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ABSTRACT

Following some recent linear and nonlinear studies the authors examine, using numerical simulations of a
classical two-layer model, the effect of an asymmetric friction on the nonlinear equilibrium of moderately unstable
baroclinic systems. The results show that the presence of an asymmetric friction leads to a significant wave
scale selection: ‘‘long’’ waves (in terms of their zonal wavelengths) emerge with a traditional asymmetric friction
(with the upper layer less viscous than the lower layer), while only ‘‘short’’ waves dominate with a nontraditional
asymmetric friction (with the lower layer less viscous than the upper layer). The role of the nonlinear interactions
and, more precisely, the effects of an asymmetric friction on the wave–mean flow and wave–wave interactions
and their consequences on the wave scale selection are examined.

1. Introduction

Ekman friction usually provides a dissipative sink of
energy and potential vorticity of baroclinic waves. How-
ever, in some cases and, in particular, in the presence
of a viscous vertical asymmetry, friction can act as a
source of energy of baroclinic waves. Indeed, in those
cases asymmetric friction produces small alterations in
the structure of the waves and, in particular, an addi-
tional secondary circulation that can destabilize an oth-
erwise stable baroclinic flow regime. This mechanism,
first studied by Holopainen (1961) and interpreted as a
‘‘frictional instability,’’ was carefully examined by Ped-
losky (1983) and other authors.

Their results revealed that the asymmetric friction
effect is efficient mostly for the weakly unstable sys-
tems. This specific efficiency is, however, especially im-
portant for most geophysical baroclinic systems be-
cause, in the process of nonlinear equilibration of bar-
oclinic waves, the statistically equilibrated zonal flow
is usually found to be weakly supercritical according to
the linear theory. An illustration of the efficiency of
these effects on geostrophic turbulent systems is given
by the study of Hua and Haidvogel (1986) in which
their energy budget analysis well displays the dissipa-
tion terms of the baroclinic modes acting as an energy
source for these modes (see their Fig. 11). The relevance
of this destabilizing effect of asymmetric friction for
geophysical systems, in addition to the uncertainty about
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the Ekman friction magnitude and its degree of asym-
metry (Palmer et al. 1986; McFarlane 1987), has been
the motivation of the large number of linear and non-
linear studies devoted to this topic.

The linear studies have shown that the presence of
an asymmetric friction can lead to a wave scale selec-
tion: a traditional asymmetric friction (with the upper
layer less viscous than the lower layer) exerts an ad-
ditional destabilizing effect on short waves and a sta-
bilizing effect on long waves. The opposite is true for
a nontraditional asymmetric friction (with the upper
layer more viscous than the lower layer). Is this wave
scale selection damped or amplified by the nonlinear-
ities? The nonlinear studies have not been able to ad-
dress this question since they have considered baro-
clinic systems with only a narrow spectral waveband,
including up to three unstable short waves (Klein
1990). However, they have shown that an asymmetric
friction significantly affects the nonlinear equilibration
of weakly or moderately unstable systems. Conse-
quently, in this paper we reexamine the effects of an
asymmetric friction on the nonlinear equilibration of
baroclinic systems with a particular focus on the wave
scale selection. For that purpose, the baroclinic systems
considered involve a large spectral wave band includ-
ing both long and short waves.

A short review of the main results of the linear and
nonlinear studies is given in the next section. Section
3 describes the model used and the parameter setting
chosen in this study. The main results are discussed in
section 4 and their robustness is examined in section
5. Section 6 investigates some mechanisms involved
in the wave scale selection revealed by the nonlinear
results.
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2. A short review

a. Linear studies

Most of the studies devoted to the frictional desta-
bilization of baroclinic shear use the generic Phillips
(1954) model. It is a two-layer quasigeostrophic model
with a channel geometry on the b plane whose variables
and parameters are nondimensionalized by a scaling ve-
locity V and the width of the channel L (see Pedlosky
1987 for details). Let us define F as the Froude number,

Us 5 (U1 2 U2)/2 the uniform baroclinic shear intro-
duced as a forcing (with U1 and U2 the velocity in the
upper and lower layer), and r1/2 and r2/2 the dissipation
rates produced by upper and lower Ekman layers. For
the sake of simplicity, let us choose, by a Galilean trans-
formation, to have U1 5 2U2. If fB 5 (f1 1 f2)/2 and
fT 5 (f1 2 f2)/2 are the streamfunctions of, respec-
tively, the barotropic and baroclinic components of the
perturbated flow, the nondimensional governing poten-
tial vorticity equations can be written as

]Df ]f ]Df (r 1 r ) (r 2 r )B B T 1 2 1 21 J(f , Df ) 1 J(f , Df ) 5 2b 2 U 2 Df 2 Df (1)B B T T s B T]t ]x ]x 4 4
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where J is the Jacobian operator and D the Laplacian
operator. The boundary conditions are
f (0, y, t) 5 f (g, y, t),B,T B,T

g]f ] ]fB,T B,T5 0, dx 5 0 at y 5 0, 1,E]x ]t ]y0

with g the length of the channel nondimensionalized by
its width. Holopainen (1961), using a linearized version
of this model with both a b effect and an asymmetric
friction, first showed how a weak friction can destabilize
an otherwise subcritical baroclinic shear flow. The sub-
sequent studies revealed that what he called a ‘‘frictional
instability’’ actually involves two distinct destabilizing
processes. Indeed, Romea (1977) and Pedlosky (1981)
showed that a weak symmetric friction, when associated
with a b effect, is capable by itself of destabilizing the
long waves otherwise stabilized in the inviscid limit.
The additional destabilization provided by the specific
asymmetric character of the friction has been revealed
by later studies as Pedlosky (1983), Wang (1990), and
Weng and Barcilon (1991). This specific effect of an
asymmetric friction can be illustrated by considering a
very simple situation with no b effect in the weak vis-
cosity limit and at the marginal stability threshold for
the inviscid case (i.e., 2F 5 a2 with a the total wave-
number). In that situation the only linear terms to be
considered in Eqs. (1) and (2) are the ones underbraced.
Then a linear stability of the resulting equations, when
r1 1 r2 ø zr1 2 r2z K Usk and using f 5 Aeik(x2ct) with
c 5 cr 1 ici, leads to

1 zr 2 r zU1 2 sc ør !4 k

3 r 1 r 1 zr 2 r zU1 2 1 2 sc ø 2 1 .i !16 k 4 k

Thus in the weak viscosity limit, when the dissipation
timescale is much larger than the advective timescale,
the part of kci associated with the frictional destabili-
zation is larger than the damping rate due to the dis-
sipative effects. A physical explanation is that the fric-
tional asymmetry produces a vertical phase shift of the
wave large enough for this wave to be capable of re-
leasing the available potential energy of the baroclinic
shear flow at a rate larger than the dissipation rate.

