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The first flow regimes which have been observed experimentally for a circular Couette flow with a
stable, axial stratification in density are investigated through direct numerical simulations of the
three-dimensional Navier-Stokes equations for a Boussinesq fluid. The setup of two concentric
cylinders has a nondimensional gap width ofe5(b2a)/a50.289; the outer cylinder is fixed and
the stratification in density in the axial direction is linear. The main effect of an axial density
stratification is to reduce the height of the Taylor vortices and to cause the formation of density
layers of small aspect ratio. For large enough Prandtl number, the primary bifurcation from circular
Couette flow is found to be axisymmetric and of Hopf-type in the direct numerical simulations. An
analytical solution for onset of instability and slightly different boundary conditions from the
experimental ones agrees within 0.6% with numerical simulations at a Prandtl number of 700. The
experimental flow regimes with well-defined density layers are well reproduced by the numerical
simulations in the appropriate range of relative Reynolds number Re/Rec1 , where Rec1 denotes the
critical Reynolds number for the primary bifurcation from circular Couette flow. However, the
increase of axial scale with Re/Rec1 is found to be continuous, whereas it is quantized in the
laboratory experiments. Numerical results reveal that the first two transitions between the flow
regimes are primarily due to the temporal behavior of the axially symmetric part of the flow. Onset
of nonaxisymmetric motions appears at the same Re/Rec1'1.18 as in the homogeneous fluid case
at the sameh5a/b. Stratification precludes large axial displacements and the azimuthal modes
patterns have a quite distinct appearance from the homogeneous wavy modes. At large enough Re,
a destabilization of the jet-like outflow between pairs of vortices causes the suppression of the
density front which is located at the same axial height. This nonaxisymmetric flow regime presents
common features with the wavy outflow boundary~WOB! pattern, which is commonly observed in
the homogeneous Couette-Taylor case. ©1997 American Institute of Physics.
@S1070-6631~97!00702-2#

I. INTRODUCTION

Our purpose is to investigate through direct numerical
simulations some of the flow regimes which have been ob-
served in the laboratory experiments of Boubnovet al.1

~denoted by BA, hereafter!. We use the three-dimensional
Navier-Stokes code which has been developed by Verzicco
and Orlandi,2 with an additional equation for density. The
experimental setup in BA~Fig. 1! concerns the flow between
two concentric cylinders, the outer of which is fixed and the
inner which rotates at an angular velocityV, for a fluid with
a stable linear density stratificationN in the axial direction.
Their apparatus dimensions are3 a54.01 cm,b55.15 cm
(h5a/b50.775), and corresponds to a nondimensional gap
width e5(b2a)/a50.289, for which the critical inner cyl-
inder speed for onset of instability isV'0.194 s21 for the
homogeneous fluid case.4 The values of buoyancy frequency
N which are used by BA lie between 0.35 and 1.78 s21.
These experiments have been devised in order to clarify the
role of an axial stratification in the Taylor-Couette problem,
which has become a paradigm for understanding problems of
hydrodynamic stability and pattern formation.5

Our original motivation comes from geophysical obser-
vations, especially in the atmosphere and ocean, where cen-
trifugal instability ~also called inertial instability in geophys-
ical problems! always occurs withinstratifiedflows. Both the
atmosphere6,7 and ocean,8 equatorial regions correspond to
the location of the maximum angular momentum of the fluid
and small deviations in the symmetries of the flow are likely
to trigger centrifugal instabilities. Symmetry breaking is im-
mediately induced by the existence of a nonzero latitudinal
shear at the equator and low-latitude regions are thus privi-
leged locations for the occurrence of inertial instability.
There is a close analogy between the equatorial barotropic
inertial instability problem, where a depth-independent shear
flow in a stratified fluid leads to secondary cellular motions,
and the cylindrical Taylor-Couette problem with a stable
axial stratification in density.8 The symmetries of the two
problems are such that the analogy is valid for both linear
instability and nonlinear flow regimes.

The laboratory experiments reveal that an axial density
stratification has an overall stabilizing effect on the flow,
with a clear dependence of the critical Reynolds number on
buoyancy frequencyN, where the Reynolds number is de-
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fined as Re5 Vad/n, n is the kinematic viscosity of the
fluid andd5b2a is the gap width between the two cylin-
ders. This dependence is particularly sensitive near onset of
instability, where a stable axial density stratification plays
the same stabilizing role as rotation in the thermal convec-
tion problem.9–11 In both problems, the instability is due to
two perpendicular body forces the centrifugal/Coriolis and
buoyancy forces, and their destabilizing/stabilizing roles are
interverted between the two situations. The selected, most
amplified, vertical wavelength at onset of instability is about
half the gap width for the experimental geometry which is
considered by BA, and for the range of buoyancy frequency
values which have been used. The resulting vortex motion
causes some mixing and this leads to layer formation, well
visible on shadowgraph images. As expected intuitively, the
effect of stratification is to delay the occurrence of the sec-
ondary rolls and to reduce their height, since stratification
tends to favor horizontal motions and to inhibit vertical mo-
tions.

