull is 
model-independent.

Results

Convergence and model selection

Twenty-five models were fitted (5 for each species-stage 
combination), plus 10  25 for the 10-fold cross-validation. 
In each model, all parameters converged (r̂   1.1). Model 

Figure 1. Interpolation versus extrapolation (from simulated data): 
the convex hull is the smallest convex polygon containing the cali-
bration data (crosses) used for parameter estimation. Points symbol-
ize a simulated prediction dataset: predictions falling inside the 
convex hull are interpolations (in blue); whereas predictions outside 
the convex hull are extrapolations (in yellow), that is predictions 
based on a combination of values not seen in the calibration data.

Table 2. Model selection for predicting European anchovy biomass 
in the Gulf of Lions. GM measures bias and PM variance in predic-
tions. Their sum is the posterior predictive loss DM. The model with 
the smallest DM has the best predictive ability (in bold).

Species Age Model Data Hull GM PM DM

Anchovy Juvenile M1 calibration inside 58.1 16.5 74.6
Anchovy Juvenile M2 calibration inside 69.0 12.4 81.4
Anchovy Juvenile M3 calibration inside 63.6 13.6 77.2
Anchovy Juvenile M4 calibration inside 63.9 13.6 77.5
Anchovy Juvenile M5 calibration inside 110.7 6.2 116.9
Anchovy Juvenile M1 validation inside 23.7 5.4 29.1
Anchovy Juvenile M2 validation inside 23.5 4.2 27.7
Anchovy Juvenile M3 validation inside 22.5 4.7 27.2
Anchovy Juvenile M4 validation inside 22.2 4.7 26.9
Anchovy Juvenile M5 validation inside 38.1 2.1 40.2
Anchovy Juvenile M1 validation outside 4.4 1.4 5.7
Anchovy Juvenile M2 validation outside 5.2 1.5 6.6
Anchovy Juvenile M3 validation outside 4.6 1.4 6.0
Anchovy Juvenile M4 validation outside 4.6 1.3 5.9
Anchovy Juvenile M5 validation outside 6.3 0.6 6.9
Anchovy Adult M1 calibration inside 62.2 24.7 86.9
Anchovy Adult M2 calibration inside 71.7 24.8 96.5
Anchovy Adult M3 calibration inside 63.4 24.4 87.8
Anchovy Adult M4 calibration inside 62.2 23.6 85.8
Anchovy Adult M5 calibration inside 160.6 11.0 171.7
Anchovy Adult M1 validation inside 19.9 7.7 27.5
Anchovy Adult M2 validation inside 19.7 8.5 28.2
Anchovy Adult M3 validation inside 19.1 7.8 26.8
Anchovy Adult M4 validation inside 19.1 7.7 26.8
Anchovy Adult M5 validation inside 37.8 3.5 41.3
Anchovy Adult M1 validation outside 3.9 2.1 6.0
Anchovy Adult M2 validation outside 7.7 3.3 11.0
Anchovy Adult M3 validation outside 4.5 2.4 6.9
Anchovy Adult M4 validation outside 5.0 2.2 7.2
Anchovy Adult M5 validation outside 11.1 0.9 12.0
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the Camargue (estuary of the Rhône river, Supplementary 
material Appendix 1, Fig. A5). M5 suffered from the same 
defect, though the Horseshoe prior attenuated the extreme 
predictions by an order of magnitude. For adult sardines, 
predictions from M1, M3 and M4 were similar with large val-
ues predicted close to the shelf edge. M2 made again unre-
alistic predictions close to the Camargue (Supplementary 
material Appendix 1, Fig. A7). Predictions from M5 were 
on a very different scale. All predictions from M3 and M4 
had narrower 95% credibility interval width than M2 or M5 
(not shown), but were comparable to those obtained with 
M1. M2 always predicted a few implausibly extreme values 
(Supplementary material Appendix 1). For prediction, 101 
and 441 data points were respectively inside and outside the 
convex hull. Models with covariates quickly extrapolated as 
the number of inputs increased (Fig. 4). For any two inputs, 
the average amount of interpolation was 90%; however for  
5 inputs it was down to  50%.