In a more general situation, the linear studies of Wang
(1990) and Weng and Barcilon (1991) performed in the
weak viscosity limit have revealed the specific effects
of an asymmetric friction on the scale selection of the
unstable waves. Let us summarize their results. Presence
of an asymmetric friction leads to a destabilization of
the short waves. This is found with or without the b
effect. Furthermore, with the b effect and a westerly
shear, a traditional asymmetric dissipation produces an
additional destabilization of the short waves and tends
to stabilize the long waves. The opposite is found for
a nontraditional asymmetric dissipation with a westerly
shear. Finally the effects of traditional and nontradi-
tional asymmetric dissipation are interchanged for an
easterly shear. This is due to a symmetry property dis-
played by the potential vorticity equations (1) and (2)
in the b plane that indicates that a nontraditional asym-
metric friction associated with a westerly baroclinic
shear is equivalent to a traditional asymmetric friction
with an easterly baroclinic shear. Furthermore, as men-
tioned above, all the linear results emphasize that the
effects of an asymmetric friction and the resulting wave
scale selection are significant, mostly for the weakly
unstable systems. Indeed for moderately or strongly un-
stable baroclinic systems, that is, when the supercriti-
cality is O(1), no such significant wave scale selection
occurs since the large growth rates of the most unstable
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FIG. 1. Critical current shear (Uc) as a function of the zonal wavenumber (m) with (a) n 5 1 and (b) n
5 2 when the spectral representation (4) is used. Long-dashed, solid, and short-dashed lines respectively
refer to symmetric (r1 5 r2), traditional (r1 5 0.2r2), and nontraditional (r1 5 5r2) asymmetric dissipation.
Other parameters are F 5 27.6, b 5 31.4, and r̄/2 5 (r1 1 r2)/4 5 0.1.

FIG. 2. Growth rate of the baroclinic waves as a function of their zonal wavenumber (m) with (a) n 5 1 and (b) n 5 2 when Us 5 0.56.
Long-dashed, solid, and short-dashed lines respectively refer to symmetric (r1 5 r2), traditional (r1 5 0.2r2), and nontraditional (r1 5 5r2)
asymmetric dissipation. Other parameters are F 5 27.6, b 5 31.4, and r̄/2 5 (r1 1 r2)/4 5 0.1.

waves are almost unaffected by the presence of an asym-
metric friction.

The important effects of an asymmetric friction are
illustrated by Figs. 1 and 2 that show results from a
linear stability analysis for baroclinic systems with char-
acteristics close to the ones considered in this study.
Figure 1 displays the critical shear required for baro-
clinic instability for three dissipative cases. It reveals
the destabilizing effects on short waves (in terms of their
total wavenumber) induced by an asymmetric friction:
the short-wave cutoff in the presence of a viscous asym-
metry has a larger value than in the symmetric case.
Furthermore, the long waves are stabilized (destabi-
lized) by a traditional (nontraditional) asymmetric fric-
tion. Lastly, the minimum critical shear is significantly
reduced with a traditional asymmetry. Let us stress again
that this is the combined effect of the frictional asym-

metry and b, which makes the baroclinic system to be
affected by the sense of the asymmetry. Figure 2 reveals
that for a weakly unstable system (Us ø Uc) the scales
and growth rates of the most unstable waves strongly
depend on the presence and the sense of an asymmetric
friction. Note that this wave scale selection for weakly
unstable systems is increased by the discrete character
of the waveband spectrum. On the other hand, for a
moderately unstable system (Us k Uc), Fig. 3 clearly
shows that the growth rates of the most unstable waves
are unaffected by an asymmetric friction.

b. Nonlinear studies

The specific effects of an asymmetric friction on the
nonlinear equilibration of baroclinic waves was first
studied by Pedlosky (1983) in the weak viscosity limit.
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FIG. 3. As in Fig. 2 but when Us 5 0.95.

He used the Phillips model on the f plane to study the
finite-amplitude dynamics of a weakly unstable baro-
clinic wave. In the absence of an Ekman dissipation in
the upper layer, the nonlinear equilibration displays
three distinct stages: First, the unstable baroclinic wave
grows exponentially up to a vacillating finite amplitude
state. Then, under the destabilizing influence of friction
the amplitude of the vacillating wave slowly increases
with time. During this intermediate stage there is a com-
petition between the destabilizing influence of friction
and the stabilizing effects of the nonlinearities. After a
considerably longer time, the dissipative role of the fric-
tion becomes manifest. During this last stage the wave
amplitude slowly diminishes and finally vanishes com-
pletely. The final state is wave free but the mean field
displays a new zonal flow of lowered available potential
energy. When considering the equation for the mean
flow correction, Pedlosky argues that this result should
hold even with b since there is no dissipative sink for
the potential vorticity in the upper layer.

The robustness of this result was checked and ex-
tended by Chou and Loesch (1986a) in the context of
the Eady model in the f plane with the upper boundary
being stress free. They showed that Pedlosky’s (1983)
result is robust in a large region of the dissipation–
supercriticality parameter space. In another paper, Chou
and Loesch (1986b) explored the nonlinear equilibration
in the presence of an asymmetric friction by varying
the degree of asymmetry, a 5 (r1 2 r2)/(r1 1 r2). With
a symmetric friction (a 5 0) the wave grows and then
always reaches a steady equilibrated state. The nonlinear
equilibration is quite different with the presence of a
frictional asymmetry (0 , zaz , 1): the first stage is
very close to the one found with a free surface, dis-
playing a single hump followed by a nearly wave-free
state. However, during the nearly wave-free state the
mean field gradually builds up because of the nonzero
(although small) dissipation in the upper boundary,
which then leads to an abrupt second growth of the

wave. This leads to a final stage consisting of a chaotic
or regular vacillating state. The amplitude of the chaotic
vacillations are found to be all the more significant as
the degree of asymmetry is high and the ratio of the
mean dissipation to the supercriticality is small. These
results reveal the strong competition between the de-
stabilizing effects of friction and the nonlinear inter-
actions that occurs even for O(1) supercriticality. It is
interesting to note that, although their system involved
only one unstable baroclinic wave, Chou and Loesch
found a significant sensitivity of their results to the spec-
tral truncation when the asymmetry is high, which dis-
plays the importance of the wave–mean flow and wave–
wave interactions involving stable modes.

The nonlinear equilibration of three unstable baro-
clinic waves was studied by Mak (1987) using a two-
layer b-plane model. His study confirms that, with a
nonzero b effect, not only the presence of a viscous
asymmetry but also the sense of this asymmetry strongly
influences the character of the nonlinear equilibration.
With a traditional asymmetric friction the equilibrated
state tends to be a steady multiple-wave field. With a
nontraditional asymmetric friction the equilibrated state
takes the form of a triad limit cycle that becomes un-
stable and leads to chaos as the degree of frictional
asymmetry is increased. Only one traditional asym-
metric case was examined. However, the large number
of simulations performed in the symmetric and non-
traditional asymmetric cases clearly displays the strong
effect of an asymmetric friction on the nonlinear equil-
ibration and, in particular, on the appearance of chaotic
vacillations. This again reveals the competition between
the destabilizing effects of the friction and the nonlinear
interactions. However, as in the preceding studies, the
spectral wave band considered (with only three unstable
short waves) is small.

