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Abstract

The analyses of dinoflagellate cyst records, from the latest Quaternary sediments

recovered from DSDP Core 610A taken on the Feni Ridge in the southern Rockall

Trough, and part of core MD01-2461 on the continental margin of the Porcupine

Seabight in the eastern North Atlantic Ocean, has provided evidence for significant

oceanographic change encompassing the Last Glacial Maximum (LGM) and part

of the Holocene. This together with other published records has led to a regional

evaluation of oceanographic change in the eastern North Atlantic over the past

68 ka, based upon a distinctive dinoflagellate event ecostratigraphy. These changes

reflect changes in the surface waters of the North Atlantic Current (NAC), and

perhaps the deeper thermohaline Atlantic Meridional Overturning Circulation

(AMOC), driving fundamental regime changes within the phytoplanktonic

communities. Three distinctive dinoflagellate cyst associations based upon both

factor and cluster analyses have been recognised. Associations characterised by
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Bitectatodinium tepikiense (between 61.1 ± 6.2 to 13.4 ± 1.1 ka BP),

Nematosphaeropsis labyrinthus (between 10.5 ± 0.3 and 11.45 ± 0.8 ka. BP),

and the cyst of Protoceratium reticulatum (between 8.5 ± 0.9 and 5.2 ± 1.3 ka. BP)

indicate major change within the eastern North Atlantic oceanography. The

transitions between these changes occur over a relatively short time span (c.1.5 ka),

given our sampling resolution, and have the potential to be incorporated into an

event stratigraphy through the latest Quaternary as recommended by the

INTIMATE (INTegrating Ice core, MArine and TErrestrial records) group. The

inclusion of a dinoflagellate cyst event stratigraphy would highlight changes within

the phytoplankton of the North Atlantic Ocean as a fully glacial world changed to

our present interglacial.

Keyword: Earth science

1. Introduction

The surface of the North Atlantic Ocean, between 40 and 50° N, is the most

thermally reactive part of the ocean (e.g. Thornalley et al., 2009). This is especially

true through the latest part of the Quaternary with sea surface oscillations of

>12 °C during glacial/interglacial cycles and the deglaciation record (McIntyre

et al., 1976; Lowe and Walker, 1997; Eldevik et al., 2014). This will have

considerable effect on the fauna and flora entrained within the surface waters of the

ocean. To date, much effort into the dinoflagellate cyst climate signal has

concentrated on the neritic realm with less focus on the deep ocean (de Vernal and

Marret, 2007). This is explained by less dinoflagellate cyst diversity in the ocean

than within the shelf seas (Zonneveld et al., 2013), and until lately by the limited

availability of truly oceanic sedimentary sequences for relatively high resolution

studies.

This study principally examines the dinoflagellate cyst record from sediments

recovered from >2000 m water depth in the eastern Atlantic Ocean, but also

includes a comparison with a part record recently completed from the continental

margin of the Porcupine Seabight in core MD01-2461 (Peck et al., 2006; Morris,

2011). The provenance of the studied sediments will have both a regional and local

signature since they are ultimately derived from a complex regimen of various

bottom water currents, the export production from surface water phytoplankton

populations, and sources resulting from the dynamics of the British and Irish Ice

Sheet (BIIS). In particular, the Norwegian Sea Overflow Current (NSOC)

influences both sediment transport and biological content of the contourites of

the Feni Ridge (e.g. Jones et al., 1970). Deposition from the nepheloid layer is

particularly important in these circumstances and the variability of bottom current

activity, as revealed by glaciomarine sediments in both polar oceans and the

northeastern Atlantic basin, serves to illustrate the dynamic history of the last
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glacial − interglacial cycle with its implications for continuing change (see Howe

et al., 2008).

In addition, the understanding of climate change through the latest Quaternary

from both the marine and terrestrial records has long been fraught with difficulties

in correlation given certain limitations in precision and accuracy. The INTIMATE

(INTegrating Ice core, Marine and Terrestrial records) group have established a

protocol to provide an event stratigraphic approach using the Greenland oxygen

isotope record as the stratotype. Although originally focussed on the Last Glacial-

Interglacial Transition (LGIT) it now encompasses the last 30–8 ka b2k (before

2000 AD) and includes such climatic events as the Pre-Boreal Oscillation and the

8.2 ka episode (Hoek et al., 2008), and was most recently expanded to 128 ka b2k

(Blockley et al., 2014). Even so the ordering of events can be difficult because of

dating limitations and relevant sampling resolutions (Lowe et al., 2008). Work on

the tephrochronology of the North Atlantic (Austin et al., 2014; Davies et al.,

2014) holds out the promise of increased precision in the establishment of a

detailed chronology for the area and hence a better understanding of concomitant

environmental change within the marine realm.

The dinoflagellate cyst record described herein from the Feni Ridge and Porcupine

Seabight illustrates the potential for including these organisms within an event

stratigraphy. This study provides a solid chronostratigraphic dating for the last

34 ka and is quite sufficient to order the dinoflagellate cyst events described herein.

To date, and despite the many efforts of various dinoflagellate cyst researchers

(Zumaque et al., 2012; De Schepper, 2013; Bonnet et al., 2013; de Vernal et al.,

2013; Rochon et al., 2013; Caulle et al., 2013; Hennissen et al., 2014; Van

Nieuwenhove et al., 2016), they remain a ‘Cinderella’ group and are often little

utilised in examining the LGIT or even the Quaternary where ultra-high resolution

stratigraphic sequences have been recovered from the global ocean. Much recent

research concentrates on planktonic foraminifera and the recoverable stable oxygen

isotope record (see Hibbert et al., 2010).

Finally, recent work on the Greenland ice core records reveal marked climatic

shifts, of up to 10 °C, during the LGIT occurring on a decadal time scale and

sometimes in less than 20 years (Rasmussen et al., 2006; Rasmussen et al., 2014).

Also recent research on the persistence of deep ocean circulation, North Atlantic

Deep Water (NADW), during the last interglacial, 128–116 ka, has found that,

contrary to it being stable, it was interrupted by several centennial scale reductions

in temperature and, at times, accompanied by increased ice rafting and the

expansion of polar water (Galaasen et al., 2014). Our present interglacial, with the

prospect of increased ice melting from the Arctic, Greenland and high latitudes,

may well mimic this behaviour. Such changes occurring in less than a generation
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(Rasmussen et al., 2006; Rasmussen et al., 2014) or over a centennial time scale

(Galaasen et al., 2014) are of significant worry in a steadily warming world.

The aim of this study is to provide a dinoflagellate cyst event ecostratigraphy

through the LGIT, as the North Atlantic switched from a glacial to interglacial

mode. It provides implications for regime change within the surface waters of the

Atlantic Ocean and the importance of adding a planktonic proxy to the integrated

event stratigraphy. Dinoflagellate cysts are, for instance, a much more diverse

group of organisms than the planktonic foraminifera at these latitudes and over this

particular time interval (e.g. de Vernal et al., 2000).

2. Materials and methods

Sediment samples have been analysed from both DSDP Hole 610A on the Feni

Ridge and from MD01-2461 on the continental margin of the Porcupine Seabight.

The first provides data for the main aim of the study whereas the second is included

to improve the chronostratigraphy and to emphasise the regional aspect. Both sites

are treated separately and described below.

2.1. Hole 610A − Feni Ridge

2.1.1. Introduction

Leg 94 of the Deep Sea Drilling Project (DSDP) was undertaken to investigate

bottom-current controlled deposition, known as contourites, from sediment drifts

on the Feni Ridge, in the northeastern Atlantic Ocean. These deep sea sediments

result from persistent or semi-persistent thermohaline flow and form an archive of

ocean circulation that has responded to climate variation (Hollister and Heezen,

1972; De Haas et al., 2003; Rebesco et al., 2014). The Feni Ridge contourite drift

is influenced by Arctic Intermediate Water (AIW) originating from the Greenland-

Iceland-Norwegian seas and flowing over the Iceland-Scotland Ridge as

Norwegian Sea Overflow Water (NSOW) (Robinson and McCave, 1994).