The flow regimes which have been observed by BA are
reproduced in Fig. 2 as a function of the dimensionless Tay-
lor and Grashof numbers,

T5
4h2

12h2Re
2, G5

N2d4

n2
.

To emphasize the dominant role of stratification in Fig. 2, the
first regime of vertically reduced vortex size, and density
layers of heighth such thatnl5h/d' 1

2, has been referred to
as theS-regime by BA. Stratification appears to inhibit the
usual azimuthal wavy vortex flow patterns which are ob-
served in the case of homogeneous fluid, but a clear azi-
muthal dependence of the flow has been noted by BA~their
Fig. 4 corresponds to Re/Rec151.3, where Rec1 is the criti-
cal Reynolds for onset of theS-regime!. ~The sequence of

transitions between the various flow regimes in Fig. 2 are
denoted by subscript Reci, i51,...4.! At larger Reynolds
number, the role of stratification decreases and the most am-
plified axial wavelength increases. After a transition regime
ST, where several scales are observed to coexist, the next
clear flow regime, which is labeledT, corresponds to density
layers heighth, which is equal to the gap width (nl'1). The
secondary vortices are observed experimentally to have in
that case the same height as that of the classical Taylor vor-
tices in the homogeneous fluid case. At still larger Reynolds
number, the Taylor vortices interact by pairs and density
layers of twice the gap width appear to be predominant
(nl'2). This regime of ‘‘compacted Taylor vortices’’ has
been labelledCT. Finally, by further increasing the Rey-
nolds number, turbulent motions appear with superimposed
Taylor vortices as in the homogeneous fluid case.

In this paper, we focus our attention on the numerical
simulations of theS, T andCT regimes. We want in particu-
lar to clarify the role of the Prandtl number~Sec. III! ~or
rather the Schmidt number, since the linear stratification
which is used in BA is accomplished by using a salt solu-
tion!. The aim of Sec. IV is to identify which parameters
control the growth of axial scales which is observed for in-
creasing Re in the sequence of flow regimes. We have re-
stricted our simulations to a single value of the buoyancy
frequency,N51.04 s21, which corresponds to one of the
experimental values which have been used by BA. The final
part of this study concerns the azimuthal dependence of the
flow ~Sec. V! in theS andCT regime. The Appendix details
the analytical solution for onset of instability in the case of
slightly different boundary conditions from those of the labo-
ratory experiments. Such solution, which is analogous to

FIG. 1. Coordinate system and the integration domain. The fluid is stably
stratified in density in the axial direction.

FIG. 2. Experimentally determined flow regimes for stratified circular Cou-
ette flow ~reproduced from BA1! as a function of the Grashof and Taylor
numbersG andT. Units along the abcissa and ordinate are, respectively,
104 and 105: A, stable azimuthal flow;S, stratification dominated flow with
density layer heightnl'1/2; ST transition betweennl'1/2 andnl51; T,
Taylor vortices withnl51; CT, compacted Taylor vortices withnl52;
STT, turbulent motion withnl52 and observable layers after stop,TT,
turbulent mixing without layers after stop. The lines drawn in the figure
indicate the approximate boundaries between the different regimes.

366 Phys. Fluids, Vol. 9, No. 2, February 1997 Hua, Le Gentil, and Orlandi
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.113.111.210 On: Fri, 19 Dec 2014 02:47:02



free-free boundary conditions in the rotating thermal convec-
tion problem, is valid for a finite gap width, and has been
used to validate the numerical code in its stratified version.

II. FORMULATION OF THE PROBLEM

The Navier-Stokes equations for a Boussinesq stratified
fluid are used in nondimensional form. The numerical code

has been developed by Verzicco and Orlandi2 for the vari-
ables (qu5vu ,qr5rv r ,qz5vz), where (vu ,v r ,vz) are the
velocity components in cylindrical coordinates. An addi-
tional equation for the perturbation densityr8 has been
added.

The momentum and density equations, when written in
conservative form, are given by
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Notations correspond to
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The continuity equation is
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Equations are nondimensionalized by a reference velocity
which corresponds to the inner cylinder velocityVa; the
reference length is the gap widthd. The buoyancy fluctua-
tion r85g(r(z)2r)/(r0N

2d) is the nondimensional devia-
tion from the background density field r(z)
5r0(12N2/gz), whereg denotes gravitational acceleration.
The Prandtl number is Pr5 n/k, wherek is the density dif-
fusivity andn is the viscosity.

