First transitions in circular Couette flow with axial stratification
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The first flow regimes which have been observed experimentally for a circular Couette flow with a
stable, axial stratification in density are investigated through direct numerical simulations of the
three-dimensional Navier-Stokes equations for a Boussinesq fluid. The setup of two concentric
cylinders has a nondimensional gap widtheof (b—a)/a=0.289; the outer cylinder is fixed and

the stratification in density in the axial direction is linear. The main effect of an axial density
stratification is to reduce the height of the Taylor vortices and to cause the formation of density
layers of small aspect ratio. For large enough Prandtl number, the primary bifurcation from circular
Couette flow is found to be axisymmetric and of Hopf-type in the direct numerical simulations. An
analytical solution for onset of instability and slightly different boundary conditions from the
experimental ones agrees within 0.6% with numerical simulations at a Prandtl number of 700. The
experimental flow regimes with well-defined density layers are well reproduced by the numerical
simulations in the appropriate range of relative Reynolds number Re/Réaere Rg, denotes the
critical Reynolds number for the primary bifurcation from circular Couette flow. However, the
increase of axial scale with Re/Reis found to be continuous, whereas it is quantized in the
laboratory experiments. Numerical results reveal that the first two transitions between the flow
regimes are primarily due to the temporal behavior of the axially symmetric part of the flow. Onset
of nonaxisymmetric motions appears at the same Re/ARE 18 as in the homogeneous fluid case

at the samep=a/b. Stratification precludes large axial displacements and the azimuthal modes
patterns have a quite distinct appearance from the homogeneous wavy modes. At large enough Re,
a destabilization of the jet-like outflow between pairs of vortices causes the suppression of the
density front which is located at the same axial height. This nonaxisymmetric flow regime presents
common features with the wavy outflow bound@wOB) pattern, which is commonly observed in

the homogeneous Couette-Taylor case. 1@97 American Institute of Physics.
[S1070-663(197)00702-2

I. INTRODUCTION Our original motivation comes from geophysical obser-
vations, especially in the atmosphere and ocean, where cen-
Our purpose is to investigate through direct numericakrifugal instability (also called inertial instability in geophys-
simulations some of the flow regimes which have been obical problem$ always occurs withirstratifiedflows. Both the
served in the laboratory experiments of Boubnewal!  atmospher®’ and oceafi, equatorial regions correspond to
(denoted by BA, hereafterWe use the three-dimensional the location of the maximum angular momentum of the fluid
Navier-Stokes code which has been developed by Verziccand small deviations in the symmetries of the flow are likely
and Orland? with an additional equation for density. The to trigger centrifugal instabilities. Symmetry breaking is im-
experimental setup in BAFig. 1) concerns the flow between mediately induced by the existence of a nonzero latitudinal
two concentric cylinders, the outer of which is fixed and theshear at the equator and low-latitude regions are thus privi-
inner which rotates at an angular velocfdy for a fluid with  leged locations for the occurrence of inertial instability.
a stable linear density stratificatidw in the axial direction. There is a close analogy between the equatorial barotropic
Their apparatus dimensions ara=4.01 cm,b=5.15 cm inertial instability problem, where a depth-independent shear
(n=a/b=0.775), and corresponds to a nondimensional gaglow in a stratified fluid leads to secondary cellular motions,
width e=(b—a)/a=0.289, for which the critical inner cyl- and the cylindrical Taylor-Couette problem with a stable
inder speed for onset of instability 8~0.194 s for the axial stratification in densit§.The symmetries of the two
homogeneous fluid cadelhe values of buoyancy frequency problems are such that the analogy is valid for both linear
N which are used by BA lie between 0.35 and 1.78'.s instability and nonlinear flow regimes.
These experiments have been devised in order to clarify the The laboratory experiments reveal that an axial density
role of an axial stratification in the Taylor-Couette problem, stratification has an overall stabilizing effect on the flow,
which has become a paradigm for understanding problems afith a clear dependence of the critical Reynolds number on
hydrodynamic stability and pattern formation. buoyancy frequenciN, where the Reynolds number is de-
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FIG. 2. Experimentally determined flow regimes for stratified circular Cou-
ette flow (reproduced from BA as a function of the Grashof and Taylor
numbersG and T. Units along the abcissa and ordinate are, respectively,
10* and 1G: A, stable azimuthal flows, stratification dominated flow with

FIG. 1. Coordinate system and the integration domain. The fluid is stablylensity layer heighty~1/2; ST transition betweem,~1/2 andn=1; T,
stratified in density in the axial direction. Taylor vortices withn,=1; CT, compacted Taylor vortices with;=2;