The Feni Ridge is about 600 km in length and up to 700–1000 m thick; it was

constructed at the inception of deep-water circulation around the mid-Miocene

(∼15 Ma) (Jones et al., 1970; Ellett and Roberts, 1973; Laberg et al., 2005).

Although the action of the NSOW was probably dominant during preglacial times,

Kidd and Hill (1987) suggested its influence decreased as the glacial − interglacial

cyclicity became established, and then remained relatively stable over the now

relict wave fields.

2.1.2. Study site

Hole 610A was drilled near the axis of the Feni Ridge, at the crest of a sediment

wave, on the western side of the Rockall Trough. It was cored in 1983 at Lat: 53°
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13.297′ N and Long: 18° 53.213′ W in 2417 m of water using a hydraulic piston

corer (HPC) (Fig. 1). Recovery was excellent at 95% and some 201 m of core was

recovered with the oldest sediments being dated as Early Pliocene (NN15). In this

study we focus on the deglaciation and Holocene records (Core 1, Sections 1 to 5).

Indeed the sediment analysed was assigned to the late Pleistocene − Holocene

NN21 and to the diatom Pseudoeunotia doliolus Zone (Kidd and Hill, 1987). A full

list of the samples studied is provided in Table 1.

2.1.3. Lithology

The sediments recovered in Core 1 are undisturbed interbedded glacial muds to

non-glacial nannofossil oozes. However, the photographs of the cores (Ruddiman

et al., 1987) suggest some disturbance in the upper part of Core 1, Section 1 as does

the somewhat anomalous stable isotope results (see later discussion, Table 1 and

Fig. 2. All the studied sediments fall within Unit I of Kidd and Hill (1987), which
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Fig. 1. Map of the northern North Atlantic Ocean showing the sites of DSDP Hole 610A on the Feni

Ridge and Core MD01-2461 on the continental margin of the Porcupine Seabight. The blue lines show

the course of various deep water flows including the ISOW − Iceland Scotland Overflow Water; the

NSOW − Norwegian Sea Overflow Water; the DSOW − Denmark Strait Overflow Water; the NADW

− North Atlantic Deep Water and the LDW − Lower Deep Water, following Kissel et al. (2013). The

black arrows indicate major surface currents such as the NAC (North Atlantic Current) and the IC

(Irminger Current).
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Table 1. List of studied samples from DSDP Hole 610A with their British

Geological Survey numbers together with their carbon and oxygen stable isotope

data.

CSB No. Hole Core Section Depth (cm) Cumulative Depth (cm) δ13C δ18O

10116 610A 1 1 12-14 12-14 -0.26 4.19

10117 30-32 30-32 -0.13 4.1

10118 40-42 40-42 0.03 3.2

10119 60-62 60-62 0.13 3.16

10120 75-77 75-77 0.59 2.97

10121 90-92 90-92 0.49 2.97

10122 106-108 106-108 0.13 2.92

10123 120-122 120-122 0.15 3.16

10124 135-137 135-137 0.3 1.14

10125 148-150 148-150 0.06 1.22

10126 1 2 14-16 164-166 -0.1 3.92

10127 30-32 180-182 -0.13 3.64

10128 38-40 188-190 -0.47 3.84

10129 60-62 210-212 -0.23 3.56

10130 75-79 225-229 -0.27 3.48

10131 88-90 238-240 -0.05 3.57

10132 104-106 254-256 -0.03 3.67

10133 121-123 271-273 -0.02 3.25

10134 134-136 284-286 -0.31 3.82

10135 148-150 298-300 -0.13 3.79

10136 1 3 14-16 314-316 0.14 3.45

10137 30-32 330-332 0.16 3.4

10138 40-42 340-342 -0.05 3.73

10139 60-62 360-362 -0.23 3.81

10140 75-77 375-377 -0.17 3.89

10141 90-92 390-392 -0.03 3.93

10142 106-108 406-408 -0.1 3.72

10143 120-122 420-422 -0.23 3.81

10144 135-137 435-437 -0.43 2.76

10145 148-150 448-450 -0.12 3.24

10146 1 4 12-14 462-464 -0.6 3.17

10147 30-32 480-482 -0.45 3.37

10148 45-47 495-497 -0.48 3.16

10149 60-62 510-512 -0.44 3.16

10150 75-77 525-527 -0.21 2.95

(Continued)
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consists of alternating a) calcareous mud, olive grey to light brown clayey silts with

<15% sand; the clay fractions consist of quartz and feldspar with relatively little

clay minerals plus volcanic glass and shell fragments together with foraminifera,

nannofossil and dropstones and b) white to light grey oozes with <5% terrigenous

material and carbonate oozes with 30–60% terrigenous material; foraminifera make

up >10%. Contact between the two lithologies is gradational and shows no

structures that might relate to current deposition; bioturbation is intense with

Zoophycos, Chondrites and Planolites (Kidd and Hill, 1987). In addition dark grey

to black volcanic ash occurs as a minor component.

2.1.4. Age model

Sedimentation rates are almost linear and were calculated at between 5 and 6 cm/ka

from the Feni and Gaardar drifts (Kidd and Hill, 1987). Interestingly Van Weering

and De Rijk (1991) concluded that, at present, a low energy depositional regime

exists over the Feni Ridge with an increased influence of the Northeast Atlantic

Deep Water (NEADW). Relative dating by the first appearance datum of Emiliania

huxleyi at Core 2, Section 6, 70–71 cm, equivalent to a drilled depth of 17.3 m

(Takayama and Saito, 1987), is generally accepted to occur at 250 ka ago

(Shipboard Scientific Party, 2005), and gives a slightly higher sedimentation rate

of 6.9 cm/ka. Therefore, the uppermost 616 cm of the core would correspond to

about the last 89 ka.

However, our new age model is constrained by five accelerator mass spectrometry

(AMS) radiocarbon measurements (14C) measured at the Keck Carbon Cycle

Accelerator Mass Spectrometry facility at UC Irvine, USA. The five samples for

radiocarbon dating consist of the planktonic foraminifera Orbulina universa and

Globigerina bulloides, both species have a habitat preference for the upper water

column (0–30m) (Anand et al., 2003; Farmer et al., 2007; Jonkers et al., 2013) and

are, therefore, well suited to record past surface water ages. Individuals were

Table 1. (Continued)

CSB No. Hole Core Section Depth (cm) Cumulative Depth (cm) δ13C δ18O

10151 93-95 543-545 -0.36 3.86

10152 105-107 555-557 -0.38 3.91

10153 120-122 570-572 -0.4 2.96

10154 135-137 585-587 -0.07 3.01

10155 149-151 599-601 -0.03 3.26

10156 1 5 15-17 615-617 0.18 3.02
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[(Fig._2)TD$FIG]

Fig. 2. Dinoflagellate cyst spectrum of selected species from DSDP Hole 610A together with the factor and cluster analyses on the cyst assemblage data and illustrating the three factors and four

clusters in relation to the stable oxygen and carbon records taken on planktonic foraminifera. The ages follow the age model based on five AMS 14C dates (black triangles, for errors, see Table 2)

and the Bayesian age-depth modelling extrapolated ages (white triangles). Full data sets are available from the authors on request.
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picked at 28, 62, 107, 182 and 284 cm respectively (Table 2). All radiocarbon dates

were converted to calendar years with the Calib 7.0.7. software and the MARINE

09 calibration dataset (Stuiver and Reimer, 1993; Stuiver et al., 1998). We applied

the implicit reservoir age correction (ΔR = 0) for all dates because the precise

reservoir correction for the area is uncertain. In Table 2 we report the weighted

mean averages (WMA) of the calibrated probability distribution for each age with

their respective 2σ confidence range. The resultant sedimentation rates for the core

section between 28 and 284 cm are relatively constant at 9.36 ± 1.6 cm per

thousand years, indicating that sedimentation rates over the glacial to interglacial

transition did not change greatly (Fig. 3). At an average sampling resolution of

20 cm our record provides a sample approximately every 2000 years. Error

estimates for each sample at 95% confidence intervals were calculated using Bacon

2.2, Bayesian age-depth modelling software with the following prior values to

begin the Markov-chain Monte Carlo iterations (accumulation shape = 1.5,

accumulation mean = 100 years/cm, memory strength = 4, memory mean = 0.7).