One interesting feature rationalized by Pedlosky
(1983) and discussed by Mak (1987) is the existence of
a barotropic zonal jet induced by the presence of unequal
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Ekman pumping at the horizontal boundaries. This bar-
otropic jet can be understood by considering the steady
form of the potential vorticity equation for the baro-
tropic part of the mean zonal flow correction. Indeed,
for weakly unstable systems involving only one wave,
the nonlinear term related to the Reynolds flux is iden-
tically zero and this equation [deduced from (1)] in its
steady form leads to

2 2] F r 2 r ] FB 1 2 T5 2 (3)
2 2]y r 1 r ]y1 2

with FB and FT respectively the barotropic and baro-
clinic part of the mean flow correction. Since, when Us

. 0, the baroclinic part of the mean flow correction is
westward, a traditional (nontraditional) asymmetric fric-
tion induces a westward (eastward) barotropic zonal jet.
This result has been found by Mak (1987) to still hold
in the b plane for baroclinic systems with an O(1) su-
percriticality involving several unstable waves, which
means that the Reynolds stress flux induced by the
wave–wave interactions is still very small for those sys-
tems whose basic state has no meridional shear.

No study has specifically examined the effects of an
asymmetric friction on the nonlinear equilibrium of re-
alistic atmospheric or oceanic flows. However, within
the context of our study, it is worthwhile to mention
some particular results found in Hua and Haidvogel
(1986), Cai and Mak (1990b), Cehelsky and Tung
(1991), and Whitaker and Barcilon (1995). Hua and
Haidvogel (1986) examined some properties of the strat-
ified quasigeostrophic turbulence using a three-dimen-
sional spectral model with oceanic parameters and a
stress-free upper boundary. Their energy budget clearly
shows that the main energy source of the baroclinic
modes of the dominant waves is the baroclinic insta-
bility generation term and the bottom friction term (with
the same order of magnitude). These terms are balanced
by the nonlinear terms. The barotropic mode is balanced
between the nonlinear terms (acting as a source) and
the bottom friction term. However, no partition of the
nonlinear terms in wave–wave and wave–mean flow
interactions has been done. Cai and Mak (1990b) using
the Phillips model with a symmetric dissipation con-
cluded that the dominant low-frequency atmospheric
waves are maintained primarily by the wave–wave in-
teractions involving the synoptic-scale waves. On the
other hand, in the studies of Cehelsky and Tung (1991)
and Whitaker and Barcilon (1995) that use a two-layer
quasigeostrophic model with a traditional asymmetric
friction and a forcing that relaxes to a zonal atmospheric
jet baroclinically unstable, it is found that the low-fre-
quency variability draws its energy mainly from the
wave–mean flow interactions.

3. The present study

The model we have used is the generic Phillips model
briefly described in section 2. One important difference

of this study from other similar nonlinear studies is the
length of the channel that is here large enough for both
short waves and long waves (in terms of their zonal
wavelengths with respect to the internal Rossby radius
of deformation) to be potentially involved in the dy-
namics of the system. Thus, the nondimensional ge-
ometry of the channel considered is 0 # x # g and 0
# y # 1 with g 5 4 instead of g 5 2 in the other
studies. Since the channel is periodic in x, g is the period
of the channel, that is, the largest zonal wavelength. So
the comparison of our results with the other nonlinear
studies allows us to better understand the effects of an
asymmetric friction on the wave scale selection and the
upscale energy transfer.

The parameter setting considered in this study is close
to the one used by Mak (1985, 1987). The values are
F 5 27.6, b 5 31.4, r̄/2 5 (r1 1 r2)/4 5 0.1, and Us

5 U1 5 2U2 ranging from 0.56 to 1.27. The minimum
critical current shear Uc is 0.53, 0.41, and 0.55 respec-
tively for the symmetric, traditional and nontraditional
asymmetric cases. So the chosen Us values correspond
to a supercriticality [defined as D 5 (Us 2 Uc)/Uc] rang-
ing from 0.018 to 2.1. Thus, the baroclinic systems con-
sidered correspond to weakly (D K 1) to moderately
[D 5 O(1)] unstable systems. Motivation of that choice
is that nonlinearities are much simpler to explore and
to understand when the supercriticality is not too large.
Note that we have chosen to use Us as an independent
forcing parameter instead of the supercriticality since
the critical shear Uc significantly depends on the degree
of frictional asymmetry (see Fig. 1). The mean dissi-
pation rate (r̄/2) is lower than the values used by Mak
(1987), and the degree of asymmetry, defined as a 5
(r1 2 r2)/(r1 1 r2), has a large magnitude when the
dissipation is asymmetric: it is 20.6666 and 0.6666 re-
spectively for traditional (r1 5 0.2r2) and nontraditional
(r1 5 5r2) asymmetric friction. This choice is based on
the findings of previous studies and in particular that of
Chou and Loesch (1986b), which showed that the effects
of a viscous asymmetry on the nonlinear interactions
are better displayed when the mean dissipation rate is
low and the degree of asymmetry is large. However, the
sensitivity of the results to the mean dissipation rate and
to the degree of the asymmetry will be examined.

The spectral numerical method used to integrate Eqs.
(1) and (2) is the one described in Klein and Pedlosky
(1986). It is based on an appropriate spectral represen-
tation of the streamfunctions fB and fT that satisfies the
boundary conditions

imkxf 5 A e sin(npy) 1 A cos(ppy), (4)O O Omn op
m n p

with k 5 2p/g, Amn 5 , zmz # M with m ± 0, 1 #A*2mn

n # N, and 1 # p # NM. An asterisk denotes complex
conjugation. Here Amn and Aop designate the Fourier
components of the wave field and of the mean flow
correction respectively. The spectral truncation used for
most simulations is M 5 N 5 NM 5 16 or M 5 N 5
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TABLE 1. Nonlinear equilibria obtained with r̄/2 5 0.1 when the wave–wave interactions are suppressed. Here, S, P, and C respectively
refer to steady, periodic and chaotic states; (m, n) refers to the waves [identified by their zonal (m) and meridional (n) wavenumbers] whose
amplitudes (zAmnz) dominate the nonlinear equilibria.