STT, turbulent motion withn,=2 and observable layers after stopT,
turbulent mixing without layers after stop. The lines drawn in the figure
indicate the approximate boundaries between the different regimes.
fined as Re- Qad/v, v is the kinematic viscosity of the
fluid andd=b—a is the gap width between the two cylin-
ders. This dependence is particularly sensitive near onset @fansitions between the various flow regimes in Fig. 2 are
instability, where a stable axial density stratification playsdenoted by subscript Re i=1,...4) At larger Reynolds
the same st%billizing role as rotation in the thermal convecnumber, the role of stratification decreases and the most am-
tion problem:"""In both problems, the instability is due to plified axial wavelength increases. After a transition regime
two perpendicular body forces the centrifugal/Coriolis andST, where several scales are observed to coexist, the next
buoyancy forces, and their destabilizing/stabilizing roles arelear flow regime, which is label€H, corresponds to density
interverted between the two situations. The selected, moséyers heighh, which is equal to the gap widti(=1). The
amplified, vertical wavelength at onset of instability is aboutsecondary vortices are observed experimentally to have in
half the gap width for the experimental geometry which isthat case the same height as that of the classical Taylor vor-
considered by BA, and for the range of buoyancy frequencyices in the homogeneous fluid case. At still larger Reynolds
values which have been used. The resulting vortex motiomumber, the Taylor vortices interact by pairs and density
causes some mixing and this leads to layer formation, wellayers of twice the gap width appear to be predominant
visible on shadowgraph images. As expected intuitively, thgn,~2). This regime of “compacted Taylor vortices” has
effect of stratification is to delay the occurrence of the secheen labelledCT. Finally, by further increasing the Rey-
ondary rolls and to reduce their height, since stratificatiomolds number, turbulent motions appear with superimposed
tends to favor horizontal motions and to inhibit vertical mo- Taylor vortices as in the homogeneous fluid case.
tions. _ _ In this paper, we focus our attention on the numerical
The flow regimes which have been observed by BA aresimulations of theS, T andCT regimes. We want in particu-
reproduced in Fig. 2 as a function of the dimensionless Taytar to clarify the role of the Prandtl numbé8ec. II)) (or

lor and Grashof numbers, rather the Schmidt number, since the linear stratification
4o N2d* which is used in BA is accomplished by using a salt solu-
T= 1= 7 Re, G= el tion). The aim of Sec. IV is to identify which parameters

control the growth of axial scales which is observed for in-
To emphasize the dominant role of stratification in Fig. 2, thecreasing Re in the sequence of flow regimes. We have re-
first regime of vertically reduced vortex size, and densitystricted our simulations to a single value of the buoyancy
layers of height such thain,=h/d~1, has been referred to frequency,N=1.04 s'!, which corresponds to one of the
as theS-regime by BA. Stratification appears to inhibit the experimental values which have been used by BA. The final
usual azimuthal wavy vortex flow patterns which are ob-part of this study concerns the azimuthal dependence of the
served in the case of homogeneous fluid, but a clear azitow (Sec. V) in theSandCT regime. The Appendix details
muthal dependence of the flow has been noted by(Air  the analytical solution for onset of instability in the case of
Fig. 4 corresponds to Re/Re=1.3, where Rg is the criti-  slightly different boundary conditions from those of the labo-
cal Reynolds for onset of th&-regime. (The sequence of ratory experiments. Such solution, which is analogous to
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free-free boundary conditions in the rotating thermal convechas been developed by Verzicco and Orléridr the vari-
tion problem, is valid for a finite gap width, and has beenables ¢,=v,,9,=rv,,q9,=v,), where ¢,,v,,v,) are the
used to validate the numerical code in its stratified version.velocity components in cylindrical coordinates. An addi-

tional equation for the perturbation densigy has been
Il. FORMULATION OF THE PROBLEM added.

The Navier-Stokes equations for a Boussinesq stratified The momentum and density equations, when written in
fluid are used in nondimensional form. The numerical codeconservative form, are given by

DOIo 1t9p+__i%_%+1 q+ q+2‘9Qr
Dt r 90 Relr ar | 12712 907 T 022 T rd a6
Da; _r?_p 9 (loa), 1d°a e 29qy
Dt Re| or\r ar) 296> " 9% r 36
Dq,_ 5p 19 99, 1%, &zqz
27 Re a2t o2 P,
Dt Re[r ar | ar ET e2
Dp' 1019 ¢9p 1 9%’ az '
bt Y Repirar\"ar | T 907 T oz
|
Notations correspond to and small disturbances are introduced on the vertical velocity
5 g, (see next sectionsThe incompressibility of the perturbed
Day_d9y 1 Jraear 197y 9949 velocity field is used for determining the initial field of .
Dt at r? or r 96° gz '’ External parameters which are assigned are the experimental
Dq, dq, @ 0|r2 o (a) oaq, values ofa,b,Q,v,x, N, and from these quantities Pr, Re
ot at tarl vl a8\ P andG are evaluated.
Boundary conditions in the experimental setup of BA
Dq, dq, 14q,0, 1 dq., 992 correspond to no-slip and insulating radial boundaries for
Dt _W“LF ar + P + 9z’ density, since stratification is accomplished by using a salt