Estimation of regression goefficients

Regression coefficients differed between species and stages. 
Important predictors were GCHLA for adult anchovies; 
SDSST, GCHLA and SED for juvenile anchovies; CHLA, 
GCHLA and SED for juvenile sardine; and GBathy and SDSST 
for juvenile sprat (Fig. 5). Figure 5 compares the estimated 
regression coefficients between M2 and M3–5 (Supplementary 
material Appendix 1, Fig. A9–A10). Regression coefficients 
for adult sardines were very noisy (M2), or heavily shrunk 
(M3–5). Shrunk regression coefficients consistently enabled 
more accurate predictions (Fig. 3). Specifically, the Horseshoe 
prior shrank regression coefficients bk by an average factor 
of 1.8, 5.8, 3.2, 11.1 and 11.1 for juvenile anchovies, adult 
anchovies, juvenile sardines, adult sardines and juvenile 
sprats respectively. The bad predictive performance of M2 
was thus partly linked to overestimated effect size of coef-
ficients. Taking into account spatial random effects was also 
important and affected estimated regression coefficients, 
even in models with Horseshoe priors.

Discussion

We investigated shrinkage regression for habitat model-
ling of small pelagic fish in the western Mediterranean Sea. 
Accounting for spatial structure resulted in better predic-
tions. Record et al. (2013) and Swanson et al. (2013) argued 
of the importance of spatial random effects: their inclusion 
in habitat models leads to conservative predictions. A spa-
tial model will predict a similar pattern to that seen in the 
calibration data, unless the simultaneous inclusion of inputs 
really improves predictions. M3 and M4, with both a spatial 
structure and a Horseshoe prior, were competitive with M1. 
They were usually better when predicting inside the convex 
hull, but M1 was often just as good, or better, for predictions 
outside the convex hull (Fig. 3). In other words, a simple 
explicitly spatial model with no environmental covariates 
often generated accurate predictions (Bahn and McGill 
2007). Reasons why a simple kriging model performed 
better may include collinearity issues with the predictors 

the different datasets. Models with a Horseshoe prior, spa-
tial random effects and zero-inflation gave the best tradeoff 
between calibration and validation (Fig. 3).

Predictive ability with the prediction data

For adult anchovies, predictions from M1, M3 and M4 were 
similar. In contrast, M2 made unrealistic predictions close to 

Table 3. Model selection for predicting European sardine biomass in 
the Gulf of Lions. GM measures bias and PM variance in predictions. 
Their sum is the posterior predictive loss DM. The model with the 
smallest DM has the best predictive ability (in bold).

Species Age Model Data Hull GM PM DM

Sardine Juvenile M1 calibration inside 225.8 20.0 245.7
Sardine Juvenile M2 calibration inside 156.5 51.6 208.1
Sardine Juvenile M3 calibration inside 164.1 47.3 211.4
Sardine Juvenile M4 calibration inside 164.3 47.9 212.3
Sardine Juvenile M5 calibration inside 252.7 16.9 269.6
Sardine Juvenile M1 validation inside 76.1 5.7 81.8
Sardine Juvenile M2 validation inside 75.9 14.6 90.5
Sardine Juvenile M3 validation inside 72.0 10.5 82.5
Sardine Juvenile M4 validation inside 75.2 11.1 86.3
Sardine Juvenile M5 validation inside 88.1 5.5 93.5
Sardine Juvenile M1 validation outside 11.0 1.7 13.1
Sardine Juvenile M2 validation outside 12.7 5.6 18.3
Sardine Juvenile M3 validation outside 11.8 3.6 15.4
Sardine Juvenile M4 validation outside 11.8 3.3 15.1
Sardine Juvenile M5 validation outside 12.7 1.3 13.9
Sardine Adult M1 calibration inside 35.7 27.4 63.1
Sardine Adult M2 calibration inside 33.0 28.6 61.6
Sardine Adult M3 calibration inside 27.5 27.7 55.2
Sardine Adult M4 calibration inside 30.1 27.3 57.4
Sardine Adult M5 calibration inside 131.2 4.0 139.2
Sardine Adult M1 validation inside 48.0 6.3 54.3
Sardine Adult M2 validation inside 50.5 7.8 58.2
Sardine Adult M3 validation inside 47.9 5.8 53.7
Sardine Adult M4 validation inside 47.9 6.4 54.3
Sardine Adult M5 validation inside 42.0 1.1 43.1
Sardine Adult M1 validation outside 2.5 1.8 4.3
Sardine Adult M2 validation outside 3.7 2.9 6.6
Sardine Adult M3 validation outside 2.7 1.8 4.5
Sardine Adult M4 validation outside 2.6 1.8 4.4
Sardine Adult M5 validation outside 4.1 0.4 4.5

Table 4. Model selection for predicting European sprat biomass in 
the Gulf of Lions. GM measures bias and PM variance in predictions. 
Their sum is the posterior predictive loss DM. The model with the 
smallest DM has the best predictive ability.