US

0.56 0.63 0.79 0.95 1.27

Symmetric dissipation
(a 5 0)

S
(3, 1)

S
(3, 1)

S
(3, 1)

S
(3, 1)

S
(3, 1)

Nontraditional asymmetric dissipation
(a 5 0.6666)

S
(3, 1)

P
(3, 1)

P
(3, 1)

C
(3, 1)
(2, 1)

Traditional asymmetric dissipation
(a 5 20.6666)

S
(1, 2)(4, 1)

S
(1, 2)
(3, 1)

S
(1, 2)
(3, 1)

S
(1, 2)
(3, 1)

C
(1, 2)(3, 1)
(2, 1)(2, 2)

NM 5 32. Main results have been checked with a spec-
tral truncation corresponding to M 5 N 5 NM 5 50.
Sensitivity of the results to the higher-order stable
modes is discussed in section 4c. In the following, waves
are identified by their zonal and meridional wave-
numbers (m, n). For instance, (1, 2) is a wave with a
long zonal wavelength and a meridional structure that
is a dipole, whereas (3, 1) is a wave with a short zonal
wavelength and a large meridional extension.

A linear stability analysis for r̄/2 5 0.1 and Us ranging
from 0.56 to 1.27 has been performed. When Us 5 0.56
(i.e., for a weakly unstable system), (3, 1) is the most
unstable wave in the symmetric and nontraditional
asymmetric cases whereas in the traditional asymmetric
case (1, 2) is the most unstable wave (see Fig. 2). How-
ever, for Us ranging from 0.63 to 1.27, the results (not
shown) do not reveal any significant differences due to
the asymmetry: The wave (3, 1) is the most unstable
one (see Fig. 3 for Us 5 0.95). Thus, for most of the
Us value considered, the presence and the sense of an
asymmetric friction has no effect on the most linearly
unstable waves. It has an effect (leading in particular
to a wave scale selection) only for one Us value (Us 5
0.56) corresponding to a weakly unstable baroclinic sys-
tem.

4. Nonlinear results

Several numerical simulations have been performed
with Us varying between 0.56 and 1.27 and the mean
dissipation rate held constant (r̄/2 5 0.1, which corre-
sponds to an e-folding time of 10 nondimensional time
units) as a guideline. Although the linear stability anal-
ysis does not display any significant differences due to
the presence of a viscous asymmetry for Us $ 0.63, the
nonlinear results do reveal that the presence and sense
of the viscous asymmetry has a significant influence on
the nonlinear equilibria and, in particular, induces a
strong wave scale selection. This implies a significant
effect of an asymmetric friction on the nonlinear inter-
actions, that is, the wave–wave and wave–mean flow
interactions.

The fully nonlinear simulations have revealed that

with a nonzero frictional asymmetry the nonlinear equi-
libria are mostly dominated by one wave, which means
that the wave–wave interactions are quite weak. So, in
order to determine the respective role of the wave–mean
flow and wave–wave interactions in the setup of these
equilibria, we have performed another series of simu-
lations with the wave–wave interactions suppressed to
compare with the fully nonlinear simulations. This se-
ries of simulations clearly shows that the wave–mean
flow interactions alone are able to significantly induce
this wave scale selection. Then, in order to better em-
phasize the respective role of the wave–mean flow and
the wave–wave interactions, results with the wave–wave
interactions suppressed are first presented in the next
section. The nonlinear equilibrations are described in
terms of the characteristics of the spatial and temporal
structures of the total streamfunction and in particular
of the dominant waves. The temporal evolution is char-
acterized by the index of vacillation (defined as the ratio
of the maximum amplitude variation to the mean am-
plitude) and the frequency spectrum of the dominant
waves. When the index of vacillation is larger than 0.2,
the temporal evolution is labeled as periodic or chaotic,
depending on whether the frequency spectrum is dis-
crete or continuous. Otherwise, the temporal evolution
is labeled as steady or quasisteady (when affected by
weak oscillations). In most of the simulations these non-
linear equilibria are attained after an intermediate stage
of about 250 nondimensional time units, which is quite
large compared to the dissipation timescale (ø 10 time
units).

a. With wave–mean flow interactions only

The Jacobian terms in (1) and (2), have the form

J(a, b) 5 J(a9, ) 1 J(ā, b9) 1 J(a9, b9),b̄ (5)

where ā denotes the zonal mean and a9 5 a 2 ā. Thus,
J(a9, b9) represents the wave–wave interactions and J(a,
b) 2 J(a9, b9) the wave–mean flow interactions. Results
reported in this section concern simulations performed
with J(a9, b9) 5 0 and are summarized in Table 1. The
most important feature that comes out is the strong wave
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TABLE 2. Same as Table 1 but when both the wave–mean flow and wave–wave interactions are included. Here, QS refers to a quasi-
steady state.

US

0.56 0.63 0.79 0.95 1.27

Symmetric dissipation
(a 5 0)

S
(1, 2)

P
(1, 2)

(4, 1)(3, 1)

QS
(3, 1)

(2, 2) (1, 1)

QS
(3, 1)

(2, 2)(1, 1)

C
(3, 1)(1, 1)(2, 2)
(2, 1)(1, 2)(4, 1)

Nontraditional asymmetric dissipation
(a 5 0.6666)

P
(3, 1)

P
(3, 1)

C
(3, 1)

C
(3, 1)

Traditional asymmetric dissipation
(a 5 20.6666)

QS
(1, 2)
(4, 1)

QS
(1, 2)

QS
(1, 2)

QS
(1, 2)

C
(1, 1)(3, 1)(2, 2)

(1, 2)(2, 1)

scale selection induced by the sense of the asymmetric
friction.

In the symmetric and nontraditional asymmetric cases
the most linearly unstable wave (3, 1) is the one that
dominates all the nonlinear equilibria. For most Us val-
ues, the nontraditional frictional asymmetry makes the
(3, 1) amplitude small and its time behavior destabilized.
The nonlinear equilibria that emerge when the sense of
the asymmetry is reversed, that is, in the traditional
asymmetric case, completely differ from the previous
ones: the spectral band of the dominant waves is larger
and mostly the wave (1, 2), that is, with the longest
zonal wavelength, dominates all the nonlinear equilib-
ria. For Us 5 0.56, waves (1, 2) and (4, 1) have almost
an equal amplitude, but for 0.63 # Us # 0.95, (1, 2)
has an amplitude at least twice as large as (3, 1). For
Us 5 1.27, the spectral band of the emerging waves is
larger but (1, 2) still dominates.

It is important to stress that in the three dissipative
cases the correction of the mean zonal flow, well dom-
inated by its first spectral component, is such that the
total baroclinic shear at the middle of the channel is
almost equal to the critical shear. Furthermore, the pres-
ence of a nonzero frictional asymmetry induces a sig-
nificant barotropic zonal jet whose amplitude satisfies
(3), which confirms the findings of Pedlosky (1983) and
Mak (1987).

b. With the wave–wave interactions included

The nonlinear equilibrations obtained with the full
nonlinear interactions taken into account are summa-
rized in Table 2. We have found that in the three dis-
sipative cases the mean flow correction has again its
baroclinic part dominated by the first spectral compo-
nent and the total baroclinic shear at the middle of the
channel is slightly larger than the critical value. Fur-
thermore, the asymmetric cases are again characterized
by the presence of a significant barotropic zonal jet
whose amplitude almost satisfies (3). Comparison of
Table 2 with Table 1 gives some information about the
effects of the wave–wave interactions in each dissipative
case.