, , , , , solution,
D—pzai-i-l il E odep + 0Gzp . (i) dy=09,=9,=0,0p/Ir =0.
bt Jt r Jr 1 96 9z Such a set of boundary conditions is appropriate for the
experimental conditions of BA. Two other sets of
boundary conditions have also been studied, namely
aq, aq[, ﬁqz (||) Jy=09,=9,=0 andp=0 (isothermal boundapy
FTRT) =0. (iii) gp=q,=0 anddq,/dr = dplor=0.
The last two sets are respectively analogous to the rigid
Equations are nondimensionalized by a reference velocitynd free boundary conditions in the rotating thermal convec-
which corresponds to the inner cylinder velocifia; the  tion problem(see the Appendix In the latter case, a straigth-
reference length is the gap width The buoyancy fluctua- forward analytical solution is available which is valid at a
tion p’ =g(p(2) — p)/(poN?d) is the nondimensional devia- finite gap width, as it is the case in BA’'s experiments.
tion from the background density field p(2) The approach is based on the assumption of an infinite
=po(1—N?/gz), whereg denotes gravitational acceleration. cylinder and periodicity is assumed in the vertical direction.
The Prandtl number is Prv/«, wherex is the density dif- The nondimensional vertical extension of the domain of in-
fusivity and v is the viscosity. tegration isL,/d. The choice oL, influences the axial scale
The system of equations is integrated by a finite-of the flow through the axial quantization of the solution
difference scheme based on a fractional-step methad.  which is thus implied.
approximate factorization technique is used for the implicit ~ The bulk of the two-dimensional simulations im,%)
treatment of the viscous terms and the code accuracy hdmve been performed at 8®6, while the three-dimensional
been tested for several flows in cylindrical coordindtés. simulations have been performed at9®6x 96 in (6,r,z).
nonuniform grid is used in the radial direction, with a refine-  We first checked the code accuracy by comparing with
ment of the mesh near the solid boundaries. Initial conditionpublished results for the homogeneous Taylor-Couette prob-

The continuity equation is

correspond to a Couette profile, lem. For the experimental value 0j=0.775 of BA, the
critical value for a transition from purely azimuthal Couette
— U 1 flow* is ,=0.194, and this value has been reproduced

q(,= z (1- )r (A=), within a relative error of 0.5%. For three-dimensional solu-

Phys. Fluids, Vol. 9, No. 2, February 1997 Hua, Le Gentil, and Orlandi 367



tions, the index for checking the code accuracy is the phase 70— ————— ————— ————— ————— .
speed of wavy vortex flows, such as prognosed by Jtnes, : S
who also considered the case of a fixed outer cylinder. His '
Fig. 4 corresponds to the cage=0.8756, and for azimuthal
wave numbem=1, we have checked that at R&.2 Re
the error in propagation speed is also less than 0.5%, for
L,/d=2. r
Finally, for the stratified fluid case, the numerical accu- c.55 |
racy has been validated for the set of boundary conditions :
(iii ), for which analytical solutions for the critical values of 50 L
the Reynolds number, axial wavelength and oscillation pe- '
riod are given in the Appendix. Such analytical solutions are
valid for a finite gap width and we find that, at the experi-
mental value of P+700, the numerical results lie within _ 1
0.6% of the analytical solutions. This numerical result AQ T S0 0 0 50
(which also validates posteriorithe use of such large val- Pr
ues of Py is due to the fact that the boundary layer thickness
for g, andp’, is determined by viscosity, rather than by

65 |

60 |

45 [

FIG. 3. Numerically determined stability boundary for the critical rotation

diffusivity « at onset of instability. rate O as a function of Prandtl number, for a buoyancy frequency
N=1.04 s and_,/d=1. Symbols: O, oscillatory regime; S, stationary flow
I1l. ONSET OF INSTABILITY AND INFLUENCE OF regime.

PRANDTL NUMBER

Veronis! has detailed several examples which illustrate
the dynamical analogy which exists between a stratificatiotions (i) which are the relevant ones for the laboratory ex-
in density and a stratification in angular momentum, as ini-Periments. Other numerical simulations using either(sgt
tially suggested by Lord Rayleigh.This analogy has been Of (iii) reveal a weak dependence of the solutions on the
used® to extend to the stratified Couettte-Taylor problem nature of the boundary conditions at onset of instabikiye
many of the results established for the rotating convectiodhe Appendix. Moreover, the above value ot lies within
problem in the case of free-free boundafié@ne important 3% of the analytical expression

result which carries over to our problem is that, for large d\2\ 24
enough values of the Prandtl number, the primary instability — 7,= /2| 1+ i )W
should be oscillatory. This is confirmed by our three-