The system of equations is integrated by a finite-
difference scheme based on a fractional-step method.2 An
approximate factorization technique is used for the implicit
treatment of the viscous terms and the code accuracy has
been tested for several flows in cylindrical coordinates.2 A
nonuniform grid is used in the radial direction, with a refine-
ment of the mesh near the solid boundaries. Initial conditions
correspond to a Couette profile,

q̄u5
h

12h2 F 1

~12h!r
2~12h!r G ,

and small disturbances are introduced on the vertical velocity
qz ~see next sections!. The incompressibility of the perturbed
velocity field is used for determining the initial field ofqr .
External parameters which are assigned are the experimental
values ofa,b,V,n,k, N, and from these quantities Pr, Re
andG are evaluated.

Boundary conditions in the experimental setup of BA
correspond to no-slip and insulating radial boundaries for
density, since stratification is accomplished by using a salt
solution,

~i! qu5qr5qz50,]r/]r50.
Such a set of boundary conditions is appropriate for the
experimental conditions of BA. Two other sets of
boundary conditions have also been studied, namely
~ii ! qu5qr5qz50 andr50 ~isothermal boundary!,
~iii ! qu5qr50 and]qz /]r5 ]r/]r50.

The last two sets are respectively analogous to the rigid
and free boundary conditions in the rotating thermal convec-
tion problem~see the Appendix!. In the latter case, a straigth-
forward analytical solution is available which is valid at a
finite gap width, as it is the case in BA’s experiments.

The approach is based on the assumption of an infinite
cylinder and periodicity is assumed in the vertical direction.
The nondimensional vertical extension of the domain of in-
tegration isLz /d. The choice ofLz influences the axial scale
of the flow through the axial quantization of the solution
which is thus implied.

The bulk of the two-dimensional simulations in (r ,z)
have been performed at 96396, while the three-dimensional
simulations have been performed at 96396396 in (u,r ,z).

We first checked the code accuracy by comparing with
published results for the homogeneous Taylor-Couette prob-
lem. For the experimental value ofh50.775 of BA, the
critical value for a transition from purely azimuthal Couette
flow4 is Vc50.194, and this value has been reproduced
within a relative error of 0.5%. For three-dimensional solu-
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tions, the index for checking the code accuracy is the phase
speed of wavy vortex flows, such as prognosed by Jones,12

who also considered the case of a fixed outer cylinder. His
Fig. 4 corresponds to the caseh50.8756, and for azimuthal
wave numberm51, we have checked that at Re51.2 Rec
the error in propagation speed is also less than 0.5%, for
Lz /d52.

Finally, for the stratified fluid case, the numerical accu-
racy has been validated for the set of boundary conditions
~iii !, for which analytical solutions for the critical values of
the Reynolds number, axial wavelength and oscillation pe-
riod are given in the Appendix. Such analytical solutions are
valid for a finite gap width and we find that, at the experi-
mental value of Pr5700, the numerical results lie within
0.6% of the analytical solutions. This numerical result
~which also validatesa posteriori the use of such large val-
ues of Pr! is due to the fact that the boundary layer thickness
for qu8 and r8, is determined by viscosityn, rather than by
diffusivity k at onset of instability.

III. ONSET OF INSTABILITY AND INFLUENCE OF
PRANDTL NUMBER

Veronis11 has detailed several examples which illustrate
the dynamical analogy which exists between a stratification
in density and a stratification in angular momentum, as ini-
tially suggested by Lord Rayleigh.13 This analogy has been
used10 to extend to the stratified Couettte-Taylor problem
many of the results established for the rotating convection
problem in the case of free-free boundaries.9 One important
result which carries over to our problem is that, for large
enough values of the Prandtl number, the primary instability
should be oscillatory. This is confirmed by our three-
dimensional numerical simulations which show that at
N51.04 s21 and Pr5700, the first transition is of Hopf type,
purely axisymmetric, and occurs for a critical inner cylinder
rotation speed ofVc150.40460.001 s21, for a value of
n50.0104 cm2 s21, which takes into account the change of
the kinematic viscosity of the salt solution. The quantitative
impact of a large Prandtl number is the modification of the
critical values of the Reynolds number and oscillation period
at onset of instability.

The laboratory experiments yield for the inner cylinder
rotation speed a critical value ofVc1

obs50.409 s21, and the
discrepancy between the experiments and numerical simula-
tions is thus of about 1%. The numerical result for the most
unstable axial wavelength 2h of the density field is such that
(h/d)c50.51560.005, while the laboratory experiments
correspond toh/d50.51 ~see Fig. 3 in BA and the
corrigendum3!. The discrepancy is again of 1% between the
two approaches. The procedure which is used for determin-
ing the critical density layers height is to vary the axial
height of the domain of integrationLz52h until the largest
growth rate is obtained in the direct numerical simulation.
Onset of instability thus corresponds toLz /d51.0360.01.

The Hopf-character of the transition has been checked
numerically through a dependence of the amplitude of the
convective motions on@(Re2Rec1)/Rec1#

1/2. The oscillation
period is found in the numerical experiments to be
tc1519.25 s at onset of instability for the boundary condi-

tions ~i! which are the relevant ones for the laboratory ex-
periments. Other numerical simulations using either set~ii !
or ~iii ! reveal a weak dependence of the solutions on the
nature of the boundary conditions at onset of instability~see
the Appendix!. Moreover, the above value oftc1 lies within
3% of the analytical expression

tc5A2S 11S dhD
2D2p

N
,

which is established in the Appendix for set of conditions
~iii ! and corresponds totc518.66 s ford/h50.515.