Largest errors result for samples that fall outside of the dated depths and had to be

estimated through extrapolation. At 616 cm the model estimates an age of 68.28 ±

7.0 ka BP. Applying the same approach we obtain an age of 3.82 ± 1.7 ka BP at

0 cm indicating that modern sediments are missing, which is not unusual as these

are frequently lost during core recovery.

2.1.5. Processing and statistical techniques

The forty-one samples, taken at approximately 20 cm intervals, were given a

standard palynological processing technique involving acid digestion. Basic

palynological techniques are described by Wood et al. (1996); also employed was

the filtration procedure of Neves and Dale (1963), using Fisons sintered glass

funnels of porosity grade 2 (40–90 μm), and the swirling technique of Funkhouser

and Evitt (1959) in order to concentrate the dinoflagellate cyst residues. Oxidation

was avoided to prevent the possible selective loss of peridiniacean cysts (Dale,

1976; Zonneveld et al., 2008). The use of ultrasound was not required as little

amorphous organic material (AOM) was encountered. The resulting palynological

residues were stained with Safranin, dispersed onto cover slips and bonded to

microscope slides using Petrapoxy 154 resin with a refractive index of 1.54.

The samples were treated quantitatively to calculate the numbers of dinoflagellate

cyst species per gram of dry sediment. The original dry weight of sample was noted

and aliquot subsamples were taken for mounting and counting (Harland, 1989).

Samples were counted from a single slide representing either 1 g of sediment or a

fraction thereof using an x 40 objective of a Zeiss Axiolab microscope following

earlier work published in Harland (1994). The counts varied from < 10 to > 600

dinoflagellate cysts; the numbers of cysts per gram of sediment, resulting from the

recounted and re-examined material, were used to construct a dinoflagellate cyst
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Table 2. AMS 14C radiocarbon dates for DSDP Hole 610A.

UCIAMS ID Exp Site Hole Core Sect. Half top (cm) bottom (cm) Planktonic foraminifera Radiocarbon age Calibrated age WMA 2σ range

±1σ error (yr BP) (cal. ka BP) (cal. ka BP)

166207 94 610 A 1 1 W 28 30 O. universa 6535 ± 25 7053 6962 − 7145

166208 94 610 A 1 1 W 62 64 G. bulloides 9660 ± 25 10556 10476 − 10649

166209 94 610 A 1 1 W 107 109 G. bulloides 13100 ± 35 15120 14941 − 15277

166210 94 610 A 1 2 W 32 34 G. bulloides 17910 ± 60 21144 20906 − 21382

166211 94 610 A 1 2 W 134 136.5 G. bulloides 31150 ± 260 34666 34143 – 35167
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spectrum and were also subjected to statistical analyses using the PAST software,

University of Oslo (Hammer et al., 2001). The Q-mode cluster analysis was used in

preference for this biostratigraphical study in contrast to the R-mode analysis,

which is used for clustering of measured variables e.g. associations of various

species (Parker and Arnold, 1999). In our study the Q-mode cluster analysis was

based on an unweighted pair group average (UPGMA) algorithm and a Pearson’s
correlation as a similarity index. The UPGMA method creates clusters, which are

joined based on the average distance between all members in the two groups.

Taking a complement l-r of Pearson’s r correlation across the variables makes it a

distance measure (Hammer et al., 2001). The UPGMA method was chosen because

its dendrograms are known to show the highest cophenetic correlation (Sokal,

1986). Cophenetic correlation approaching 1.0 is a necessary criterion for

optimality of the chosen clustering method (Davis, 1986). In our study the

UPGMA algorithm and similarity based on Pearson’s correlation together yielded a
highest cophenetic correlation of 0.85. In order to confirm the presence of observed

cluster units we use a parallel multivariate technique i.e. factor analysis as

recommended by Parker and Arnold (1999). A simple CABFAC (Calgary and

Brown Factor Analysis: Klovan and Imbrie, 1971) Q-mode factor analysis with

[(Fig._3)TD$FIG]

Fig. 3. Age model for the late Quaternary sediments recovered in DSDP Hole 610A based upon 5 AMS 14C dates (Table 2). Error

estimates (at 95% confidence intervals) for each sample were calculated using Bacon 2.2 Bayesian age-depth modelling software (see

text for details).
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varimax rotation was performed on data of the most abundant dinoflagellate cysts.

The varimax rotation is commonly used to maximize the variance in factor

loadings i.e. to increase the explanatory value of factors (Parker and Arnold, 1999).

All the initial counts, the percentage occurrences and the calculated cysts per gram

of sediment data together with the prepared slides are held within the archive

records of the British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK,

(www.bgs.ac.uk).

2.2. Porcupine Seabight

2.2.1. Introduction

Seventeen samples, analysed as a part of a larger study of the Last Glacial

Maximum recorded from Core MD01-2461, is included here for comparison, and

to assess the geographic extent and timing of the dinoflagellate cyst ecostrati-

graphy. The material was recovered from the north-western flank of the Porcupine

Sea Bight (51° 45′ N, 12° 55′W) at a water depth of 1153 m. The core was

collected by the Marion Dufresne (campaign reference MD123-Geosciences) in

2001 using a calypso coring device. The total length of the extracted core was

20.23 m but only material from the top 6 m was analysed. The sample data are

provided in Table 3 whereas the stratigraphy, counts and statistical treatments are

detailed in Morris (2011).

2.2.2. Study site

Core MD01-2461 is situated approximately 160 km offshore of western Ireland

(Fig. 1) and is located along the south east margin of the Rockall Trough, a

bathymetric depression that runs NNE-SSW. The Porcupine Sea Bight extends

about 230 km in a north-south direction, and is 100 km wide at most. It is an

embayment of the North Atlantic continental margin bounded to the north by the

Slyne Ridge, to the south by the Goban Spur, to the west by the Porcupine Bank

and to the east by the Irish Shelf (Moore, 1992). Water depths range from 400 m in

the north to more than 3000 m in the southwest, where the embayment opens into

the Porcupine Abyssal Plain. Core MD01-2461 was recovered from the north-

western flank of the Porcupine Sea Bight.

2.2.3. Lithology

The present-day sedimentation in the area is dominated by hemipelagic inputs

(Stow and Tabrez, 1998). Sediments become finer towards the greater depths (Rice

et al., 1991). The main sediment supply zone is from the shelves (Celtic and Irish

seas), while the input from the Porcupine Bank is much smaller (Rice et al., 1991).

The 20.23 m MD01-2461 core recovered olive-grey silty-clay sediments with
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frequent drop stones. Visual observations and x-radiographs did not suggest any

evidence of core disturbance or turbidite sequences within the interval studied

(Peck et al., 2007b). Sedimentation rates range between 12 and 60 cm ka−1 (Peck

et al., 2006) and are considered to have reduced during the Holocene (Øvrebø

et al., 2006).

The present-day hydrographic circulation is driven by the formation of

intermediate level water, the Labrador Sea Water (LSW) and deeper circulation

(NADW). Branches of the NADW mix with the overlying LSW and are

recirculated over the Porcupine Abyssal Plain (Van Aken, 2000). Northward flow

of warmer, saline surface waters to the Norwegian Sea via the North Atlantic Drift

(NAD) and Eastern North Atlantic Waters (ENAW) compensates for this

southward penetration of the deep water masses (Peck et al., 2007a). It has been

noted that pole-ward flow occurs at all depth levels along the eastern slope of the

Porcupine Seabight (Rüggeberg et al., 2005; Rüggeberg et al., 2007), though direct

through flow of water below an approximate depth of 500 m is prevented by the

morphology of the Porcupine Seabight and currents are topographically steered in a

cyclonic direction instead (Frank et al., 2004). ENAW overlies and mixes with

Table 3. List of samples selected from the dataset compiled from Morris (2011)

from Core MD01-2461 taken on the continental margin, Porcupine Seabight

together with their calculated ages.