dimensional numerical simulations which show that atwhich is established in the Appendix for set of conditions
N=1.04 s and P=700, the first transition is of Hopf type, (iii) and corresponds te,=18.66 s ford/h=0.515.
purely axisymmetric, and occurs for a critical inner cylinder ~ We note that the primary transition is purely axisymmet-
rotation speed of).;=0.404-0.001 s, for a value of ric in our three-dimensional simulations, exactly as in the
v=0.0104 cms %, which takes into account the change of homogeneous fluid problem for a fixed outer cylinder. The
the kinematic viscosity of the salt solution. The quantitativenumerical simulations reveal furthermore that an azimuthal
impact of a large Prandtl number is the modification of thedependence of the secondary flow only appears at
critical values of the Reynolds number and oscillation periodRe/Rg=1.18+0.01(see Sec. ¥ This first flow regime cor-
at onset of instability. responds to the regime which has been labefiedy BA
The laboratory experiments yield for the inner cylinder (Fig. 2), but their statement that the flow regir8as nonaxi-
rotation speed a critical value @1ng= 0.409 s!, andthe symmetric is valid only for Re/Re=1.18. (BA only discuss
discrepancy between the experiments and numerical simuldhe case Re/Re= 1.3 in their Fig. 4)
tions is thus of about 1%. The numerical result for the most We have studied the role of Pr on the temporal depen-
unstable axial wavelengthh2of the density field is such that dence of the initial flow regime through axisymmetric simu-
(h/d).=0.515+0.005, while the laboratory experiments lations at a fixed axial domain height &f/d=1, and the
correspond toh/d=0.51 (see Fig. 3 in BA and the results are given in Fig. 3. The two branches in Fig. 3 delimit
corrigendurm). The discrepancy is again of 1% between thethe stability boundary as a function 6f and Pr, for a tran-
two approaches. The procedure which is used for determirsition, respectively, to a stationary flow regimepper
ing the critical density layers height is to vary the axial branch and an oscillatory onélower branch. As expected
height of the domain of integratiob,= 2h until the largest from the results of Thorp¥ at low values of the Prandtl
growth rate is obtained in the direct numerical simulation.number, P&1.87, the primary transition corresponds to a
Onset of instability thus correspondslig/d=1.03+0.01. stationary flow regime, while for Br1.87, the flow regime is
The Hopf-character of the transition has been checkedscillatory. BA's flow regimeS corresponds to the latter
numerically through a dependence of the amplitude of thease. Our numerical result differs however quantitatively
convective motions of(Re— Re,;)/Re,; 1Y% The oscillation ~ from Thorpe’s prediction that Pr1.43, for the limiting value
period is found in the numerical experiments to beof Prandtl number between the stationary and oscillatory re-
7.1=19.25 s at onset of instability for the boundary condi-gimes, which was obtained in the limit of nearly corotating
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cylinders. For values of Pr1.87, Fig. 3 indicates that the gpectively 925320_409 st Qggszo_go s and

upper branch corresponds to a secondary nonlinear transitiqrggf;s= 1.30 s *. Flow regimeST, which is intermediate be-
to a stationary flow state. This is analogous to what is foundween theS and T-regime, is such that density layer heights

for the rotating thermal Convection, where “OverStability” of both n =~ % andnlml are present and its onset Corresponds
(an oscillatory onset of instabilitys followed at higher Ray- o ()925=0.625.

leigh numbers by a transition from oscillatory to nonoscilla-

tory convective mode¥. The value of Prandtl number,

which delimits the boundary between a stationary primanyA- Three-dimensional simulations

transition and an oscillatory primary transition, is a function  The initial conditions which are used in the three-

of both 7 and N. In summary, the main effect of a large gimensjonal simulations consist in first attaining an equilib-

Prandtl value is to induce a primary transition of the flow rjym solution for the axisymmetric state and then to perturb

which is of Hopf type. ~ this solution by random azimuthal noise. The simulation is
If we denote by Rgthe Reynolds number corresponding then integrated until a flow regime takes over. All three-

to the upper branch boundary in Fig. 3, we find that forgimensional simulations are performed for=PI6 according

Pr=50, Re/Re; = 0.644/0.41% 1.567, whereas the stabil- (5 the rationale which is presented at the end of Sec. Ill.

ity boundary between th§ and ST regime in the laboratory A clear increase of axial scale occurs for increasing Rey-

experiments is such that (BeR&:)ops= 0.625/0.409 noids number Re. Figure 4 displays fields of azimuthal ve-

=1.53. The closeness o_f these relative Reyno_lpls ”“mbe'iécity deviation %ZCIH—Q_e, in an axial-radial plane, for

suggests that the underlying cause for the transition betweef) — 51 1.00,1.7 respectively. These three simulations lie

S andS_Tm BA's experiments Is a tem_poral tra_nS|t|@inom respectively within theS, T andCT regimes, and there is a

an oscillatory regime to a stationary gne the axisymmetric  .jaar increase in axial scales in the sequence of Fa.to

part of the convective modes of stratified Couette flow. We4(c). The corresponding buoyancy fluctuatiphis shown in

shall return to this interpretation in Sec. IV and note more-rig 5 with density layers heights which are respectively of
over that the two branches which delimit the oscillatory a”dn|=0.5 0.66,2.2. Figure 6 displays the corresponding fields

stationary regimes present the same asymptotic slopes f@k the azimuthal vorticity component. We note the existence
Pr=16. More specifically, the relative Reynolds number for ot 5 irong time variability and azimuthal dependence in all
Pr=16 is Rg/Re; = 0.659/0.422-1.561, and is therefore fig|4s for the simulations which lie in th® andCT regimes,
very close to the relative value found for80. These nu- whereas the simulations of tHE regime display no time-
merical results suggest that the relative Reynolds number Qfariability nor azimuthal dependence of the flow.