1) THE SYMMETRIC CASE

The larger spectral band of the dominant waves dis-
played in Table 2 (compared with Table 1) emphasizes
the role of the wave–wave interactions in the upscale
energy transfer. Let us examine how these wave–wave
interactions work.

When Us # 0.63, the wave–wave interactions make
the wave (1, 2) become dominant. We have found that
this wave is selected mainly by the triads {(3, 1), (2,
1), (1, 2)} and {(5, 1), (4, 1), (1, 2)} that work only
during an intermediate stage when Us 5 0.56 and that
alternately resonate at equilibrium when Us 5 0.63 (a
triad is resonant when the sum of the phases of the three
wave modes is time independent). For Us ranging from
0.79 to 1.27, the wave–wave interactions mostly con-
cern the triad {(3, 1), (2, 2), (1, 1)}, which makes the
waves (2, 2) and (1, 1) emerge significantly with wave
(1, 1) having a very strong barotropic structure: the ratio
of its barotropic amplitude to its baroclinic amplitude
is equal to 5 instead of 2 as for the other waves. For
Us 5 0.95, this triad is almost permanently resonant
(Fig. 4a), which in addition to the quasi-steady state of
the wave amplitudes (Fig. 5) indicates that the energy
transfer among the waves and between the waves and
the mean flow is quasi steady. When Us 5 1.27, this
triad is intermittently resonant (Fig. 4b), which in ad-
dition to the high-frequency fluctuations of the wave
amplitudes (Fig. 6) indicates that the energy transfer
among the waves is strongly time varying. However,
the energy transfer between the waves and the mean
flow is almost constant since the mean flow evolution
is quasi steady (Fig. 6). These features have been con-
firmed by an energy budget analysis (Rivière 1995). An
illustration of the flow regimes obtained in these non-
linear equilibria is shown in Fig. 7. It corresponds to a
circulation with a strong zonal flow perturbed by en-
ergetic short waves and weaker longer waves.

2) THE NONTRADITIONAL ASYMMETRIC CASE

The remarkable characteristics of the results in this
case is that the nonlinear equilibria are almost close to
the ones obtained when the wave–wave interactions are
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FIG. 4. Probability density function (pdf) of the spatial phase re-
lationship of the triad {(3, 1), (2, 2), (1, 1)} [wtot 5 1 1T Tw w31 22

, with the phase of the barotropic (B) or the baroclinic partB B,Tw w11 mn

(T) of the wave (m, n)] when (a) Us 5 0.95 and (b) Us 5 1.27 in the
symmetric case. The strong bimodal structure displayed in (b) is the
signature of the significant high-frequency fluctuations that affect wtot

when Us 5 1.27.

suppressed (cf. Tables 1 and 2); (3, 1) is the only wave
to emerge for all Us values. Thus, the effects of the
wave–wave interactions in terms of energy transfer be-
tween the waves appear to be strongly inhibited. We
have found, however, a very weak activation of these
wave–wave interactions, which makes the time evolu-

tion of the wave (3, 1) become destabilized. When Us

5 1.27, the wave–wave interactions act to remove en-
ergy from wave (2, 1) [that was present when J(a9, b9)
5 0] to the benefit of (3, 1). One particular feature
revealed by the equilibrium for this large Us value is
the intermittent appearance of wave (1, 1) characterized
by very small peaks (Fig. 8). This is due to the triad
{(1, 1), (3, 1), (2, 2)}, which is resonant only during a
short period when the (3, 1) amplitude attains a large
value. So even for this large Us value the wave–wave
interactions appear to be unable to efficiently transfer
energy among the waves. In Fig. 9, the flow regime in
this dissipative case is characterized by a zonal flow that
is stronger than in the symmetric case.

3) THE TRADITIONAL ASYMMETRIC CASE

Completely different nonlinear equilibria are obtained
in this dissipative case. For Us ranging from 0.56 to 0.95
(Table 2), they are characterized by the emergence of a
single wave with the longest zonal wavelength: (1, 2)
(see Fig. 10). An energy budget analysis performed in
the intermediate stage has confirmed the important role
of the wave–mean flow interactions in the wave scale
selection and the specific action of the wave–wave in-
teractions in the reinforcement of this scale selection
(Rivière 1995). This reinforcement is well revealed by
the comparison of Table 2 with Table 1, which shows
that the presence of the wave–wave interactions make
the wave (4, 1) decrease (by a factor of 2) when Us 5
0.56, while they reduce (3, 1) amplitude (by a factor of
6) for other Us values. Furthermore, the (1, 2) amplitude
is slightly increased (by a factor of 1.2). So, with a
traditional frictional asymmetry, the wave–wave inter-
actions strongly promote the emergence of the long (in
terms of its zonal wavelength) wave (1, 2) at the expense
of the short waves (3, 1) and (4, 1). These wave–wave
interactions are most efficient during an intermediate
stage so that, at the equilibrium, (1, 2) is the only wave
present. Figure 11 shows an illustration of the flow re-
gime obtained in this dissipative case; the pattern does
not look like a zonal regime but is more like a blocking
regime.

When Us 5 1.27, the nonlinear equilibration is char-
acterized by a large spectral wave band and a chaotic
time evolution. For this forcing the role of the wave–
wave interactions appears to be similar, although their
effects are not so pronounced; their presence decreases
the (3, 1) amplitude by a factor of 1.5 and wave (1, 1)
becomes dominant. The wave (1, 2) amplitude is, how-
ever, slightly reduced. We have found that the triad {(1,
1), (3, 1), (2, 2)} is resonant and drives the energy
transfer to (1, 1).

c. Discussion

With only the wave–mean flow interactions included,
the presence and sense of an asymmetric friction induces



1618 VOLUME 54J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 5. (a) Time mean (averaged over 1000 time units) barotropic amplitude spectrum of the wave field when Us 5 0.95 in the symmetric
case. Labels on the horizontal axis refer to the zonal wavenumber. Meridional wavenumber varies from 1 to 16 between two successive
values of the zonal wavenumber. Dominant waves are indicated. (b) Time evolution of the modulus of the barotropic amplitude of the
dominant waves (m, n)B, and of the baroclinic (0, 1)T and barotropic (0, 1)B amplitude of the mean flow correction.
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FIG. 6. As in Fig. 5 but when Us 5 1.27.
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FIG. 7. Snapshot of the upper level total streamfunction at t 5 1200 when Us 5 0.95 in the symmetric case.

a strong wave scale selection. While only one wave
emerges in the symmetric case, several waves emerge
in the traditional asymmetric case (for all Us values) and
in the nontraditional case (for Us 5 1.27). The main
noteworthy feature is observed with a traditional asym-
metric friction: the dominant wave has a much longer
zonal wavelength than in the other frictional cases. It
is interesting to note that in this asymmetric case this
wave, which is only the third and the fifth most linearly
unstable wave for Us 5 0.79 and Us 5 0.95 respectively,
is the first most unstable one when Us 5 0.56, that is,
when the system is weakly unstable (see Fig. 2). Let us
stress again that in the three dissipative cases the cor-
rection of the mean zonal flow is such that the total
baroclinic shear at the middle of the channel is almost
equal to the critical shear.