Sample/Slide no. Depth (cm) Ages (ka BP)

336 144.5 8795.605161

335 148.5 9087.479226

328 172.5 10838.72361

327 176.5 11130.59768

320 204.5 13086.44565

319 208.5 13334.68447

391 240.5 15539.998

390 244.5 15668.798

352 294.5 17434.66667

351 298.5 17654

313 370.5 19748.51974

312 374.5 19840.43278

366 429.5 21542.5

258 433.5 21684.498

269 521.5 23963.30133

378 525.5 24029.97

279 601.5 25545.66031

Article No~e00114

13 http://dx.doi.org/10.1016/j.heliyon.2016.e00114

2405-8440/© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2016.e00114


Mediterranean Outflow Water (MOW), which currently bathes the site of MD01-

2461 (Peck et al., 2007a) and is characterized by a salinity maximum and oxygen

minimum at a depth of 1000–1200 m (Frank et al., 2004).

2.2.4. Age model

An age model for Core MD01-2461 was established by Peck et al. (2006, 2007a,

b). Ages are based on 15 AMS 14C dates that have been corrected to a marine

reservoir effect of 400 years and then calibrated to calendar years before present

(BP) using the CALIB Rev 5.0/MARINE04 data set up to 20 14C ka BP, and Bard

et al. (1998) thereafter. Fine tuning of the radiocarbon age model was further

achieved through the correlation of a sea-surface temperature record based on the

relative percentages of Neogloboquadrina pachyderma sinistral within the

assemblage to the GISP2 δ18O atmospheric temperature record (Peck et al.,

2006). Given that this was calculated using a different calibration curve than that

used for the DSDP material we recalibrated all the radiocarbon dates from the

MD01-2461 core using the CALIB 3 curve and found that the calibrated ages are

not significantly different from those provided in Peck et al. (2006), within their

respective 2 sigma error envelopes. Since the age model presented by Peck et al.

(2006, 2007a,b) was further fine-tuned using tephra and N. pachyderma sinistral

abundance counts, there is no need to recalibrate the existing age model for

MD01-2461.

2.2.5. Processing and statistical techniques

Although some 150 samples were originally studied (Morris, 2011) only 17 are

presented here to compare with sample horizons processed from DSDP 610A.

Samples of approximately 1 cm3 were taken at intervals of 4 cm from the upper

6 m of Core MD01-2461, then dried, weighed and processed using acid digestion

without oxidation. The palynological residues were filtered using 20 micron sieve

polyester mesh. Due to the higher amounts of AOM, these samples were gently

sonified using an ultrasonic probe and the final material was mounted on

microscope slides and set with glycerine jelly. Samples were selected to

correspond with equivalent samples from Core DSDP 610A and were subjected

to cluster analysis using PAST and the UPGMA method together with cosine

similarity measures, which both resulted in a cophenetic correlation of 0.88.

3. Results

The samples taken from the uppermost part of Hole 610A on the Feni Ridge were

analysed to examine the latest Pleistocene/Holocene dinoflagellate cyst stratigra-

phy. The uppermost ten samples had been the subject of a study published

previously by Harland (1994). All samples were re-examined and counted for this
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research. A full floral list of the recovered dinoflagellate cysts is presented in

Appendix I. Interestingly the samples contained little else except dinoflagellate

cysts and the occasional gymnospermous pollen, spores, fungal remains together

with some Cretaceous and Paleogene reworking.

A dinoflagellate cyst spectrum of selected species is illustrated in Fig. 2, with the

major changes in the cyst assemblages indicated by the informal associations. The

statistics (cluster and factor analyses) detail the more significant shifts in the

dinoflagellate cyst assemblages.

3.1. Cluster analysis: DSDP Hole 610A

The cluster analysis essentially distinguished four associations that are also

subjectively identified by eye from the dinoflagellate cyst spectrum and mark

major environmental changes within the record.

Association A. This initial unit encompasses the basal five samples and falls

between 555 and 617 cm depth from Core 1, Section 4 to Core 1, Section 5. The

age model suggests that this unit can be dated between c. 62.1 ± 6.3 and 68.3 ± 7.0

ka. BP. It is largely characterised by poor recovery, <500 cysts per gram of

sediment, assemblages with a diversity never exceeding ten species and largely

dominated by the cysts of Protoceratium reticulatum (Fig. 4, figure panels 2, 3)

with Nematosphaeropsis labyrinthus (Fig. 4, figure panels 7, 10) and occasional

Impagidinium species.

Association B. This second unit encompasses the bulk of the dinoflagellate cyst

record. It includes samples from 90–545 cm from Core 1, Section 1 to Core 1,

Section 4. A date of 61.1 ± 6.2 to 13.4 ± 1.1 ka BP is suggested based upon the age

model. It is characterised by good recovery of mostly >1000 cysts per gram of

sediment, and assemblages of never more than ten species. The striking feature of

Association B is the high numbers of Bitectatodinium tepikiense (Fig. 4, figure

panel 1) with the cysts of Protoceratium reticulatum and occasional Impagidinium

and Spiniferites species. A second prominent feature of the unit is a number of

peak occurrences that can be seen in the numbers of Bitectatodinium tepikiense and

reflected in the total numbers of dinoflagellate cysts; this feature has also been seen

by Zumaque et al. (2012) off the Faeroes. This suggests regular pulses of

recruitment to the site of deposition and may have some importance in the final

interpretation of the environment of deposition. In particular the dinoflagellate cyst

spectrum (Fig. 2) reveals that the youngest part of this unit is characterised by

particularly low cyst numbers and is dated at between 21.9 ± 0.8 and 13.4 ± 1.1 ka.

BP.

Association C. This unit comprises only two samples taken between 60 and 77 cm

depth from Core 1, Section 1. A date of 12.1 ± 1.0 to 10.4 ± 0.4 ka BP is given

Article No~e00114

15 http://dx.doi.org/10.1016/j.heliyon.2016.e00114

2405-8440/© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2016.e00114
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Fig. 4. Panel 1: Bitectatodinium tepikiense, MPK 14 553, high focus showing the camarate 3′’ and planate 4′’ opercula, specimen is 48

μm in diameter, sample CSB 10 129 RH2, England Finder G61/3. Panel 2: Cyst of Protoceratium reticulatum, MPK 14 554, low focus

showing enlarged 3′’ precingular archeopyle, central body is 30 μm in diameter, sample CSB 10 145 RH3, England Finder N38/3.

Panel 3: Cyst of Protoceratium reticulatum, MPK 14 555, low focus showing the enlarged precingular 3′’ archeopyle, central body is

31 μm in diameter, sample CSB 10 116 RH1, England Finder K68/0. Panels 4, 5: Spiniferites mirabilis, MPK 14 556, 4. Low focus

showing the 3′’ precingular archeopyle and the gonal and sutural processes, central body is 47.5 μm in length, sample CSB 10 117

RH1, England Finder J58/0; 5. Median focus showing the nature of the two prominent antapical processes. Panel 6: Impagidinium

sphaericum, MPK 14 557, low focus showing the 3′’ precingular archeopyle and the dorsal paratabulation, central body is 42 μm in

length, sample CSB 10 122 RH1, England Finder T55/0. Panels 7, 10: Nematosphaeropsis labyrinthus, MPK 14 558, 7. Low focus

showing the processes and trabeculae, central body is 62.5 μm in diameter including the processes, sample CSB 10 118 RH1, England

Finder Q47/0; 10. High focus showing the trabeculae and position of the archeopyle. Panels 8, 9: Impagidinium aculeatum, MPK 14

559, 8. Low focus showing the 3′’ precingular archeopyle and nature of the gonal processes, specimen is 32.5 μm in length, sample

CSB 10 156 RH1, England Finder S49/4; 9. Median focus showing the intergonal parasutural membranes and the distinctive apical

boss. Panels 11, 12: Spiniferites elongatus, Spiniferites cf. elongatus sensu, MPK 14 560. 11. High focus showing the nature of the 3′’
precingular archeopyle and the gonal processes, central body is 42.5 μm excluding the processes, sample CSB 10 118, England Finder

H60/1; 12. Low focus showing the elongate nature of the central body and the ventral paratabulation by transparency.
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based upon the AMS 14C age model. The unit is largely made up of significant

numbers of Nematosphaeropsis labyrinthus with the cysts of Protoceratium

reticulatum and occasional Impagidinium and Spiniferites species. The high

numbers of Nematosphaeropsis labyrinthus is especially noteworthy and is in

contrast to the younger Association D, and to the Porcupine Seabight further east.