We note that the primary transition is purely axisymmet-
ric in our three-dimensional simulations, exactly as in the
homogeneous fluid problem for a fixed outer cylinder. The
numerical simulations reveal furthermore that an azimuthal
dependence of the secondary flow only appears at
Re/Rec>1.1860.01~see Sec. V!. This first flow regime cor-
responds to the regime which has been labelledS by BA
~Fig. 2!, but their statement that the flow regimeS is nonaxi-
symmetric is valid only for Re/Rec>1.18. ~BA only discuss
the case Re/Rec 5 1.3 in their Fig. 4.!

We have studied the role of Pr on the temporal depen-
dence of the initial flow regime through axisymmetric simu-
lations at a fixed axial domain height ofLz /d51, and the
results are given in Fig. 3. The two branches in Fig. 3 delimit
the stability boundary as a function ofV and Pr, for a tran-
sition, respectively, to a stationary flow regime~upper
branch! and an oscillatory one~lower branch!. As expected
from the results of Thorpe,10 at low values of the Prandtl
number, Pr<1.87, the primary transition corresponds to a
stationary flow regime, while for Pr>1.87, the flow regime is
oscillatory. BA’s flow regimeS corresponds to the latter
case. Our numerical result differs however quantitatively
from Thorpe’s prediction that Pr51.43, for the limiting value
of Prandtl number between the stationary and oscillatory re-
gimes, which was obtained in the limit of nearly corotating

FIG. 3. Numerically determined stability boundary for the critical rotation
rate V as a function of Prandtl number, for a buoyancy frequency
N51.04 s andLz /d51. Symbols: O, oscillatory regime; S, stationary flow
regime.
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cylinders. For values of Pr>1.87, Fig. 3 indicates that the
upper branch corresponds to a secondary nonlinear transition
to a stationary flow state. This is analogous to what is found
for the rotating thermal convection, where ‘‘overstability’’
~an oscillatory onset of instability! is followed at higher Ray-
leigh numbers by a transition from oscillatory to nonoscilla-
tory convective modes.14 The value of Prandtl number,
which delimits the boundary between a stationary primary
transition and an oscillatory primary transition, is a function
of both h andN. In summary, the main effect of a large
Prandtl value is to induce a primary transition of the flow
which is of Hopf type.

If we denote by Re2 the Reynolds number corresponding
to the upper branch boundary in Fig. 3, we find that for
Pr550, Re2/Rec15 0.644/0.41151.567, whereas the stabil-
ity boundary between theS andST regime in the laboratory
experiments is such that (Rec2/Rec1)obs5 0.625/0.409
51.53. The closeness of these relative Reynolds numbers
suggests that the underlying cause for the transition between
S andST in BA’s experiments is a temporal transition~from
an oscillatory regime to a stationary one! in the axisymmetric
part of the convective modes of stratified Couette flow. We
shall return to this interpretation in Sec. IV and note more-
over that the two branches which delimit the oscillatory and
stationary regimes present the same asymptotic slopes for
Pr>16. More specifically, the relative Reynolds number for
Pr516 is Re2/Rec15 0.659/0.42251.561, and is therefore
very close to the relative value found for Pr550. These nu-
merical results suggest that the relative Reynolds number of
the transition between the oscillatory and stationary regimes
is a function of the Grashof numberG rather than the Ray-
leigh numberR5GPr.

The numerical results for the large Pr part of Fig. 3 have
been obtained by increasing the spatial resolution up to
2563256, until the critical value forV is found to vary by
less than 0.2%. The time and one-dimensional space resolu-
tions which are required for establishing the upper branch of
Fig. 3 vary roughly as Pr1/2 for the numerical code which is
used, and thus correspond to an overall increase in cpu time
as Pr3/2. This strong numerical constraint, together with the
asymptotic tendency which is exhibited by Fig. 3, led us to
opt for establishing the relative Reynolds number Re/Rec1 of
the higher transitions while keeping a moderate value of
Pr516 in the remainder of this work.

Finally, Fig. 3 has been established for purely axisym-
metric simulations. In the case of three-dimensional simula-
tions, the previous results are modified for Reynolds num-
bers such that Re/Rec>1.18, for which the primary
axisymmetric flattened cells are slightly distorted by azi-
muthally dependent motions~see Sec. V!.