the transition between the oscillatory and stationary regimes o the other hand, it is interesting to contrast $iand

is a function of the Grashof numb& rather than the Ray- T yegimes to theC T regime. In the first two cases, the den-

leigh numberR=GPr. _ sity layer height is half the axial wavelength of the field of
The nu.merlcal rgsults fqr the large Pr part of Flg. 3 haveqé, while in theCT regime the density layer height is equal
been obtained by increasing the spatial resolution up 1qy the axial wavelength of the secondary motions. The dou-
256X 256, until the crl.tlcal value foQ is fognd to vary by bling of the density layer height in the T regime is also
less than 0.2%. The time and one-dimensional space resoley visible in the shadowgraphs of the laboratory experi-
tions which are required for establishing the upper branch of,onts and corresponds to the intermittent disappearance of
Fig. 3 vary roughly as PF for the numerical code which is every second interface in density in both the laboratory ex-
used, and thus correspond to an overall increase in cpu tiMgyiments and in the numerical simulations. As commonly
as PP2 This strong numerical constraint, together with the gperved in the homogeneous fluid case, the vorticity field is
asymptotic tendency which is exhibited by Fig. 3, led us 10, centrated at the level of the outflow jet between pairs of
opt fo.r eStab"Sh"?g the relguve Reynolds number Re{Reé vortices, while the inflow jet is broadéFig. 6(c)]. At large
the higher transitions while keeping a moderate value 0t q,gh Reynolds number, a destabilization of the outflow jet
Pr=16 in the remainder of this work. _occurs through shear instability® and this also occurs in
Finally, Fig. 3 has been established for purely axisym-yq giratified fluid case. This process is very efficient at de-
metric simulations. In the case of three-dimensional simulagyoying the density front which is located at the same level.
tions, the previous results are modified for Reynolds numpyp, the other hand, the more quiescent inflow jet is such that
bers such that Re/Rel.18, for which the primary he gensity front at the same level remains very stable in
axisymmetric flattened cells are slightly distorted by azi-time \We shall see in Sec. V that ti&T regime moreover
muthally dependent motiorisee Sec. V. displays a sizable azimuthal dependence at the outflow jet

level.

IV. GROWTH OF AXIAL SCALES

BA have identified three flow regimeS, T and CT, B. Axisymmetric stability boundaries

with well-defined, regular density layers which are clearly = The purpose of this section is to provide the evidence
visible in their shadowgraph visualizations. The correspondthat for the stratified Couette-Taylor problem, the axial scale
ing layers heights for these regimes are respectivelgelection ingy is primarily determined by the axisymmetric
n=h/(b—a)~3 1 and 2, and their onset &=1.04 s part of the flow, while the azimuthally dependent component
corresponds to a rotation speed of the inner cylinder of replays a lesser role.

Phys. Fluids, Vol. 9, No. 2, February 1997 Hua, Le Gentil, and Orlandi 369



radial radial
0

(IRRN]
(IAERAR!
L

.

~

[

axial
axial

FIG. 4. Fields of azimuthal velocity deviations from purely azimuthal Couette §\in a (r,z) plane for Re/Rg= 1.20(a), 2.37(b), 4.00(c).

This interpretation was already implied by our remark at scales appear to take over at various instants in time.
the end of Sec. Il that the value of Re/Rdor the upper The lower part of the diagram corresponds to a sta-
branch of the curve in Fig. 3 for Prl6, coincides rather tionary flow.
closely with the transition value between tBeand ST re- (i) For 0.96s()<1.53, a stationarity of the structures is
gimes which is observed in the laboratory experiments. This observed together with a strong variation lof 4
suggested that th® to ST transition is mainly induced by a with Q.

temporal transition of the axisymmetric part of the flow. To (iv) For Q1=1.53, the flow is again oscillatory.
pursue further this conjecture, we have determined the st
bility boundary for purely axisymmetric flows as a function
of L, maxand Q, for the range o} spanning the regimes
Sto CT. We denote by, ,axthe largest axial wavelength
in the g, field, which is stable at finite amplitude at a given
value of Q). Its value is determined by prescribing an initial
disturbance, whose axial wavelength is identical to the do
main of integrationL,. The numerical code is integrated

Fhere is no jump inL, ., between the various regions of
the diagram and the size of the toroidal vortices changes
continuously withQ). The transition values of Re/Rebe-
tween regions(i), (i) and (iii) of Fig. 7, are respectively
1.56, 2.27 for the numerical simulations, while the laboratory
experiments values are 1.53, 2.20 for the transitions between
the S, ST and T regimes. The closeness of these relative
forward in time, and if the finite-amplitude solution has an Reynolds numbers sypports our ini'tial co.njecture.that at Iegst
the first two flow regimes have axial heights which are pri-

axial wavelength which is smaller thdn, the axial height marily set by the dynamics of the axially symmetric part of