Association D. The uppermost unit consists of the final three samples from

12–42 cm depth from Core 1, Section 1. This interval dates between 8.5 ± 0.9 and

5.2 ± 1.3 ka BP and therefore falls within the Holocene Thermal Maximum. They

are composed of mostly the cysts of Protoceratium reticulatum with Nemato-

sphaeropsis labyrinthus and considerable numbers of Spiniferites elongatus

(Fig. 4, figure panels 11, 12) and Spiniferites mirabilis (Fig. 4, figure panels

4, 5) together with Protoperidinium pentagonum. This assemblage is similar to

modern assemblages from the North Atlantic Ocean (see later discussion). Marked

similarities exist between both associations C and D with Holocene dinoflagellate

cyst records from the South Icelandic Basin (Eynaud et al., 2004) and MIS 6 and 5

together with MIS 2 in the Bay of Biscay (Penaud et al., 2009).

3.2. Factor analysis

The factor analysis resulted in three factors, which together explain 99.3% of the

variance (Table 4). Three dinoflagellate species demonstrated absolute factor

scores >1, which usually implies a high species contribution to the factor (Klovan

and Imbrie, 1971) as can be seen in the dinoflagellate cyst spectrum (Fig. 2).

The analysis divides the record into three dinoflagellate cyst associations

represented by factors 1–3 (Fig. 2). The first assemblage corresponded to Factor

1 (75.2% of variance), was characterised almost in its entirety by Bitectatodinium

tepikiense and was exactly equivalent to Association B of the cluster analysis. A

second assemblage corresponded to Factor 2 (20.6% of variance) and was

characterised by the cysts of dinoflagellate Protoceratium reticulatum. This factor

is clearly linked to both Associations A and D and makes a small contribution

within Association B, having some relationship to the low numbers of

Bitectatodinium tepikiense. Finally the third assemblage corresponds to Factor 3

(3.6% of variance) and consists almost entirely of Nematosphaeropsis labyrinthus;

this final assemblage is linked to Association C of the cluster analysis.

Both the cluster analysis and factor analysis identify the same units within the

dinoflagellate cyst temporal record. This provides a consistent and potentially

significant set of environmental changes within the dinoflagellate populations

through the latest Pleistocene and into the Holocene.

The small set of seventeen samples selected from the continental margin of the

Porcupine Seabight sediments have been chosen for comparison to the Feni Ridge
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material. The full results from the Porcupine Seabight study are presented in

Morris (2011) but for comparative purposes the chosen samples have been

subjected to cluster analysis. The samples were chosen to link the age model of

Hole 610A with the chronostratigraphy of MD01-2461 (see earlier). The

dinoflagellate cyst spectrum, based on selected species, is illustrated in Fig. 5.

The figure illustrates both the difference in the two sites with DSDP Hole 610A

containing a low diversity cyst assemblage in contrast to that of MD01-2461,

where the presence of peridiniacean cysts is notable. In contrast there are

similarities in the temporal record of the main species such as Bitectatodinium

tepikiense, Nematosphaeropsis labyrinthus and the cysts of Protoceratium

reticulatum and to a lesser degree with such species as Impagidinium aculeatum

(Fig. 4, figure panels 8,9), Impagidinium paradoxum, Impagidinium sphaericum

(Fig. 4, figure panel 6), and Spiniferites mirabilis.

Table 4. Varimax scores of dinoflagellate cyst factors defined by CABFAC factor

analysis. The bold numbers indicate dinoflagellate species with high (> 1) absolute

value of factor scores. The Table also shows eigenvalues and % of variance

explained by each factor.

Species Factor 1 Factor 2 Factor 3

Bitectatodinium tepikiense 4.122 0.030 0.071

Impagidinium aculeatum 0.004 0.029 -0.009

I. pallidum -0.006 0.041 -0.013

I. paradoxum 5.02E-06 -0.001 0.011

I. patulum 0.004 -0.002 0.002

I. sphaericum 0.018 0.036 0.021

I. strialatum 0.0002 -0.001 0.008

Nematosphaeropsis labyrinthus -0.071 0.429 4.079

Protoceratium reticulatum -0.023 4.098 -0.437

Spiniferites elongatus -0.014 0.061 0.265

S. lazus -0.002 0.018 -0.013

S. membranaceus -0.001 0.003 0.013

S. mirabilis -0.027 0.081 0.301

S. ramosus 0.044 0.008 0.014

Spiniferites spp indet. 0.053 0.071 -0.068

Protoperidinium pentagonum -0.006 0.024 -0.006

Protoperidinium spp indet. [RB] 0.014 -0.011 0.011

Eigenvalues 30.813 8.430 1.466

Variance (%) 75.15 20.56 3.58
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The Porcupine Seabight data only encompasses ages from 8.8 to 25.5 ka BP and,

therefore, can only be compared with the upper part of Hole 610A. Nonetheless the

assemblage similarities lend weight to the potential of a regional dinoflagellate cyst

ecostratigraphic signal. The dinoflagellate cyst spectrum of the samples from the

Porcupine Seabight reveal, by visual inspection and cluster analysis, a lower earlier

unit B in which dinoflagellate cyst numbers are low, <6000 cysts per gram of

sediment, dated between 19.8 and 25.5 ka BP and consisting of predominantly

Bitectatodinium tepikiense with minor amounts of other species. This was also

noted earlier by Zumaque et al. (2012) also recognising B. tepikiense as a dominant

species within MIS 3. In addition Morris (2011) reported reworked palynomorphs

and large amounts of terrestrial phytoclasts linked to land scour by the BIIS. This

part of the Porcupine Seabight record is of the same age range as the latest part of

Association B recovered from Hole 610A and provides evidence indicating a

similar dinoflagellate ecostratigraphy within the LGM in this part of the eastern

North Atlantic (see also Zumaque et al., 2012). This older section of the Porcupine

Seabight material dominated by Bitectatodinium tepikiense also contains signifi-

cant numbers of Protoperidinium spp., the cysts of Protoceratium reticulatum, and

Spiniferites spp. (see also Zumaque et al., 2012). The presence of Islandinium

minutum (see Morris, 2011) may indicate a subpolar-type environment of colder

waters and lower salinities with potentially some sea-ice development (Rochon

et al., 1999). Productivity levels may have been low, as indicated by cyst per gram

values <7500, with an almost continuous supply of ice-rafted debris to the core site

at this time (Peck et al., 2006) coupled with terrestrial phytoclasts from land scour

by the adjacent BIIS, indicating further conditions colder than today (Morris,

2011).

Interestingly the younger part of the Porcupine Seabight is characterised by

particularly high cyst numbers, >2600 to <60000 consisting of Bitectatodinium

tepikiense, the cysts of Protoceratium reticulatum and Nematosphaeropsis

labyrinthus (Fig. 5). Morris (2011) noted cyclical changes in dominance between

B. tepikiense and the cysts of P. reticulatum suggesting a periodic strengthening of

the North Atlantic Current and some brief returns to cold conditions. This part of

the Porcupine Seabight dinoflagellate cyst record, unit B, correlates to the upper

part of Associations B on the Feni Ridge. On the continental margin of the

Porcupine Seabight a major shift in cyst productivity and a significant of the cysts

of P. reticulatum takes place at 15.5 ka BP, one of the most significant changes,

whereas at Hole 610A the switchover occurs around 10.4 ± 0.4 and 8.5 ± 0.99 ka

BP. This suggests a strengthening NAC gradually widening westwards.

Samples from the Porcupine Seabight, equivalent to Cyst Association D from Hole

610A, show significant increases in cyst diversity, notably with Spiniferites

hyperacanthus, S. elongatus, and S. membranaceus, and increased numbers of

Impagidinium species. In addition, these Porcupine Seabight samples from the
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earliest Holocene contain a range of Protoperidinium species including the cysts of

P. conicum, P. leonis, P. pentagonum, and P. subinerme, which are not found in

Hole 610A, perhaps indicating differences in cyst production across the important

ecological boundary between the neritic and oceanic realms along the continental

margin together with possible increased water temperatures. The presence of the

cyst of Protoperidinium pentagonum from around 16.5 ka B.P. also suggests this

warming trend, with concentrations peaking at around 11.2 ka B.P. Increased

numbers of Spiniferites mirabilis appear to follow on from this, and likely indicate

that this was the warmest section of the core (Rochon et al., 1999; Penaud et al.,

2008). Reduced numbers of terrestrial phytoclasts also represent a period of

terrestrially-sourced background sedimentation without glacial scour. Marine

productivity was significant at this stage, and an increasing trend is apparent

(Morris, 2011).