IV. GROWTH OF AXIAL SCALES

BA have identified three flow regimesS, T and CT,
with well-defined, regular density layers which are clearly
visible in their shadowgraph visualizations. The correspond-
ing layers heights for these regimes are respectively
nl5h/(b2a)' 1

2, 1 and 2, and their onset atN51.04 s21

corresponds to a rotation speed of the inner cylinder of re-

spectively Vc1
obs50.409 s21, Vc3

obs50.90 s21, and
Vc4

obs51.30 s21. Flow regimeST, which is intermediate be-
tween theS andT-regime, is such that density layer heights
of bothnl'

1
2 andnl'1 are present and its onset corresponds

to Vc2
obs50.625.

A. Three-dimensional simulations

The initial conditions which are used in the three-
dimensional simulations consist in first attaining an equilib-
rium solution for the axisymmetric state and then to perturb
this solution by random azimuthal noise. The simulation is
then integrated until a flow regime takes over. All three-
dimensional simulations are performed for Pr516 according
to the rationale which is presented at the end of Sec. III.

A clear increase of axial scale occurs for increasing Rey-
nolds number Re. Figure 4 displays fields of azimuthal ve-
locity deviation qu85qu2qu , in an axial-radial plane, for
V50.51,1.00,1.7 respectively. These three simulations lie
respectively within theS, T andCT regimes, and there is a
clear increase in axial scales in the sequence of Fig. 4~a! to
4~c!. The corresponding buoyancy fluctuationr8 is shown in
Fig. 5, with density layers heights which are respectively of
nl50.5,0.66,2.2. Figure 6 displays the corresponding fields
of the azimuthal vorticity component. We note the existence
of a strong time variability and azimuthal dependence in all
fields for the simulations which lie in theS andCT regimes,
whereas the simulations of theT regime display no time-
variability nor azimuthal dependence of the flow.

On the other hand, it is interesting to contrast theS and
T regimes to theCT regime. In the first two cases, the den-
sity layer heighth is half the axial wavelength of the field of
qu8 , while in theCT regime the density layer height is equal
to the axial wavelength of the secondary motions. The dou-
bling of the density layer height in theCT regime is also
clearly visible in the shadowgraphs of the laboratory experi-
ments and corresponds to the intermittent disappearance of
every second interface in density in both the laboratory ex-
periments and in the numerical simulations. As commonly
observed in the homogeneous fluid case, the vorticity field is
concentrated at the level of the outflow jet between pairs of
vortices, while the inflow jet is broader@Fig. 6~c!#. At large
enough Reynolds number, a destabilization of the outflow jet
occurs through shear instability,15,16 and this also occurs in
the stratified fluid case. This process is very efficient at de-
stroying the density front which is located at the same level.
On the other hand, the more quiescent inflow jet is such that
the density front at the same level remains very stable in
time. We shall see in Sec. V that theCT regime moreover
displays a sizable azimuthal dependence at the outflow jet
level.

B. Axisymmetric stability boundaries

The purpose of this section is to provide the evidence
that for the stratified Couette-Taylor problem, the axial scale
selection inqu8 is primarily determined by the axisymmetric
part of the flow, while the azimuthally dependent component
plays a lesser role.
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This interpretation was already implied by our remark at
the end of Sec. III that the value of Re/Rec1 for the upper
branch of the curve in Fig. 3 for Pr516, coincides rather
closely with the transition value between theS andST re-
gimes which is observed in the laboratory experiments. This
suggested that theS to ST transition is mainly induced by a
temporal transition of the axisymmetric part of the flow. To
pursue further this conjecture, we have determined the sta-
bility boundary for purely axisymmetric flows as a function
of Lz max andV, for the range ofV spanning the regimes
S to CT. We denote byLz max the largest axial wavelength
in thequ8 field, which is stable at finite amplitude at a given
value ofV. Its value is determined by prescribing an initial
disturbance, whose axial wavelength is identical to the do-
main of integrationLz . The numerical code is integrated
forward in time, and if the finite-amplitude solution has an
axial wavelength which is smaller thanLz , the axial height
the domain of integration is changed to a smaller value. The
procedure is repeated until the new flow state remains stable
at an axial wavelength ofLz .

Figure 7 gives the resulting stability boundary in the
case of Pr516. One can distinguish four regions in this dia-
gram by their distinct temporal dependence.

~i! For 0.42<V<0.66 and 1.0< Lz max/d<1.6, the flow
is quasiperiodic, with an amplitude-modulation in
time of all dynamical variables.

~ii ! For 0.66<V<0.96, the upper part of the diagram is
characterized by a chaotic behavior with a rich fre-
quency spectrum for all fields. Moreover, several

scales appear to take over at various instants in time.
The lower part of the diagram corresponds to a sta-
tionary flow.

~iii ! For 0.96<V<1.53, a stationarity of the structures is
observed together with a strong variation ofLz max

with V.
~iv! For V>1.53, the flow is again oscillatory.