Inclusion of the wave–wave interactions strongly in-
creases the differences between the three dissipative
cases and, in particular, reinforces the wave scale se-
lection. In the symmetric case the wave–wave interac-
tions enlarge the spectral band of the dominant waves
(with both long and short zonal wavelengths). This re-
sult particularly emphasizes their classic role in upscale
energy transfer. In the traditional asymmetric case the
wave–wave interactions reduce the spectral wave band
of the dominant waves when supercriticality is not too
large. In that case they appear to induce a pronounced
unidirectional energy transfer from the short unstable
waves to the longer waves: the long wave (1, 2), mainly
selected by the wave–mean flow interactions, is rein-
forced by the wave–wave interactions. In the nontra-
ditional asymmetric case, the effects of the wave–wave
interactions, in terms of energy transfer among the
waves and, in particular, in the upscale energy transfer,
are strongly inhibited.

We have examined the sensitivity of these nonlinear
equilibria to the numerical resolution. Simulations per-
formed with M 5 N 5 NM $ 16 produce the same

results. When M, N, NM , 16, some differences appear
that emphasize the sensitivity of the nonlinear equilibria
to the higher-order harmonics and in particular to the
meridional harmonics. For example, whereas the equi-
librium obtained with M 5 3, N 5 7, NM 5 15 in the
traditional asymmetric case (with Us 5 0.95) does not
differ much from the one with a high resolution, the
equilibrium obtained with M 5 N 5 3, NM 5 15 dis-
plays a large spectral wave band including (1, 2) and
(2, 2) with the same amplitude and (3, 1) and (1, 1)
with an amplitude only two times smaller (Rivière
1995). Thus, the meridional harmonics have a signifi-
cant impact on the wave–wave interactions. This impact
of the higher-order harmonics seems to be related to the
aspect ratio of the channel. Indeed, when the channel
zonal length is smaller, using for example g 5 2 (such
that only short waves can develop), we have found that
the higher-order harmonics of the dominant waves have
no effect on the nonlinear equilibrium, which well con-
firms Mak’s (1987) results. This means that, when the
system allows the emergence of both short and long
waves (in terms of their zonal wavelength), the role of
the higher-order harmonics of the dominant waves and,
in particular, of the meridional harmonics becomes im-
portant for the energy transfer between these waves.

Thus it is clear, at least for the parameter setting cho-
sen in this study, that the presence and the sense of a
frictional asymmetry significantly affect the nonlinear
interactions, which leads to a significant wave scale se-
lection that affects both the wave scales and the number
of the dominant waves that emerge in the equilibrium.

5. Sensitivity to the mean dissipation rate and to
the degree of asymmetry

a. Sensitivity to the mean dissipation rate

The results presented so far have been obtained with
the parameter r̄/2 held constant as a guideline. Addi-
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FIG. 8. As in Fig. 5 but when Us 5 1.27 in the nontraditional asymmetric case.
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FIG. 9. Snapshot of the upper level total streamfunction at t 5 1200 when Us 5 0.95 in the nontraditional asymmetric case.

FIG. 10. As in Fig. 5 but when Us 5 0.95 in the traditional asymmetric case.

tional numerical simulations have been performed to
examine their robustness with Us 5 0.95 and r̄/2 vary-
ing. The degrees of asymmetry considered are the same
as before. The results displayed in Table 3 are quali-
tatively close to the ones obtained with Us 5 0.95 and
r̄/2 5 0.1, which means that the results obtained pre-

viously are robust when the mean dissipation rate r̄/2
is changed.

The main new result concerns the traditional asym-
metric case for which a large mean dissipation (r̄/2 5
0.35) appears to strongly activate some specific wave–
wave interactions. Indeed, the corresponding equilib-
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TABLE 3. Same as Table 2 but with US 5 0.95 and r̄/2 varying.

r̄/2

0.02 0.07 0.1 0.14 0.21 0.35

Symmetric dissipation
(a 5 0)

C
(3, 1)(4, 1)
(1, 1)(1, 2)

P
(3, 1)(4, 1)
(1, 1)(1, 2)

QS
(3, 1)

(2, 2)(1, 1)

S
(3, 1)

(2, 2)(1, 1)

S
(3, 1)

(2, 2)(1, 1)

S
(3, 1)

Nontraditional asymmetric dissipation
(a 5 0.6666)

C
(3, 1)

(2, 2)(1, 1)

C
(3, 1)

C
(3, 1)

C
(3, 1)

C
(3, 1)

C
(3, 1)

Traditional asymmetric dissipation
(a 5 20.6666)

QS
(1, 2)

QS
(1, 2)

QS
(1, 2)

QS
(1, 2)

QS
(1, 2)

C
(2, 2)(3, 1)
(1, 1)(1, 2)

TABLE 4. Same as Table 2 but with US 5 0.95, r̄/2 5 0.1, and the degree of asymmetry a 5 (r1 2 r2)/(r1 1 r2) varying.

a

21 20.9355 20.6666 20.5 20.2

Traditional asymmetric dissipation zonal
flow

C
(1, 2)(2, 2)

QS
(1, 2)

C
(3, 1)

(2, 2)(1, 1)

QS
(3, 1)

(2, 2)(1, 1)

a

0.2 0.5 0.6666 0.9355 1

Nontraditional asymmetric dissipation

QS
(3, 1)

(2, 2)(1, 1)
C

(3, 1)
C

(3, 1)
C

(3, 1)
zonal
flow

rium, quite different from the ones obtained with smaller
r̄/2 values, looks similar to those observed in the sym-
metric case for smaller dissipation values. Clearly there
is a bifurcation point for an r̄/2 value between 0.21 and
0.35 that makes the wave–wave interactions and, in par-
ticular, the triad {(3, 1), (2, 2), (1, 1)} strongly activated.
On the other hand, variation of the mean dissipation rate
in the symmetric case nicely emphasizes the classic role
of the friction on the wave–wave interactions; this ac-
tivity (revealed by the destabilization of the time be-
havior and the amplitude of the long waves relative to
the short ones) is enhanced when the dissipation is re-
duced while the opposite tendency is observed when
the mean dissipation rate is increased. In the nontrad-
itional case the nonlinear equilibria are almost insen-
sitive to the variation of r̄/2. Only for r̄/2 5 0.02 does
a weak activity of the triad {(3, 1), (2, 2), (1, 1)} make
waves (2, 2) and (1, 1) emerge [with amplitudes re-
spectively 3 and 6.5 times smaller than (3, 1) amplitude].

b. Sensitivity to the degree of asymmetry

Sensitivity of the characteristics of the nonlinear equi-
libria to the degree of the asymmetry has been examined
with Us 5 0.95 and r̄/2 5 0.1. The results (Table 4)
mostly reveal that a large degree of asymmetry is re-
quired for a frictional asymmetry to significantly affect
the nonlinear equilibrium of a baroclinic system.