4. Discussion

The dinoflagellate cyst analysis has revealed a number of clearly distinguishable

associations. The first, A, may represent the latest part of an interglacial before the

onset of the LGM. However for the moment there is insufficient evidence to

comment further except that the occurrence of the cysts of P. reticulatum may

indicate the activity of the NAC transporting heat to higher latitudes.

A second association, B, with an early part overwhelmingly dominated by

Bitectatodinium tepikiense (often > 1000 cysts per gram of sediment) and a later

part with fewer numbers of the species (often < 100 cysts per gram of sediment) is

of particular interest. Zumaque et al. (2012), in their study of MIS 3 south of the

Faeroe Shetland Gateway, also found a dominance of Bitectatodinium tepikiense

suggesting ice free waters and fluctuations matching the evolution of the proximal

ice sheets. The cysts of P. reticulatum are an important component together with

Spiniferites spp. and Impagidinium forms. The factor analysis picks out a number

of horizons where P. reticulatum is more represented; this may be indicative of a

possible short term change within a fairly monotonous association. The available

dating suggests that this association is between 13.4 ± 1.1 and 61.1 ± 6.2 ka BP

and an assignment to MIS 2–4. This association certainly correlates with sediments

analysed from the Porcupine Seabight and from further south off the coast of

Portugal (Zippi, 1992; Turon et al., 2003). The association is consistent with strong

seasonality, possible reduction in salinity and cooling of the surface waters. The

distribution data for B. tepikiense (Zonneveld et al., 2013) show some restriction to

sub-polar and temperate seas with SST of −2.0–26.9 °C (winter–summer) and SSS

of 17.4–39.3 psu (spring–autumn). There is some suggestion that it occurs with sea

ice cover of less than four months (de Vernal et al., 1998) whereas Dale (1985) and

Bakken and Dale (1986) suggest it may have an association with the polar front.

The cyst spectrum reveals a cyst species that has particularly high occurrences on
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four occasions within Association B and this may be of some significance. The

occurrence of particularly high numbers of B. tepikiense (50–95%) between 24.8 ±

2.1 and 57.6 ± 5.7 ka may be indicative of a unique environment as there is no

modern analogue in the modern North Atlantic. Interestingly there are no polar

species present and the numbers of cysts suggest a well-established thriving

dinoflagellate population over a period of some 35 ka or so with occasional warmer

components. Cyclical reductions in overall cysts per gram values coincide well

with periods around the dates of Heinrich Events H6 to H1 (Hemming, 2004).

Towards the later part of the sequence the cyst association is notable for its low

numbers, falling to < 500 cysts per gram of sediment. This is dated at between

21.9 ± 0.8 and 13.4 ± 1.1 ka BP and it is surmised that this represents the LGM. In

the Porcupine Seabight sequence there is a similar association dated between 25.5

and 15.5 ka BP, thought to be assignable to the LGM. Robinson et al. (1995) show

the presence of Heinrich events H3 to H1? over this period within a zone of high

IRD. Their reconstruction of the LGM Atlantic Ocean reveals Hole 610A

occurring in an area affected by melting icebergs and the warm North East Atlantic

Current (NEAC) altogether consistent with the dinoflagellate cyst evidence. Caulle

et al. (2013) also document a very similar sequence of events off the south Faeroes.

The sporadic occurrences of the cysts of Protoperidinium reticulatum may well be

associated with Heinrich events and/or pulses of increasing warm water from the

NEAC (see also Eynaud et al., 2002).

The younger part of unit B, characterised by low numbers of dinoflagellate cysts

(see above) contains a mix of species none of which are particularly dominant.

These include B. tepikiense, some Impagidinium species, N. labyrinthus, the cysts

of P. reticulatum and Spiniferites species. This species association is not at all out

of place as an extant North Atlantic assemblage. The comparable assemblages

from the Porcupine Seabight, also the younger part of unit B, reveal a similar

association but perhaps with the addition of the cysts of Lingulodinium polyedrum

and round, brown Protoperidinium cysts. The addition of spores and pollen

together with reworked palynomorphs and wood is suggestive of the influence of

the BIIS (see Zaragosi et al., 2001; Penaud et al., 2009).

The incoming of the younger association, C, at 12.1 ± 1.0 ka BP marks the most

significant change within the dinoflagellate cyst record at DSDP Hole 610A. The

sudden disappearance of B. tepikiense and the incoming of N. labyrinthus, higher

numbers of the cysts of P. reticulatum and Spiniferites species, including both S.

elongatus and S. mirabilis, are noteworthy. It is particularly characterised by the

presence of N. labyrinthus and by cyst numbers approaching 1000 cysts per gram

in the younger of the two samples. At 12.1 ± 1.0 ka BP the earlier part of

Association C occurs at the onset of the Pleistocene/Holocene transition at 11.7

calendar yr b2k (Walker et al., 2009). The resolution of the sampling is not,

however, sufficient to distinguish the Bølling/Allerød or the Younger Dryas. The
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higher resolution Porcupine Seabight samples show increased numbers of the

species already mentioned together with B. tepikiense (not seen at DSDP 610A),

the cyst of Lingulodinium polyedrum and the cysts of Protoperidinium species

(Fig. 5). The species are indicative of an extant North Atlantic assemblage.

Penaud et al. (2009) examined the dinoflagellate cyst record of the LGM to

Holocene in the northeastern Atlantic, Southwestern Approaches and the Bay of

Biscay, and described high numbers of the cysts of Protoceratium reticulatum and

an increase in Nematosphaeropsis labyrinthus within the Bølling/Allerød. This is

similar to the situation described herein but documented in more detail

emphasising the use of dinoflagellate cysts in studies of the LGIT.

In the Porcupine Seabight this same association occurs between 11 and 9 ka (Peck

et al., 2006) at about the time of the Bølling/Allerød. It is also documented by

Eynaud et al. (2004) from the South Icelandic Basin and a little earlier in the Bay

of Biscay (Penaud et al., 2009). Zonneveld et al. (2013) regard N. labyrinthus as a

cosmopolitan species and provide its environmental parameters as SST of

−2.1–29.8 °C (spring–summer) and SSS of 25.8–39.4 psu (summer–autumn).

The occurrence of the species in high numbers has been associated with cooler

waters at the beginning of the Holocene before the climatic optimum (Baumann

and Matthiessen, 1992). This association has been interpreted as a transition phase

before the onset of environments consistent with the modern oceanography but

with relatively cool waters before the full effect of the NAC was apparent. This

time interval includes the Bølling/Allerød, the Younger Dryas and the early part of

the Holocene. Dating from sediments in the Norwegian Sea (Baumann and

Matthiessen, 1992) suggests that this association occurs at a later time than herein

implying a possible transgressive nature. The suggestion has been made that the

occurrence of N. labyrinthus is a marker of the passage of the Polar Front over time

within the Holocene of the eastern North Atlantic (Caulle et al., 2013). The

Younger Dryas is marked in the Porcupine Seabight by a brief increase in

B. tepikiense.

Finally a fourth association, D, is characterised by the presence of the cysts of

Protoceratium reticulatum, high cyst numbers (>1000 cysts per gram of sediment),

together with significant numbers of N. labyrinthus, Impagidinium species,

Spiniferites species and the cyst of Protoperidinium pentagonum. The apparent

change from high numbers of N. labyrinthus in association C to high numbers of

the cysts of P. reticulatum in association D is noteworthy. This association is dated

as 8.5 ± 0.9 ka BP and falls at the beginning of the Holocene Thermal Maximum.

Sample resolution is insufficient to provide further detail and there is some

suspicion that these younger sediments might be disturbed (see earlier discussion).