There is no jump inLz max between the various regions of
the diagram and the size of the toroidal vortices changes
continuously withV. The transition values of Re/Rec1 be-
tween regions~i!, ~ii ! and ~iii ! of Fig. 7, are respectively
1.56, 2.27 for the numerical simulations, while the laboratory
experiments values are 1.53, 2.20 for the transitions between
the S, ST and T regimes. The closeness of these relative
Reynolds numbers supports our initial conjecture that at least
the first two flow regimes have axial heights which are pri-
marily set by the dynamics of the axially symmetric part of
the flow. One can therefore identify the regions~i! and~ii ! to
BA’s regimesS andST. On the other hand, the transition
between regions~iii ! and~iv! occurs at Re/Rec153.62, which
is quite different from the experimentally measured value of
3.18 for the transition betweenT andCT regimes. We shall
see in the next section thatCT is essentially determined by
three-dimensional dynamics. In conclusion, only the low Re
part of region~iii ! can be identified with flow regimeT.

V. AZIMUTHAL DEPENDENCE

The two-dimensional solutions of Fig. 7 have been per-
turbed by random three-dimensional disturbances in order to

FIG. 4. Fields of azimuthal velocity deviations from purely azimuthal Couette flowqu8 in a (r ,z) plane for Re/Rec15 1.20 ~a!, 2.37 ~b!, 4.00 ~c!.
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study the possibility of an azimuthal depence of the flow.
The resulting stability limits to three-dimensional distur-
bances are indicated in Fig. 7 by vertical arrows along the
abcissa. Finite-amplitude azimuthal perturbations are stable
in both regions~i! and ~ii ! for 0.50<V<0.96, and also for
V>1.38, for the high Re end of region~iii ! and in region
~iv!. This last value of V is such that
Re/Rec15 1.38/0.42253.26 and thus lies within 2.5% of the
experimental transition value between theT andCT regimes.

A. S regime

The destabilization of the Taylor vortices by azimuthal
modes is well documented for the homogeneous fluid case
for the case of a fixed outer cylinder.12,15This destabilization
of the Taylor vortices occurs at higher Reynolds numbers
than the destabilization of circular Couette flow and this is
all the stronger ash is large. Likewise, we observe that the
stratified flattened cells in theS-regime are also destabilized
by azimuthal modes for Re/Rec>1.18 atN51.04 s21 for
the case ofLz /d52. This value moreover coincides with the
result obtained at the sameh, Lz /d,andn for the homoge-
neous fluid case (N50). We observe an emergence of mode
m53, followed bym52 andm51 with increasing Re, and
this is illustrated in Fig. 8 for Re/Rec51.20, 1.40 and 1.54.
Stratification inhibits the usual patterns which have been la-
belled as wavy Taylor vortices in the literature. Instead, BA
report for Re/Rec'1.3 measurements of azimuthally depen-
dent motions which have distinct periods of oscillation and
preferred particle motions within a given horizontal plane.

For illustration, Fig. 9~a! displays the three-dimensional pat-
tern which is observed at Re/Rec151.40 for the stratified
case and for comparison, the wavy vortex pattern of the ho-
mogeneous fluid case at the same Re/Rec1 is shown in Fig.
9~b!. The patterns clearly illustrate the preferred horizontal
motions which are induced by stratification.

B. CT regime

The other regime where a clear azimuthal dependence is
observed in the numerical simulations is regimeCT. Near
onset of this regime, we show in Fig. 10 the azimuthal pat-
terns in the field ofqu8 which are observed forV51.45 and
Lz52.3. The corresponding radial–axial sections inqu8 , r8
and the azimuthal component of vorticity look very similar
to Figs. 4~c!, 5~c! and 6~c!, respectively, and are not shown.
There is a striking frontal wave pattern of modem53 in Fig.
10, which is located right at the level of the outflow jet,
while there is only a very weak azimuthal dependence at the
inflow jet level. At this value ofV51.45, the flow is still
quasiperiodic, but it becomes quickly chaotic at larger values
of V.

The shear instability of the outflow jet is a three-
dimensional instability as in the homogeneous fluid case,15,16

and the pattern which is observed in Fig. 10 presents similar
features to the so-called wavy outflow boundary~WOB! vor-
tices which are commonly observed in the homogeneous
case. We note, however, that the solution in Fig. 10 has an
axial periodicity ofLz and cannot therefore sustain an inter-

FIG. 5. Fields of buoyancy fluctuationsr8 corresponding to the same simulations than Fig. 4~a! to 4~c!.
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action between axial scalesLz and 2Lz as discussed by
Ioss.17 Finally, BA do not document the azimuthal patterns
in regimeCT, but we note that the azimuthal dependence at
the outflow jet level is difficult to observe experimentally
with only shadowgraph technique, since the density front at
that level is suppressed intermittently.

VI. CONCLUSION

The strongest influence of an axial stratification in den-
sity on the Couette-Taylor problem is the reduced aspect
ratio of the secondary vortices. Stratification has a stabilizing
influence which is quite analogous to the role of rotation in
the thermal convection problem. We have shown in the Ap-
pendix how this stabilizing effect could be explained by the
additive influence of the stratification parameterR on the
critical Taylor number of the flow.

