Supporting Information

Mechanistic insight into cadmium-induced inactivation of the Bloom protein

Wei QIN^{1§}, Nicolas BAZEILLE^{2§}, Etienne HENRY², Bo ZHANG¹, Eric DEPREZ^{2*}, Xu-Guang XI^{1,2*}

¹College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China

²LBPA, CNRS UMR8113, IDA FR3242, ENS Cachan, Université Paris-Saclay, 94235 Cachan, France

*Corresponding authors: email: xxi01@ens-cachan.fr; deprez@lbpa.ens-cachan.fr

[§]These authors contributed equally to this work

Figure S1: Effect of Cd^{2+} on DNA unwinding activities of BLM^{full-length} (a) and $RecQ^{E.coli}$ (b) as measured by stopped-flow FRET assay. Each plot shows the dependence of the kinetic rate constant and reaction amplitude as a function of $CdCl_2$ concentration. Proteins (60nM) were first preincubated with varying concentrations of $CdCl_2$ for 5min at 25°C. The DNA substrate (16-bp duplex with a 20-nt 3' tail) was added into the reaction mixture at a final concentration of 4nM, and the reaction was initiated by rapid mixing with 1mM ATP. Insert: typical kinetics for DNA unwinding in the presence of various $CdCl_2$ concentrations. Reactions were performed in Tris-HCl buffer (25mM, pH 7.5) supplemented with 50mM NaCl, 2mM MgCl₂ and 1mM DTT at 37°C. The response of BLM⁶⁴²⁻¹²⁹⁰ to Cd^{2+} (explicitly shown in Fig. 6a) was similar to the one observed with BLM^{full-length}.

b

Figure S2: Effect of amino acids on the Cd²⁺-mediated inhibition of the DNA-binding activity of BLM⁶⁴²⁻¹²⁹⁰. BLM⁶⁴²⁻¹²⁹⁰ (200nM) was either added after pre-incubation of 10nM 3'-fluorescein-labeled 18-mer ssDNA (F-18), CdCl₂ (100 μ M) and amino acids (5mM) (panel a) or pre-incubated with CdCl₂ before addition of F-18 and amino acids (panel b). The steady-state fluorescence anisotropy was then monitored at 25°C as a function of time.

a

Figure S3: Effect of Cd^{2+} , Zn^{2+} or a combination of both cations on the DNA-binding activities of BLM⁶⁴²⁻¹²⁹⁰ (left), BLM^{full-length} (middle) and RecQ^{*E.coli*} (right). Increasing concentrations of Cd^{2+} , Zn^{2+} or Cd^{2+}/Zn^{2+} were added on pre-formed helicase/DNA complexes. The concentration relative to Cd^{2+}/Zn^{2+} combination, indicated on the x-axis, corresponds to the total concentration of cations where $[Cd^{2+}] = [Zn^{2+}]$. The fluorescence anisotropy was measured at 25°C using 200nM protein and 5nM F-24 oligonucleotide as described in Methods. The relative DNA-binding activity was calculated according to Eq. 2.

Figure S4: Relative recovery of the DNA-binding activity of BLM⁶⁴²⁻¹²⁹⁰ as a function of EDTA concentration after Cd²⁺-induced dissociation.

Concentrations of protein, ssDNA (F-18) and Cd²⁺ were 200nM, 5nM and 50µM, respectively. The relative DNA-binding activity was determined in a

Tris-HCl buffer (50mM, pH 8.0, 50mM NaCl, 1mM DTT) according to Eq. 2.

Figure S5: SDS-PAGE analysis of the purified recombinant BLM⁶⁴²⁻¹²⁹⁰ protein. The gel (10% acrylamide) was stained using Coomassie brilliant blue R250.

The amount of $BLM^{642\text{-}1290}$ protein loaded on the gel was $12\mu\text{g}.$

Table S1. Structures of the DNA substrates used for the measurement of helicase, ATPase and

DNA-binding activities.

Substrates	DNA sequence		
Radioactive DNA unwinding assay:			
25-bp duplex with 19-nt 3'-ssDNA tail	5'-GCACTGGCCGTCGTTTTACGGTCGTGACTGGGAAAACCCTGGCG-3'		
	3'-AACTTTTTTTTTTCCCCAACCAGCACTGACCCTTTTGGGACCGC-5'		
Stopped-flow FRET DNA unwinding assay:			
16-bp duplex with 20-nt 3'-ssDNA tail	5'-CTCTGCTCGACGGATT-F ^a -3'		
	5'-HF ^b -AATCCGTCGAGCAGAGtttttttttttttttttttttttt		
ATPase activity assay:	5'-AACCAACAACAACAACAACAACAAC-3'		
Fluorescence anisotropy-based DNA binding assay:			
F-18	5'-GCCTCGCTGCCGTCGCCA-F-3'		
F-24	5'-GCCCTGCTGCCGACCAACGAAGGT-F-3'		
	3'-CGGGACGACGGCTGGTTGCTTCCA-5'		
F-40	5'-GCCCTGCTGCCGACCAACGATGGTTACATTCCCGCTGCTG-F-3'		

^bHF, hexachlorofluorescein

BLM ⁶⁴²⁻¹²⁹⁰		RecQ ^{E. coli}		
Cys position	Cys distribution	Cys position	Cys distribution	
685*	Inner	43*	Inner	
698*	Inner	56*	Inner	
704	Surface	94	Surface	
771	Surface	111	Inner	
799*	Surface	150*	Surface	
878	Inner			
895*	Inner	243*	Inner	
901	Inner			
940	Surface			
944	Inner			
989	Inner			
1030	Surface	351	Surface	
1036* (ZFD)	Surface	380* (ZFD)	Inner	
1055* (ZFD)	Inner	397* (ZFD)	Surface	
1063* (ZFD)	Inner	400* (ZFD)	Inner	
1066* (ZFD)	Surface	403* (ZFD)	Surface	
1067	Surface			
1218	Surface			
1226	Inner			

Table S2. Spatial distribution of cysteine residues in BLM⁶⁴²⁻¹²⁹⁰ and RecQ^{*E. coli*}.

The spatial conformation distribution of cysteine residues of $BLM^{642-1290}$ and $RecQ^{E. coli}$ were analyzed by PyMol using the X-ray three dimensional structures of $BLM^{642-1290}$ (PDB file, 4CGZ) and $RecQ^{E. coli}$ (PDB file, 1OYW). Cys labeled with stars represent conserved residues at the primary sequence and 3D structural levels.