Species Age Model Data Hull GM PM DM

Sprat Juvenile M1 calibration inside 57.2 39.9 97.1
Sprat Juvenile M2 calibration inside 53.8 42.3 96.1
Sprat Juvenile M3 calibration inside 54.6 39.5 94.0
Sprat Juvenile M4 calibration inside 56.5 39.6 96.1
Sprat Juvenile M5 calibration inside 223.9 15.9 239.8
Sprat Juvenile M1 validation inside 35.8 12.1 47.8
Sprat Juvenile M2 validation inside 36.6 13.3 49.9
Sprat Juvenile M3 validation inside 36.2 11.8 48.0
Sprat Juvenile M4 validation inside 36.2 12.1 48.3
Sprat Juvenile M5 validation inside 68.7 5.3 74.0
Sprat Juvenile M1 validation outside 19.7 3.4 23.2
Sprat Juvenile M2 validation outside 20.2 5.3 25.5
Sprat Juvenile M3 validation outside 20.7 3.7 24.4
Sprat Juvenile M4 validation outside 21.3 3.8 25.0
Sprat Juvenile M5 validation outside 38.4 1.4 39.8
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Performing model averaging following all-subsets model 
fitting (Johnson and Hoeting 2011) or ensemble forecasts 
(Araújo and New 2007, Buckland et al. 2014) would alleviate 
overfitting and address type M-errors. However, these pro-
cedures are costly computation-wise. Using the Horseshoe 
prior as a regularization device for variable selection resulted 
in accurate predictions in one run. Shrunk parameters esti-
mates were also stable when compared by 10-fold cross-
validation (Supplementary material Appendix 1, Fig. A10). 
In a frequentist framework, Reineking and Schröder (2005) 
conducted a simulation study and concluded of the supe-
rior predictive ability of shrinkage approaches. For Bayesian 
linear models, Carvalho et al. (2010) established that poste-
rior means from a Horseshoe prior were similar to model-
averaged estimates. Our results showed that the Horseshoe 
prior gave accurate and precise spatial predictions (Table 2–4),  
while avoiding overfitting and costly model selection 
procedure.

Although shrinkage regression may appear overly techni-
cal to ecologists (Dahlgren 2010), we think it is worth the 
trouble beyond pragmatic variable selection. For example, 
M2 predicted extremely large biomass of anchovies, adult 
sardines but very few juvenile sardines and sprats off the 
Rhône Estuary (Supplementary material Appendix 1, Fig. 
A4–A8). If we were to trust these predictions, the Rhône 

(Dormann et al. 2007, 2013) and overfitting, that is capital-
izing on noise in the calibration data that did not reccur in 
the validation data (Babyak 2004, Merow et al. 2014).

Interpolation, extrapolation and overfitting

Predictions were made on the same geographical region, 
using covariates that were from the same source as those used 
in the calibration data, and restricting the range of an indi-
vidual covariate to be on average  90% within the range of 
the calibration data (Fig. 4). Despite this favorable setting, 
M2 performance was disappointing (Fig. 3) and particularly 
poor with validation data. This may be 1) due to overesti-
mation (type-M errors, Gelman and Tuerlinckx 2000) of 
regression coefficients (Fig. 5); or 2) because the scope for 
overfitting became larger with more inputs as predictions 
became extrapolations rather than interpolations (Fig. 4). 
Albeit all the values of inputs occurred in the calibration 
data, entirely novel combinations appeared in both the vali-
dation and prediction datasets (Mesgaran et al. 2014). This 
problem was most acute with M2, which clearly overfitted 
and predicted unrealistically large biomasses (Supplementary 
material Appendix 1, Fig. A4–A8). M2 was a full model 
without variable selection: its predictions were both unreal-
istically large and imprecise.