A striking feature of the stratified problem is the growth
of axial scales as a function of Re/Rec . Our numerical simu-
lations confirm that this observed growth of axial scale is
mostly determined by the axisymmetric part of the flow,
through its temporal behavior. The azimuthal dependence of
the flow plays a lesser role in the determination of the axial
scale. The simulations suggest a continuous growth of axial
scale with increasing Reynolds number, which is at variance
with the observations of the laboratory experiments, which
protocole corresponded to an abrupt start of the inner cylin-
der rotation speed.

Despite looking rather different from the usual wavy
vortices, stratified azimuthally dependent motions appear to
follow closely the stability limit of the homogeneous prob-
lem at low Reynolds number. For increasing Reynolds num-
ber, azimuthal dependence disappears for theT regime,
while theCT regime presents dynamical aspects which seem
closely related to the WOB patterns of the homogeneous
problem, albeit they do not involve an interaction between

FIG. 6. Fields of azimuthal vorticity corresponding to the same simulations than Fig. 4~a! to 4~c!.

FIG. 7. Stability boundary of the tallest two-dimensional structures
Lz max/d as a function of the inner cylinder rotation rateV for Pr516. The
meaning of symbols O and S is the same than for Fig. 3. Vertical arrows
delimit the stability boundary to three-dimensional disturbances~see section
V!.
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axial scalesLz and 2Lz . More work is needed to assess the
extent of the analogy.

Finally, we note that a possible limitation of the present
work is caused by the small range of nondimensional values
of LZ /d which has been explored, thus ruling out the possi-
bility of other solutions.
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APPENDIX: THE ANALOGY WITH ROTATING
THERMAL CONVECTION PROBLEM

We detail below the steps leading to an analytical solu-
tion for the primary onset of instability in the stratified
Taylor-Couette problem, which is valid for a finite gap
width, but corresponds to slightly different boundary condi-
tions than in the laboratory experiments. The purpose of the
analytical solution is to enable a validation of the stratified

FIG. 8. Fields ofqu8 in a (u,z) plane for the first transitions in azimuthal
wavenumber: Re/Rec51.20 ~a!, 1.40~b!, and 1.54~c!. All cases lie in flow
regimeS.

FIG. 9. Isosurfaces of 50% of the maximum ofqu8 at Re/Rec51.40 for the
stratified case~a! and for the homogeneous case~b!.

FIG. 10. Fields ofqu8 in a (u,z) plane for theCT regime atV51.45 and
Lz52.3 d.
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version of Verzicco and Orlandi’s code,2 and also to gain
some physical insight on the stratified problem. The ap-
proach follows very closely the work of Thorpe,10 in taking
advantage of the dynamical analogy between the stratified
Taylor-Couette~STC! problem and the rotating Rayleigh-
Bénard ~RRB! one, in the case of two-dimensional convec-
tive motions and for specific sets of boundary conditions,
which are given below.

For axisymmetric motions and in the narrow gap ap-
proximation, the motions in STC can be described by the
streamfunctionC* (x,z,t) of the convective modes, where
x andz denote the radial and axial coordinates, the azimuthal
velocity v* (x,z,t) and the density perturbationr* (x,z,t).
@The radial and axial velocities areu* (x,z,t) 5 2]C* /]z
andw* (x,z,t)5]C* /]x.] Superscript* is used to denote
dimensional variables, but it has been omitted for coordi-
nates in order to alleviate notations.

The linearized equations of motion are

S ]

]t
2n¹2D¹2C*5

g

r0

r*

]x
12S qu*

r
D ]v*

]z
,

S ]

]t
2n¹2D v*5~22A!

]C*

]z
, ~A1!

S ]

]t
2Prn¹2D r*52

N2

g
r0

]C*

]x
,

where coefficientA corresponds to the circular Couette pro-
file qu*5Ar1 B/r . We introduce the nondimensional quan-
tities

C5C*Y S gd3n D ,
r5r* /r0 ,

vz52
]v*

]z Y S g

2VdD .
In order to reduce the STC problem to the RRB form, we

need furthermore to use the ‘‘averaging approximation’’18 of
replacing the angular velocity (qu* /r ) by its average value in
cylindrical coordinates@the averaging of angular velocity in
cylindrical coordinates is equivalent to using a cartesian av-
erage of the Couette velocity profile#

K qu*

r L 5
V

12h2 F2h21
2h2

12h2 lnS 1h D G ,
5^m&V. ~A2!

Assuming normal modes of the form

$C,r,vz%5$c~x!,%~x!,y~x!%exp~ inz1st !,

with D5 d/dx, we get

~D22n22s!~D22n2!c52Dr12^m&y,

~D22n22s!y52Tn2c,

~D22n22Prs!%5RDc,

where the Taylor and Rayleigh numbers are defined as

T5
4AVd4

n2
, R5

Pr N2d4

n2
,

@~D22n22Prs!~D22n22s!2~D22n2!

1R~D22n22s!D2]c ~A3!