P. reticulatum is known as a cosmopolitan species, which often occurs in high

abundance and whose temperature and salinity ranges are SST of −2.1–29.8 °C
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(spring–summer); SSS of 9.8–39.4 psu (summer) (Zonneveld et al., 2013). It has

long been associated with the presence of the North Atlantic Current (NAC). It also

occurs as a significant presence within factor F1 with peaks of abundance occur at

462 cm (52.7 ± 5.0 ka BP), 390 cm (45.3 ± 3.9 ka BP) and 340 cm (40.3 ± 2.8 ka

BP) respectively (see above).

Earlier work by Zaragosi et al. (2001) had described a threefold warming of the

northwestern Bay of Biscay following H2 largely identified by the dinoflagellate

cyst associations described above with pulses of NAC penetrations. Add together

the studies of Penaud et al. (2009), Eynaud et al. (2012), Zumaque et al. (2012) and

Caulle et al. (2013) and a much more comprehensive picture of the LGM and LGIT

starts to emerge with the analysis of dinoflagellate cysts providing an interesting

view of changing sea surface conditions.

The boundary between these four associations appears to be clearly demarked

within the dinoflagellate cyst spectra and from both the cluster and factor analysis

and coherence with the studies of Zumaque et al. (2012) and Caulle et al. (2013).

This suggests major environmental shifts during the course of the LGIT, over a

wide geographical area, with significant reorganisation of the dinoflagellate

populations; a possible regime shift within the phytoplankton?

These dinoflagellate cyst associations can be compared to the distribution maps of

the North Atlantic as published by Harland (1983), Turon (1984), Rochon et al.

(1999), Marret and Zonneveld (2003) and Zonneveld et al. (2013). Unfortunately

the poorly known autecology and the possibility of crypto speciation can detract

somewhat from a precise environmental interpretation. The use of statistical

techniques such as modern analogue techniques and transfer functions has

provided a quantitative approach but the detail is often elusive especially if the

provenance of the dinoflagellate cysts is little understood. The analytical approach

adopted here is actualistic and reliant upon the known modern distribution data of

the species present.

The large increase in cyst per gram values and the significant increases in both

cysts of Protoceratium reticulatum and Nematosphaeropsis labyrinthus in

Associations C and D, also seen at an earlier time in the Porcupine Seabight,

suggests the establishment of an interglacial regime for the North Atlantic

circulation across 53 degrees of latitude at 12.0 ± 1.0 ka BP closely followed by

the transition from the early Holocene into the Holocene Thermal Maximum

between 10.4 ± 0.4 and 8.5 ± 0.9 ka BP over the Feni Ridge. This is accompanied

with a significant rise in SSS, SSTw and a reduction in seasonal temperature

contrast, possibly as a result of pulsed freshwater discharge from the European ice

sheets and glaciers (Eynaud et al., 2012). The strength of the NAC generally

continued to increase, as demonstrated by the appearance of species of

Impagidinium, Spiniferites mirabilis, along with the cysts of Protoperidinium
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conicum and Protoperidinium leonis, possibly also suggesting rising productivity

levels, rising SST and/or the influence of a more neritic provenance. For instance

Zonneveld et al. (2013) provide the environmental parameters of S. mirabilis as

SST of −0.8–29.8 °C (winter–spring) and SSS of 17.5–39.4 psu (summer–autumn)

and regard it as a thermophilic species having a temperate to equatorial

distribution.

At the Porcupine Seabight Nematosphaeropsis labyrinthus never dominates the

cysts of Protoceratium reticulatum as it does further west and north. However, in

the earliest Holocene, the dominance of N. labyrinthus across the Feni Ridge might

suggest a phase with a more easterly extension of subpolar waters and hence a

narrowing of the path of the NAC. The continued dominance of the cysts

P. reticulatum along with the appearance of the cysts of Protoperidinium

subinerme and an increase in Spiniferites mirabilis confirms the strong influence of

the NAC further east over the Porcupine Seabight.

The preponderance of the three main species requires further comment. The first,

the cyst of Protoceratium reticulatum, is a cosmopolitan species but in the modern

North Atlantic is abundant to dominant, with proportions often >50%. It occurs in

more temperate waters where the NAC crosses the Atlantic to Western Europe and

flows into the Norwegian and Barents seas elevating both SST and SSS (Fig. 6).

This species is, therefore, an effective indicator of this surface current in the

eastern North Atlantic (Harland, 1983; Harland, 1988; Zonneveld et al., 2013;

Caulle et al., 2013).

The second, Nematosphaeropsis labyrinthus, occurs in the highest proportions

(>40%) in the western North Atlantic where subpolar waters extend southwards

lowering SST and SSS and elevating nutrient levels (Fig. 6 and Fig. 7). In effect it

may prove useful in identifying the temporal course of the Polar Front (Caulle

et al., 2013). Currently both the cysts of P. reticulatum and N. labyrinthus form a

substantial component of the dinoflagellate cyst assemblages across the North

Atlantic.

The third, and perhaps the most important herein, Bitectatodinium tepikiense only

forms a minor component of modern assemblages and often where SSS are

between 30 and 35 psu. However B. tepikiense reaches proportions between 10 and

20% in the North Sea and south of Newfoundland close to the Polar Front (Rochon

et al., 1999; Zonneveld et al., 2013). These are localities with extreme seasonality,

with a February SST more than 3 °C colder than the annual average and more than

5 °C warmer than the annual average in August (Fig. 6 and Fig. 7). This species is

not found in regions with extensive ice cover or with SSS reduced by summer

meltwater below 30 psu. Interestingly B. tepikiense is also found at these

proportions in the South Atlantic around the subpolar front offshore Argentina

(∼ 20%), an area of extreme seasonality (Zonneveld et al., 2013).
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The dominance of B. tepikiense through the last glacial has no good modern

analogue (see above) (de Vernal et al., 2005a). Its dominance here is as a cold

water or cryophilic indicator although modern SST tolerances are broad

(Zonneveld et al., 2013). Modern occurrences and affinities thus suggest that

during much of previous glacial periods in the North Atlantic, the ocean surface

over the Feni Ridge and Porcupine Seabight, and extensively from offshore south

west Europe and into the Norwegian Sea (Zippi, 1992; Eynaud et al., 2002; de

Vernal et al., 2005b), had neither much sea ice nor lowered surface water salinities

(SSS >30 psu, Zonneveld et al., 2013). This species was perhaps unique in being

able to thrive in waters with extreme seasonality, probably with significantly colder

[(Fig._6)TD$FIG]

Fig. 6. Objectively analysed mean surface ocean parameters for the North Atlantic: (A) February

temperature (°C), (B) August temperature (°C), (C) temperature difference February to annual (°C), (D)

temperature difference August to annual (°C), (E) February salinity (psu), (F) August salinity (psu), (G)

April to June nitrate concentrations (micro mole/l), (H) April to June phosphate concentrations (micro

mole/l). Source Locarnini et al., 2013; Zweng et al., 2013, Garcia et al., 2014a; Garcia et al., 2014b.
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winter temperatures but with summer temperatures similar to today (see also

Marret et al., 2004 for the Holocene occurrence of B. tepikiense in the Celtic Sea).

de Vernal et al. (2005b) suggest an affinity for stratified surface waters with a

strong seasonal temperature gradient and salinities between 30 and 32 psu. Modern

occurrences in areas with low chlorophyll-A (< 2 ml/l: Zonneveld et al., 2013) also

suggests that during the glacial period, the extreme seasonality combined with low

productivity, provided conditions which other cyst producing dinoflagellate species

struggled to tolerate, allowing B. tepikiense to flourish without significant

competition.

4.1. Comparisons

The use of modern and Quaternary dinoflagellate cysts to elucidate Quaternary

stratigraphy has been in use for some time (Harland, 1977). In the late 1980s a

dinoflagellate cyst ecostratigraphy began to emerge with the recognition of

dinoflagellate cyst associations dominated by Bitectatodinium tepikiense giving

way to those dominated by Protoceratium reticulatum (Harland, 1988). This

occurs in the North Sea at the late Pleistocene/Bølling/Allerød boundary at around

13 to 11 ka. BP as ice-dominated waters began to retreat from the North Atlantic.