Figure 2. Estimated semi-variance curves are represented by transparent solid blue line for each cross-validation. The dark blue line is a loess 
curve. Red dots are observed semi-variances, with size proportional to the number of pairs of points. Rows correspond to the different 
models, and columns to species-stage combinations.
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prediction and explaination can then lead to different model 
choices (Betts et al. 2009, Shmuéli 2010).

The tension between explanation and prediction mir-
rors that between realism and instrumentalism (Sober 1999, 
Stanford 2006). Realism is the philosophical idea that theo-
ries provide a true description of the world (Chang 2012, 
p. 222). Scientific theories can use unobservable quanti-
ties only if these literally exist in nature (Stanford 2006, 
Chang 2012). For example, spatial random effects are often 
interpreted realistically as capturing the effect of missing 
important predictors (Dormann 2007, Dormann et al. 
2007), or as accounting for ecological processes, e.g. dispersal 
or aggregative behaviour (Merow et al. 2014).

‘[I]nstrumentalism is the idea that theories are [mere] 
instruments for making predictions’ (Sober 1999). Including 
predictors that may have no causal link with the response 
variable, or to use a data dimension reduction techniques 
(such as principal component analysis), even if the results 
have no clear interpretation, is acceptable for an instrumen-
talist if better predictions are obtained. Instrumentalism does 
not investigate why a pattern arises, but only seeks to predict 
it most accurately: its aim is predictive success, not truth 

estuary would be a very profitable fishing area for anchovies. 
These were but extrapolations (Fig. 4) which either a simple 
kriging model or spatial models with shrinkage greatly atten-
uated. This attenuation was most dramatic for adult ancho-
vies and adult sardines whose predicted biomasses differed 
by more than a full order of magnitude between M2 and 
shrinkage models. Shrinkage regression appears valuable in 
fishery or conservation studies to prevent inaccurate predic-
tions that could lead to unfortunate management decisions 
(overfishing) or resources attribution (research survey in an 
unsampled areas predicted to concentrate high abundance 
or biomass).

Prediction or explanation

Predictive modelling is the process of applying a statistical 
model to data for the purpose of predicting new observa-
tions. It is a pragmatic approach that puts a premium on 
empirical adequacy regardless of theoretical considerations. 
Explanatory modelling is more concerned with adequacy 
with a theory about how the data arise. The two goals of 

Figure 3. Left: median rank calculated over all species-stage combinations for each model with respect to the smallest posterior smallest 
posterior predictive loss DM. The best model across all species-age combinations is ranked first (smallest DM). Model rank changed across 
the different datasets: the simplest model was worst for the calibration data, but its predictive ability improved when interpolating or 
extrapolating. Models with stable rank across the different task (calibration, interpolation or extrapolation) were M3 and M4. Each line 
corresponds to a (cross-)validation dataset. Rows correspond to the different models.
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inputs. Habitat models routinely include more than 5 differ-
ent inputs (Warton et al. 2015). Our ability to reliably test 
theoretical predictions may degrade as we add more inputs. 

(Chang 2012, chapter 4). From a realist perspective, our 
results showed that having too many inputs is detrimental: 
extrapolation quickly became pervasive with just 5 different 

Figure 4. Left panel: interpolation to extrapolation ratio in the prediction dataset. The y-axis shows the % of predictions inside the calibra-
tion convex hull averaged over all combinations of k inputs (x-axis). Each line corresponds to a cross-validation. Right panel: predicting 
pelagic fish biomass in the Gulf of Lions with 9 different inputs. Calibration and prediction data are depicted in the study area. Predictions 
falling inside the convex hull are interpolations (in blue), whereas predictions outside the convex hull are extrapolations (in yellow). The 
black dotted line materializes the Camargue Natura 2000 protected area.

Figure 5. Comparison of estimated regression coefficients bk for M2 and other models. The blue line is the regression slope (average 
shrinkage factor) between two sets of coefficients. Points falling in the grey area illustrate shrinkage compared to estimates from a model 
with independent priors.
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processes and model structure remains paramount (Leamer 
2012, Nichols et al. 2012). The pragmatic appeal of shrink-
age is how it deals with collinearity and overfitting even with 
many inputs, a common feature of current habitat models. 
It also provides accurate predictions and tighter CI around 
predictions (not shown) with only one model fit. We are 
next planning to perform a multi-year analysis of the dis-
tribution of small pelagic fish biomass in the Gulf of Lions 
(PELMED survey data) using model M3 as an instrument 
for estimating regression coefficients.
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