52^T&n2~D22n22Pr s!c,

where we have denoted

^T&5^m&T.

Equation~A3! presents a very close similarity with equa-
tion ~211! of Sec. 29 in Chandrasekhar,9 for the normal mode
in vertical velocity in the RRB problem. The relevant Taylor
number for the analogy is therefore notT but rather̂ T&.

The case for free-free, isothermal boundary conditions in
RRB corresponds to the following set of conditions in
STC,10

wx5rx50, u5v50, ~A4!

while rigid-rigid, isothermal boundary conditions in RRB are
analogous to

w5r50, u5v50. ~A5!

However, for the experimental conditions of BA the appro-
priate set is intermediate

w5rx50, u5v50, ~A6!

and there is no clear correspondence to physically meaning-
ful boundary conditions in the RRB problem in that case.

The numerical results at onset of instability seem not too
much altered quantitatively by the conditions at the bound-
aries. More precisely, the results of direct numerical simula-
tions at Pr5700 are listed in Table I.

At this large value of the Prandtl number, Table I reveals
that there is no discernable change in the parameters at onset
of instability between the experimental boundary conditions
and the rigid-rigid set of conditions~A5!. Furthermore, when
going from the experimental set of boundary conditions to
the free-free set of conditions~A4!, numerical results are
modified by 8% to 16%, depending on which dynamical in-
dex is considered. This relative insensitivity of the results
suggests to take advantage of the straightforward analysis in
RRB for free-free boundary conditions, and to study the so-
lution of equation~A3! with the set of boundary conditions
~A4!, in order to gain some physical insight on the problem.
The corresponding solutions are of the formc5c0sin(px),
and for an oscillatory solution such thats5A21s1 , one
finds

s1
25

1

Pr2 F R

~11x!

Pr21

2
2p4~11x!2G , x5

n2

p2 ~A7!

TABLE I. Results of direct numerical simulations at Pr5700.

Free-free Experimental Rigid-rigid

Vc1 0.350 0.404 0.404
(2h/d) 1.12 1.03 1.03
tc 17.56 19.25 19.25
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and

^T&5
1

x Fp4~11x!3SPr11

Pr D 21 R

2 Pr2
~Pr11!G . ~A8!

~The only difference between our solutions and those of
Thorpe10 is the introduction of̂T& instead ofT. This leads,
however, to large quantitative changes in the solutions.! The
right-hand side of~A8! shows that̂ T& is an increasing func-
tion of R, and thus proves the stabilizing influence of both
the stratification and of large values of the Prandtl number,
through their combined influence on the Rayleigh parameter
R. One can compute from~A8! the marginal conditions for
instability at d^T&/dx50. The values of Rec1 ,(h/d), and
tc which are thus obtained~respectively 0.348 s21

, 1.12,
17.48 s! agree within 0.6% with the direct numerical simu-
lations of STC with free-free boundary conditions which are
listed in Table I.

Furthermore, one can derive the asymptoptic expression
at large values of@R/~Pr11)], leading to aN2/3 law for the
inner cylinder rotation speedVc and to aN1/3 law for the
density layers height (h/d). However, we have checked
through numerical simulations that such an asymptotic re-
gime should be relevant for values of buoyancy frequency
N which are at least ten times larger than the range of ex-
perimental values which are used in BA.

At large values of the Prandtl number (Pr@1), the os-
cillation period at onset of instability can be obtained from
~A7!:

tc5A2~11x!
2p

N
. ~A9!

The oscillation period is thus strongly dependent on the
‘‘natural’’ oscillation period of the stratified fluid 2p/N.
Moreover this expression is also found to be a good approxi-
mation for other types of boundary conditions than~A4!,
since it yieldst518.66 s@for the value ofh/d50.515 which
is observed at onset of instability#, i.e., it differs by only 3%
from the numerical results which yieldt519.25 s.

We have so far only considered the case of an oscillatory
primary transition. For a value of Pr51, the primary transi-
tion is stationary and using the same approach than above for
s50, we find that the analytical results agree more accu-
rately with the direct numerical solutions of STC with the set
of boundary conditions~A4!, if we replace formula~A2! by
the original formula of Taylor19,18 for the influence of the
finite gap width

^T&5
T

2@110.652~12h!#
. ~A10!

The latter expression differs from~A2! by 4.8% at
h50.775.

In summary, for the case of a primary transition which is
of Hopf type and at large Prandtl number, direct numerical
simulations show that the onset of instability is rather insen-
sitive to the nature of the boundary conditions. An analytical
approach, which uses an averaging approximation based
upon the mean angular velocity~A2! in cylindrical coordi-
nates, leads to a solution which agrees within 0.6% with the
numerical simulations for the corresponding boundary con-
ditions. Such solution is analogous to the rotating thermal
convection solution for free-free boundary conditions. We do
not have a formal rationale why the averaging approximation
works better for the case of an oscillatory primary transition
than for a stationary one.
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