In the traditional asymmetric case, the characteristics
of the equilibrium resemble the ones of the symmetric

case when the asymmetry is reduced: when a $ 20.5,
the triad {(3, 1), (2, 2), (1, 1)} is strongly activated.
The wave (1, 2) amplitude is five times smaller than (3,
1) for a 5 20.5 and negligible for a 5 20.2. When
the asymmetry is large (i.e., for a , 20.6666), wave
(1, 2) is the dominant one, although its amplitude de-
creases as the asymmetry increases. In the nontraditional
asymmetric case the results found for a 5 0.6666 are
robust for a much larger range of the degree of asym-
metry. Only for a 5 0.2 does the equilibrium differ and
is now close to the one observed in the symmetric case
with waves (3, 1), (2, 2), and (1, 1) dominating and the
time behavior being quasi steady. Note that the results
in the nontraditional asymmetric case follow the ones
reported by Mak (1987): chaotic behavior is observed
only when the asymmetry becomes large.

In all simulations, we have found again that the mean
flow correction involves a nonzero barotropic part that
satisfies the relation (3). Lastly, it is interesting to note
that with a stress-free upper or lower boundary (a 5
61) the equilibrium is almost a wave-free state. This
reveals that the results of Pedlosky (1983) and Chou
and Loesch (1986b) about the nonlinear equilibration
of a baroclinic system with a stress-free upper boundary
are still robust for a moderately unstable system in the
b plane. Using the argument of Pedlosky (1983) and
that our equilibria (with zaz , 1) usually involve only
one wave, this result is understandable; for example,
when a 5 21, there is no mean potential vorticity dis-
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FIG. 11. Snapshot of the upper level total streamfunction at t 5 1200 when Us 5 0.95 in the traditional asymmetric case.

sipative sink in the upper layer to absorb the wave flux
of potential vorticity. The only solution is for this flux
to be zero; that is, since there is only one wave, the
wave amplitude has to be zero.

6. Wave scale selection

The preceding numerical results have revealed how
a frictional asymmetry affects wave–wave interactions
leading to a reinforcement of the wave scale selection.
However, they clearly show that this strong wave scale
selection is primarily determined by the wave–mean
flow interactions. This holds in particular for baroclinic
systems with moderate supercriticality whose linear sta-
bility analysis does not display any significant effects
due to a viscous asymmetry. We have anticipated this
result in the introduction, using the argument that, in
the process of the nonlinear equilibration, the total zonal
flow becomes weakly supercritical. Therefore results
about the effects of an asymmetric friction on weakly
unstable linear systems should apply. We examine in
this section the validity of this argument and, more pre-
cisely, what characteristics of the equilibrated zonal flow
make it weakly unstable enough for the effects of a
traditional asymmetric friction to be significant, leading
to a wave scale selection.

For that purpose, we choose to analyze the mean-flow
characteristics from a simulation performed with the
wave–wave interactions suppressed and characterized
by a moderate supercriticality and low dissipation rate
(Us 5 0.95 and r̄/2 5 0.1). In this simulation the total
mean flow (i.e., the total zonal flow) at equilibrium is
quasi neutral. So we have chosen to analyze the mean-
flow characteristics during the transitory period when
the selected (1, 2) wave monotonically grows. This tran-
sitory period lasts for more than 200 time units. During
this period the main features of the total mean flow do
not differ much from the ones at equilibrium (Rivière

1995). This total mean flow is equal to the basic flow
(Us) plus the mean flow correction [ū(y)], which varies
latitudinally. The mean flow correction is characterized
by three main features as revealed by its amplitude spec-
trum (Fig. 12): (i) the amplitude of the first spectral
component of the baroclinic part, which is 15 times
larger than the next larger component; (ii) the presence
of a significant barotropic part, again dominated by the
first spectral component; and (iii) the higher-order me-
ridional structure of the mean flow correction, which,
although small, may influence the stability of the sys-
tem.

A linear stability analysis of this total mean flow, Us

1 ū(y), has been carried out. It is a normal-mode anal-
ysis performed from Eqs. (1) and (2) linearized around
this total mean flow. The method used is the same as
the one described in Cai and Mak (1990a). For this total
mean flow the normal mode analysis displays only one
unstable mode (Fig. 13) dominated by wave (1, 2). Its
growth rate is small (s 5 0.01). This confirms the slow
growth revealed by the nonlinear results during the tran-
sitory period. Furthermore, this growth rate value is an
index of the weak supercriticality of the total mean flow
since it is much smaller than the ones found in the linear
stability analysis of section 3 for a small supercriticality
(see Fig. 2). Note again that, with the basic flow alone
(Us 5 0.95), the baroclinic system in this asymmetric
case is unstable with wave (3, 1) as the most unstable
one with a large growth rate (s 5 1.72). So the ap-
pearance of the mode dominated by (1, 2) as the most
unstable wave with a small growth rate is due to the
nonzero mean flow correction.

In order to find out what features of the mean flow
correction make this mode unstable instead of a mode
dominated by (3, 1), a sensitivity analysis to the three
main features mentioned above has been performed us-
ing the same normal-mode analysis but with appropriate
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FIG. 12. Amplitude spectrum and y profile of the baroclinic and barotropic part of the total mean zonal
current at t 5 150 when Us 5 0.95 in the traditional asymmetric case when the wave–wave interactions are
suppressed.

modifications of the mean flow correction. The results
are the following.

R When the mean flow correction is truncated to the first
spectral component, the normal-mode analysis dis-
plays three unstable modes. The first one is the same
as the one found above [dominated by (1, 2)] with a
growth rate multiplied by 2. The second one is dom-
inated by (3, 1) and the third one by (2, 1) with growth
rates three times smaller than the first mode. So the
higher-order meridional structure, although small, has
an effect on the reduction of the instability as indicated
by Cai (1992), but its presence does not appear to be
important for the wave scale selection.