B e o e ot S s B[ o On can terfore detly e regeand(i
b P A’s regimesS and ST. On the other hand, the transition

at an axial wavelength df, . - . " .
Figure 7 gives the resulting stability boundary in the petween regionéiii) and(iv) occurs at Re/Rg=3.62, which

case of P+ 16. One can distinguish four regions in this dia- Is quite different frgm the experimentally measured value of
gram by their distinct temporal dependence. 3.18.for the transmoln betwee'h andCT regimes. er shall
see in the next section th&T is essentially determined by
(i) For 0.42<(<0.66 and 1.& L, ,,,/d<1.6, the flow three-dimensional dynamics. In conclusion, only the low Re
is quasiperiodic, with an amplitude-modulation in part of region(iii) can be identified with flow regime.
time of all dynamical variables.
(i)  For 0.66<(2<0.96, the upper part of the diagram is V. AZIMUTHAL DEPENDENCE
characterized by a chaotic behavior with a rich fre-  The two-dimensional solutions of Fig. 7 have been per-
quency spectrum for all fields. Moreover, severalturbed by random three-dimensional disturbances in order to
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FIG. 5. Fields of buoyancy fluctuations corresponding to the same simulations than Fi{g) tb 4(c).

study the possibility of an azimuthal depence of the flow.For illustration, Fig. a) displays the three-dimensional pat-
The resulting stability limits to three-dimensional distur- tern which is observed at Re/Re=1.40 for the stratified
bances are indicated in Fig. 7 by vertical arrows along thease and for comparison, the wavy vortex pattern of the ho-
abcissa. Finite-amplitude azimuthal perturbations are stablmogeneous fluid case at the same Rg/R® shown in Fig.
in both regions(i) and (ii) for 0.50<(2<0.96, and also for 9(b). The patterns clearly illustrate the preferred horizontal
0=1.38, for the high Re end of regiaiiii) and in region motions which are induced by stratification.
(iv). This last wvalue of Q is such that
Re/Re,= 1.38/0.4223.26 and thus lies within 2.5% of the B. CT regime
experimental transition value between thandCT regimes. '
The other regime where a clear azimuthal dependence is
observed in the numerical simulations is regi@&. Near
The destabilization of the Taylor vortices by azimuthal onset of this regime, we show in Fig. 10 the azimuthal pat-
modes is well documented for the homogeneous fluid caseerns in the field ofy;, which are observed faf2 =1.45 and
for the case of a fixed outer cylind&r>® This destabilization L,=2.3. The corresponding radial—axial sectionsyjp p’
of the Taylor vortices occurs at higher Reynolds numbersand the azimuthal component of vorticity look very similar
than the destabilization of circular Couette flow and this isto Figs. 4c), 5(c) and &c), respectively, and are not shown.
all the stronger ag is large. Likewise, we observe that the There is a striking frontal wave pattern of maahe= 3 in Fig.
stratified flattened cells in th8-regime are also destabilized 10, which is located right at the level of the outflow jet,
by azimuthal modes for Re/Re1.18 atN=1.04 s! for  while there is only a very weak azimuthal dependence at the
the case ot ,/d=2. This value moreover coincides with the inflow jet level. At this value of()=1.45, the flow is still
result obtained at the samg L,/d,and v for the homoge- quasiperiodic, but it becomes quickly chaotic at larger values
neous fluid caseN=0). We observe an emergence of modeof ().
m= 3, followed bym=2 andm=1 with increasing Re, and The shear instability of the outflow jet is a three-
this is illustrated in Fig. 8 for Re/Re=1.20, 1.40 and 1.54. dimensional instability as in the homogeneous fluid ¢asé,
Stratification inhibits the usual patterns which have been laand the pattern which is observed in Fig. 10 presents similar
belled as wavy Taylor vortices in the literature. Instead, BAfeatures to the so-called wavy outflow bound@nOB) vor-
report for Re/Rg~1.3 measurements of azimuthally depen-tices which are commonly observed in the homogeneous
dent motions which have distinct periods of oscillation andcase. We note, however, that the solution in Fig. 10 has an
preferred particle motions within a given horizontal plane.axial periodicity ofL, and cannot therefore sustain an inter-

A. S regime
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FIG. 6. Fields of azimuthal vorticity corresponding to the same simulations than (@igto44(c).

action between axial scalds, and A, as discussed by VI. CONCLUSION

loss!’ Finally, BA do not document the azimuthal patterns

in regimeCT, but we note that the azimuthal dependence at The strongest influence of an axial stratification in den-

the outflow jet level is difficult to observe experimentally sity on the Couette-Taylor problem is the reduced aspect

with only shadowgraph technique, since the density front atatio of the secondary vortices. Stratification has a stabilizing

that level is suppressed intermittently. influence which is quite analogous to the role of rotation in

the thermal convection problem. We have shown in the Ap-
pendix how this stabilizing effect could be explained by the
08— additive influence of the stratification paramefron the

] 1 critical Taylor number of the flow.