[(Fig._7)TD$FIG]

Fig. 7. Distribution of selected dinoflagellate cyst species as a percentage of the assemblages in modern

surface sediments from the North Atlantic: (a) Bitectatodinium tepikiense >10%, (b) Nemato-

sphaeropsis labyrinthus >40%, (c) Cyst of Protoceratium reticulatum >50%. Area with no sample sites

in the 2045 sample database depicted. Adapted from Zonneveld et al. (2013).
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This dinoflagellate cyst ecostratigraphic event appears to be distinctive, widespread

and characteristic (Harland, 1988; Stoker et al., 1989; Duane and Harland, 1990).

In 1992 Zippi published a dinoflagellate cyst analysis of a piston core taken off the

continental shelf west of Portugal. This core, TR 174–4, was located at 38° 49′ N;
11° 48′ W in 4 310 m of water and thought to be close to the position of the Polar

Front at around 18 ka. BP. The results indicated a number of consistently occurring

species with the downhole incoming of B. tepikiense at around the MIS2/1

boundary at 11 ka. BP.

Within Holocene dinoflagellate cyst associations proportional and absolute

numbers changed from older assemblages dominated by N. labyrinthus to those

dominated by the cysts of P. reticulatum (Harland 1988). The change from

assemblages with high numbers of B. tepikiense to those with the cysts of

P. reticulatum had also been noted by de Vernal et al. (1992) who recognised these

as potential ecostratigraphic markers across the Pleistocene/Holocene boundary.

It was becoming apparent that ecostratigraphic correlations within the dinoflagel-

late cyst associations marked significant oceanographic changes (Turon, 1980;

Matthiessen, 1991; de Vernal et al., 1992; Baumann and Matthiessen, 1992).

Harland (1994) synthesised the situation for the northeast Atlantic Ocean and noted

the peak occurrences of B. tepikiense, N. labyrinthus and the cysts of

P. reticulatum as the ocean changed through the LGM to the Holocene. Whereas

Harland and Howe (1995) documented cyst associations through the Holocene of

the north eastern Atlantic recording the change from an earlier dominated by

N. labyrinthus to one dominated by the cysts of P. reticulatum.

In addition, Rochon et al. (1999) enumerated a series of dinoflagellate cyst

assemblages based upon data from 439 sites in the North Atlantic and adjacent

seas. In particular they recognised the dominance of N. labyrinthus in the Labrador

Sea and Irminger Basin and the cysts of P. reticulatum in the North Atlantic and

Norwegian Sea. Also an assemblage dominated by B. tepikiense occurs in a

transition zone between the Gulf of St. Lawrence and the North Atlantic Current.

Multivariate statistical analyses found that 61.13% of the variance can be explained

by SST and SSS (op. cit).

Since that time a number of high resolution studies have been undertaken on

sediment sequences contrasting the late Pleistocene/Holocene with the last

interglacial. In 2001 Zaragosi et al. (2001) provided a deglaciation record for

Bay of Biscay slope environments whereas Eynaud et al. (2004) compared the

Holocene and Eemian marine environments within the South Icelandic Basin. Both

recognised similar patterns of events to those enumerated here including

assemblages with high proportions of N. labyrinthus being replaced with

assemblages of the cysts of P. reticulatum; the former dated between 11.5 to 5.7
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ka BP and the latter from 5.7 ka BP to the present. An interpretation of

nutrient−rich cool waters giving way to those with higher sea surface temperatures

was invoked. In the same year Solignac et al. (2004) looked at Holocene material

from the oceanic Iceland Basin and found this same pattern of assemblages

indicating cooler waters becoming warmer as the Holocene became established.

Van Nieuwenhove et al. (2013) examined the dinoflagellate cyst floras from both

Eemian and Holocene interglacials from the Iceland Plateau. Here again the record

from the Iceland Plateau is similar to that recovered from Hole 610A on the Feni

Ridge with the distinctive crossover from assemblages with N. labyrinthus to those

with the cysts of P. reticulatum. This was dated at c.6.5 to 8 ka BP such that the

North Atlantic was cool temperate with ice present for several months of the year.

Thereafter a reduction in the advection of cold waters from the Greenland/East

Icelandic Current allowed the incursion of warmer more saline waters into the area

with the concomitant loss of sea ice.

In addition Eynaud et al. (2012), Zumaque et al. (2012) and Caulle et al. (2013)

have described an increasingly sophisticated picture of changing oceanography

through the LGIT linked to glacial pulsed freshwater discharges, ice volumes and

the disposition of sea surface currents.

Most recently Van Nieuwenhove et al. (2016) have described changing

dinoflagellate cysts associations through the Holocene of the Nordic Seas.

Included was the notable changeover between assemblages with N. labyrinthus and

the cysts of P. reticulatum dated between 6.1 and 7.5 ka BP.

A picture of changing oceanography and accompanying phytoplanktonic regime

change is beginning to emerge with evidence from the Norwegian Sea (Baumann

and Matthiessen, 1992), the Iceland Basin (Eynaud et al., 2004; Solignac et al.,

2004), the Nordic seas (Van Nieuwenhove et al., 2016), the Rockall Basin (herein),

Bay of Biscay (Zaragosi et al., 2001), the Porcupine Seabight (Duane and Harland,

1990), the eastern North Atlantic off shore Portugal (Zippi, 1992) and the north-

eastern Atlantic in general (Caulle et al., 2013). These studies encompass the total

eastern North Atlantic between 40° and 70° N over 30° of longitude from off the

coast of Portugal to at least 30° W.

5. Conclusions

The dinoflagellate cyst analysis of DSDP Hole 610A has provided a series of

dinoflagellate associations spanning a 68 ka possibly from MIS 4 to our present

interglacial. These associations have been compared to a new record from off the

continental shelf of the Porcupine Seabight and a number of sequences published

since the 1980s. It is apparent that these four associations are widespread in the

Article No~e00114

29 http://dx.doi.org/10.1016/j.heliyon.2016.e00114

2405-8440/© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2016.e00114


eastern North Atlantic and point to several re-organisations of the oceanography

and the contained phytoplankton populations.

Boundaries separating the various associations are also apparent. These can be

enumerated from oldest to youngest:

I − the incoming of large numbers of Bitectatodinium tepikiense marking the onset/

establishment of MIS 4 at around 68.3 ± 7.0 ka BP.

II − the incoming of significant numbers of Nematosphaeropsis labyrinthus at the

beginning of MIS 1. This occurs sometime between 13.4 ± 1.1 and 12.1 ± 1.0 ka

BP at the initiation of the Holocene. Due to our low sampling resolution we are

unable to differentiate between the Bølling/Allerød, the Younger Dryas and the

early Holocene.

III − finally the incoming of cysts of Protoceratium reticulatum within MIS 1 as

the North Atlantic circulation approaches its present configuration. This occurs

between 8.5 ± 0.8 and 10.4 ± 0.4 ka BP over the Feni Ridge and encompasses the

Holocene Thermal Maximum.

These boundaries are ecostratigraphic event horizons marking fundamental change

within the North Atlantic oceanography. Due to the low sampling resolution and

particularly high error estimates for the oldest sections of 610A it is difficult to

estimate the exact transition times between associations but there is some evidence

to suggest a possible transgressive nature (see Van Nieuwenhove et al., 2016).

Suffice to say that the change from Association A to B appears to take place over a

maximum period of 12.5 ka (at the 95% confidence interval) whereas that between

Associations B and C and between C and D appear to have taken place over a

maximum period of 2 ka and 1.2 ka, respectively. Given the current interest in

global change it might be useful to examine these timings rather more carefully as

the present ocean becomes increasingly stressed from climate forcing. The use of

tephrostratigraphy linked to the Greenland ice-cores as a reference stratotype offers

the potential of linking these dinoflagellate cyst associations into a more precise

time frame allowing for the assessment of significant regime shifts within the

North Atlantic.

This dinoflagellate cyst event stratigraphy is an additional tool to complement the

circumscription of the late Pleistocene/Holocene stratigraphy. Dinoflagellate cyst

data should be included in any multidisciplinary study aimed at understanding

marine environments especially as climate moved from the last glacial to the

present day interglacial. This is especially relevant at a time when future impacts

on our changing oceans are being considered.
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