R When the barotropic zonal jet is suppressed, there is
only one very weakly unstable mode dominated by
(2, 2) with a very small growth rate (s , 0.001): the
system is almost neutral. Thus the barotropic zonal
jet has a destabilizing role. This can be understood
using Pedlosky’s (1964) argument: the amplitude and
sign (westward) of this barotropic jet is such that its
curvature 2]2ūB/]y2 acts to equally reduce the poten-
tial vorticity gradient of the total mean flow in both

layers (i.e., like having a smaller b effect) and there-
fore to destabilize the otherwise neutral flow. Thus,
the presence of the barotropic jet causes the flow to
become weakly baroclinically unstable. We have
checked that the magnitude of this jet is such that the
absolute vorticity in the upper layer does not have any
extremum, which makes barotropic instability unlike-
ly.

R When the amplitude of the mean flow correction is
reduced by a factor of 1.8, which leads to increase
the total mean shear such that the supercriticality be-
comes larger, there are two unstable modes. The first
is dominated by (3, 1) and its growth rate is equal to
0.6, while the second is dominated by (1, 2) with a
growth rate equal to 0.1.

These results show that both the amplitude of the
barotropic jet and that of the baroclinic part of the mean
flow correction have a significant role on the wave scale
selection. The amplitude of the baroclinic part of the
mean flow correction is such that the total baroclinic
mean flow, when it is considered alone, is almost neu-
tral. However, when the barotropic part is nonzero, the
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FIG. 13. Upper layer streamfunction (b) and amplitude spectrum
(a) of the unstable mode of the total mean flow shown in Fig. 12.

total mean flow is weakly unstable and the most unstable
mode is dominated by wave (1, 2). It is precisely for
this range of supercriticality values that the previous
linear studies display the strong effects of an asymmetric
friction on the wave scale selection. However, these
results show that the weak supercriticality of the total
mean flow strongly depends on detailed features of the
mean flow correction.

7. Conclusions

This study has reexamined the effects of an asym-
metric friction on the nonlinear equilibration of baro-
clinic systems with a particular focus on the wave scale
selection. The region of the parameter space explored
mostly concerns moderately unstable systems for which
a linear stability analysis does not reveal any significant
effect of a frictional asymmetry on the most unstable
waves. The numerical results obtained do show that the
presence and the sense of an asymmetric friction has a
strong impact on the nonlinear wave scale selection.

The scenario that emerges is the following: This wave
scale selection is primarily induced by wave–mean flow
interactions. However, wave–wave interactions increase

the differences between the three frictional cases and,
in particular, reinforce the wave scale selection. More
precisely, in the symmetric case the wave–wave inter-
actions, acting as a process for upscale energy transfer,
enlarge the spectral band of the dominant waves, making
the long waves emerge. In the nontraditional asymmetric
case they are inhibited such that only the synoptic wave
selected by the wave–mean flow interactions emerges.
Lastly, in the traditional asymmetric case they reduce
the spectral wave band and reinforce the emergence of
the long wave selected by the wave–mean flow inter-
actions.

The wave scale selection induced by the wave–mean
flow interactions when the dissipation is asymmetric can
be interpreted as follows. In the process of nonlinear
equilibration, the wave–mean flow interactions cause
the total mean zonal flow to become weakly supercrit-
ical. It is for this range of supercriticality that linear
studies reveal the strong effects of an asymmetric fric-
tion on the wave scale selection. More precisely, they
show that the minimum critical shear is significantly
reduced in the traditional asymmetric case compared
with other frictional cases (see Fig. 1). Consequently,
in the traditional asymmetric case the weakly super-
critical nonlinear flow is located in a region of the pa-
rameter space that is not accessible by other frictional
cases and where the characteristics of the most linearly
unstable waves differ. However, the detailed analysis
performed in section 6 clearly shows that the weak su-
percriticality of the nonlinear flow strongly depends on
detailed features of the mean flow correction. Conse-
quently the information from the classic linear stability
analysis using a uniform baroclinic shear should be con-
sidered only as qualitative for the wave scale selection.
The amplification of the wave scale selection by the
wave–wave interactions, which has been confirmed by
an energy budget analysis (Rivière 1995), has been
found to be quite robust in the parameter space explored
in this study. However, so far we have no interpretation
about these effects of an asymmetric friction on the
wave–wave interactions. This should be the topic of
future study.

A sensitivity analysis has revealed that a large degree
of asymmetry is required for an asymmetric friction to
significantly affect the nonlinear equilibration of the
baroclinic systems. When the degree of the asymmetry
is large, the competition between the destabilizing effect
of friction and the nonlinear interactions destabilizes the
time evolution of the baroclinic waves with a nontrad-
itional asymmetric friction, leading to periodic and cha-
otic behaviors. No such destabilization is observed with
a traditional asymmetric friction or with a symmetric
friction except for large supercriticality or when the de-
gree of asymmetry is quite large. This confirms and
extends results obtained by previous studies (Chou and
Loesch 1986b; Mak 1987). Furthermore, the wave-free
equilibrium found when one layer is free of dissipation
extends for moderately unstable systems in the b plane
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the results of Pedlosky (1983) and Chou and Loesch
(1986a). Last, we have found that the higher order stable
modes and, in particular, the meridional harmonics of
the unstable waves have a large impact on the efficiency
of nonlinear interactions whatever the value of the de-
gree of asymmetry is.

In this study we have used the classic Phillips model
as a heuristic tool and considered moderately unstable
systems for elucidating the effects of frictional asym-
metry. Therefore the robustness of these results needs
to be investigated for more unstable systems using more
realistic models. Several main features have to be ques-
tioned when more realistic baroclinic systems are con-
sidered. First, does the wave scale selection induced by
the wave–mean flow interactions still persist? Indeed,
at the equilibrium, the supercriticality of the total mean
zonal flow for more unstable systems, although small,
is not always so weak as is found in this study. Fur-
thermore, when a basic flow with a nonzero meridional
shear is used, the Reynolds stress induced by the wave–
wave interactions should play a much more important
role than it is found in this study. A second feature
concerns the effects of an asymmetric friction on the
energy transfer between the waves through the wave–
wave interactions, that is, on the upscale cascade pro-
cess. Are these effects amplified or reduced when the
system is more unstable and the basic flow more realistic
and what are the consequences on the inverse energy
cascade and the resulting wave scale selection? These
questions should be the topic of future study.

Such investigation is stimulated by the aforemen-
tioned results of some realistic studies that are remi-
niscent of ours. Indeed, Cai and Mak (1990b), using a
symmetric dissipation, conclude that the wave–wave in-
teractions are the main mechanism that maintains the
dominant low-frequency atmospheric waves. On the
other hand, Cehelsky and Tung (1991) and Whitaker
and Barcilon (1995), who used a traditional asymmetric
dissipation, found that the low-frequency atmospheric
variability is mostly maintained by the wave–mean flow
interactions. However, these studies used numerical
models with different physics and different parameter
settings. So some work is needed to distinguish and
understand the contribution of the effects of the fric-
tional asymmetry in these results.
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