I ] A striking feature of the stratified problem is the growth

o4 | _ of axial scales as a function of Re/ReOur numerical simu-

lations confirm that this observed growth of axial scale is

| | mostly determined by the axisymmetric part of the flow,

20 | _ through its temporal behavior. The azimuthal dependence of
I 1 the flow plays a lesser role in the determination of the axial

I scale. The simulations suggest a continuous growth of axial

1.6 F - scale with increasing Reynolds number, which is at variance
I T with the observations of the laboratory experiments, which

I protocole corresponded to an abrupt start of the inner cylin-

1.2 H - der rotation speed.

2.2 r B

L,

o . R Despite looking rather different from the usual wavy
T4 6 8 1.0 1.2 14 16 1.8 20 vortices, stratified azimuthally dependent motions appear to
Q follow closely the stability limit of the homogeneous prob-

lem at low Reynolds number. For increasing Reynolds num-
FIG. 7. Stability boundary of the tallest two-dimensional structuresber, azimuthal dependence disappears for Theegime,
L, max/d as a function of the inner cylinder rotation rddefor Pr=16. The while theCT regime presents dynamical aspects which seem
meaning of symbols O and S is the same than for Fig. 3. Vertical arrows
delimit the stability boundary to three-dimensional disturbarises section closely related to the WOB patterns of the homogeneous

V). problem, albeit they do not involve an interaction between
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FIG. 9. Isosurfaces of 50% of the maximumaf at Re/Rg=1.40 for the
stratified casd€a) and for the homogeneous cadg.
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APPENDIX: THE ANALOGY WITH ROTATING
THERMAL CONVECTION PROBLEM

We detail below the steps leading to an analytical solu-
tion for the primary onset of instability in the stratified
Taylor-Couette problem, which is valid for a finite gap
width, but corresponds to slightly different boundary condi-
tions than in the laboratory experiments. The purpose of the
analytical solution is to enable a validation of the stratified

FIG. 8. Fields ofgy in a (6,z) plane for the first transitions in azimuthal

azimuthal
360
L0 TN ) /:\‘)
I DIl
wavenumber: Re/Re=1.20(a), 1.40(b), and 1.54(c). All cases lie in flow é_/‘(\&—;///éé_/
regimesS. 3

=7 @
= o —

axial

axial scaled_, and A_,. More work is needed to assess the
extent of the analogy.

Finally, we note that a possible limitation of the present
work is caused by the small range of nondimensional values

of Lz/d which has been explored, thus ruling out the possi+|g. 10. Fields ofg), in a (6,7) plane for theCT regime at2=1.45 and
bility of other solutions.

L,=2.3 d.
Phys. Fluids, Vol. 9, No. 2, February 1997
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version of Verzicco and Orlandi’s Coaeand also to gain TABLE L Results of direct numerical simulations at=FPf00.
some physical insight on the stratified problem. The ap-

proach follows very closely the work of Thorp&jn taking Free free Experimental Rigid-rigid
advantage of the dynamical analogy between the stratified Qc 0.350 0.404 0.404
Taylor-Couette(STC) problem and the rotating Rayleigh- ~ (20/d) 112 1.03 1.03
Beénard (RRB) one, in the case of two-dimensional convec-__" 17.56 19.25 19.25
tive motions and for specific sets of boundary conditions,
which are given below.

For axisymmetric motions and in the narrow gap ap AAQd? Pr N2d*

proximation, the motions in STC can be described by ther— . R= —
streamfunction¥* (x,z,t) of the convective modes, where v 4
x andz denote the radial and axial coordinates, the azimuth 2_ 2 2_ 2 2(p2_n2
’ D*“—n“—Pro)(D*—n“— D“—n

velocity v*(x,z,t) and the density perturbatiop* (x,z,t). 8ﬂ( o) o)1 )
[The radial and axial velocities are (x,z,t) = —d¥*/dz +R(D?—n?-0)D?] ¢ (A3)
and w* (x,z,t)=d¥*/9x.] Superscript® is used to denote _ 22 o
dimensional variables, but it has been omitted for coordi- = —(T)n (D" =n"=Pro)y,
nates in order to alleviate notations. where we have denoted

The linearized equations of motion are

o (M=(w)T.
9 V2| vy — 9p 5 ﬁ dv* Equation(A3) presents a very close similarity with equa-
ot po IX r/ az'’ tion (211) of Sec. 29 in Chandrasekhafor the normal mode

in vertical velocity in the RRB problem. The relevant Taylor

(ﬂ_ sz)v* =(—2A) v (A1) number for the analogy is therefore nbtbut rather(T).
ot gz ' The case for free-free, isothermal boundary conditions in
2 * RRB corresponds to the following set of conditions in
( d or Vz) . N° ¥ STC10
— ~PwVeIpT=——"pg ; '
ot g X
w,=p,=0, u=v=0, (A4)

where coefficienfA corresponds to the circular Couette pro- =~ N )
file g% =Ar+ B/r. We introduce the nondimensional quan- while rigid-rigid, isothermal boundary conditions in RRB are

tities analogous to
gdd w=p=0, u=v=0. (AbB)
—_A\IP* >
Y=v ( v ) However, for the experimental conditions of BA the appro-
. priate set is intermediate

p=p*1po,

. w=p,=0, u=v=0, (AB6)
vZ=— ﬂ/ (i) and there is no clear correspondence to physically meaning-

dz 2Qd ful boundary conditions in the RRB problem in that case.

In order to reduce the STC problem to the RRB form, we  The numerical results at onset of instability seem not too
need furthermore to use the “averaging approximatij&njf much altered quantitatively by the conditions at the bound-
rep|acing the angu]ar Ve|OCitE/r) by its average value in qries. More precisely_, the .results of direct numerical simula-
cylindrical coordinatethe averaging of angular velocity in tions at P=700 are listed in Table .

cylindrical coordinates is equivalent to using a cartesian av- At this large value of the Prandtl number, Table | reveals
erage of the Couette velocity proffle that there is no discernable change in the parameters at onset

of instability between the experimental boundary conditions

aj Q ) 27 1 and the rigid-rigid set of condition@5). Furthermore, when
T /T 1= 7| 7ot 1— 772'” P going from the experimental set of boundary conditions to
the free-free set of condition6A4), numerical results are
=(m)Q. (A2) modified by 8% to 16%, depending on which dynamical in-
Assuming normal modes of the form dex is considered. This relative insensitivity of the results
suggests to take advantage of the straightforward analysis in
{V,p, 0z} ={y(x),0(x),v(x)}expinz+ ot), RRB for free-free boundary conditions, and to study the so-
with D= d/dx, we get lution of equation(A3) with the set of boundary conditions
(A4), in order to gain some physical insight on the problem.
(D?2—n?—0)(D?—n?)yy=—Dp+2(u)v, The corresponding solutions are of the fors ysin(mX),
(D2—n2—g)v=—Trly, :ilzgsfor an oscillatory solution such that=+/—10,, one
(D2—n?-Pro)e=RDy, 11 R Pr-1 n2
. . o= | —— -7 1+ x)?, x=— (A7)
where the Taylor and Rayleigh numbers are defined as VPP (1+y) 2 2
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and In summary, for the case of a primary transition which is
1 Pre1\2 of Hopf type and at large Prandtl number, direct numerical

(Ty== — ) (A8) simulations show that the onset of instability is rather insen-

X Pr sitive to the nature of the boundary conditions. An analytical

(The only difference between our solutions and those ofipproach, which uses an averaging approximation based
Thorpe? is the introduction ofT) instead ofT. This leads, upon the mean angular velocitp2) in cylindrical coordi-
however, to large quantitative changes in the solutjohise  nates, leads to a solution which agrees within 0.6% with the
right-hand side ofA8) shows thatT) is an increasing func- numerical simulations for the corresponding boundary con-
tion of R, and thus proves the stabilizing influence of bothditions. Such solution is analogous to the rotating thermal
the stratification and of large values of the Prandtl numbergonvection solution for free-free boundary conditions. We do
through their combined influence on the Rayleigh parametenot have a formal rationale why the averaging approximation
R. One can compute frorfA8) the marginal conditions for works better for the case of an oscillatory primary transition
instability atd(T)/dy=0. The values of Rg,(h/d), and than for a stationary one.
7. Which are thus obtaine@respectively 0.348 &, 1.12,
17.48 3 agree within 0.6% with the direct numerical simu-
lations of STC with free-free boundary conditions which are
listed in Table I.

Furthermore, one can derive the asymptoptic expressioiB. M. Boubnov, E. B. Gledzer, and E. J. Hopfinger, “Stratified circular
at large values ofR/(Pr+1)], leading to aN?3 law for the Couette flow: Instability and flow regimes,” J. Fluid MecB92 333

. . : 1/3 (1995.
Inner Cy“nder rotation sPeeﬂC and to aN law for the °R. Verzicco and P. Orlandi, “A finite-difference scheme for three-

density layers .height Wd)_- However, we have Ched.(ed dimensional incompressible flows in cylindrical coordinates,” J. Comput.
through numerical simulations that such an asymptotic re- Phys.123 402(1996.

. 3 © “ :
gime should be relevant for values of buoyancy frequency B. M. Boubnov, E. B. Gledzer, and E. J. Hopfinger, “Corrigendum of

. - ‘Stratified circular Couette flow: instability and flow regimes’,” J. Fluid
N which are at least ten times larger than the range of ex Mech. 292, 333 (1996

perimental values which are used in BA. 4R. C. Di Prima and H. L. Swinney, “Instabilities and transition in flow
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