Comparative geochemistry of four ferromanganese crusts from the Pacific Ocean and significance for the use of Ni isotopes as paleoceanographic tracers

Gueguen Bleuenn 1, 2, *, Rouxel Olivier 2, Rouget Marie-Laure 3, Bollinger Claire 3, Ponzevera Emmanuel 2, Germain Yoan 2, Fouquet Yves 2

1 Institut Universitaire Européen de la Mer, UMR 6538, Université de Bretagne Occidentale, 29280 Plouzané, France
2 IFREMER, Centre de Brest, Unité Géosciences Marines, 29280 Plouzané, France
3 Institut Universitaire Européen de la Mer, UMS 3113, Université de Bretagne Occidentale, 29280 Plouzané, France

* Corresponding author: Bleuenn Gueguen, email address: bleuenn.gueguen@univ-brest.fr

Abstract:

Ferromanganese (Fe-Mn) crusts are potential archive of the Ni isotope composition of seawater through time. In this study we aim at (1) understanding Ni isotope fractionation mechanisms and metal enrichment processes in Fe-Mn deposits, (2) addressing global vs. local control of Ni isotope composition of these deposits. Two Fe-Mn crusts from the North Pacific Ocean (Apuupuu Seamount, Hawaii) and two Fe-Mn crusts from the South Pacific Ocean (near Rurutu Island, Austral archipelago of French Polynesia) were characterized for their elemental geochemistry and Ni isotope composition. Geochemical analyses were performed at millimeter intervals in order to provide time-resolved record of Ni isotopes. Chronology and growth rates were determined using cosmogenic 10Be isotope abundances. The results show that, despite different growth rates, textures and geochemical patterns, Fe-Mn crusts from both North and South Pacific Oceans have fairly homogenous Ni isotope compositions over the last ∼17 Ma, yielding average δ60/58Ni values of 1.79 ±0.21‰ (2sd, n=31) and 1.73 ±0.21‰ (2sd, n=21) respectively. In one crust sample, however, layers directly in contact with the altered substrate show anomalously light δ60/58Ni values down to 0.25 ±0.05‰ (2se) together with rejuvenated 10Be/9Be ratios correlating with elevated Ni/Mn ratios. Such patterns are best explained by protracted fluid–rock interactions leading to alteration of Mn-phases after crust formation. Isotopically light Ni is best explained by Ni isotope fractionation during adsorption rather than the contribution of external Ni sources (e.g. hydrothermal sources) having light Ni isotope compositions. The combination of our results with previously published data on Fe-Mn crusts indicates that the average Ni isotope composition in deep waters has not changed through the Cenozoic (∼70 Ma). We propose that Ni isotope variations in Fe-Mn crusts may not only record variations of Ni sources to the oceans, but also post-depositional processes depending on the growth history and geological settings of Fe-Mn crusts.

Keywords: Ferromanganese crusts; Nickel isotopes; Paleoceanography; Pacific Ocean; Biogeochemical cycling
1. Introduction

Fe-Mn crusts are seafloor metalliferous deposits forming through slow accumulation of seawater-derived Fe- and Mn-oxyhydroxide colloids on hard substrates such as volcanic seamounts that are kept sediment-free for millions of years (Craig et al., 1982; Halbach et al., 1983; Hein et al., 1988; Hein et al., 1992; Koschinsky and Halbach, 1995). Fe-Mn crusts are particularly abundant in the Northwest Pacific, e.g., the Pacific Prime Zone (Hein et al., 2013 and in the South Central Pacific (e.g., French Polynesia; Kosakevitch, 1987; Pichocki and Hoffert, 1987; Lesuave et al., 1989; Kosakevitch and Disnar, 1997) in connection with the formation and aging of Jurassic to Cretaceous volcanic seamounts (Halbach et al., 1983; Halbach and Puteanus, 1984; Halbach et al., 1984; Aplin and Cronan, 1985; De Carlo et al., 1987; Hein et al., 1988; Hein et al., 1992). A seawater origin for trace metals incorporated into Fe-Mn crusts has been well documented using isotopic and trace element geochemical signatures including rare earth elements (Bonatti and Joensuu, 1966; Bonatti et al., 1972; De Carlo et al., 1987; Nicholson et al., 1997; Hein et al., 2012; Bau et al., 2014). The importance of oceanographic parameters such as the depth of the oxygen-minimum-zone (OMZ), the calcite-compensation-depth (CCD) and phosphatization events that occurred during the Cenozoic have been well-recognized to influence Fe-Mn crusts geochemical composition (Hein et al., 1993). Hydrothermal input of metals have been also suggested in some cases (van de Flierdt et al., 2004; Chu et al., 2006; Horner et al., 2015) which is in line with the recognition that hydrothermal venting may impact regionally the inventory of metals, in particular Fe, in the deep ocean (Toner et al., 2009; Tagliabue et al., 2010; Conway and John, 2014; Fitzsimmons et al., 2014). In rare cases, cosmic spherules were also reported in South Pacific crusts (Kosakevitch, 1987; Halbach et al., 1989; Lesuave et al., 1989; Kosakevitch and
Disnar, 1997) but it remains unclear whether such extra-terrestrial input could affect bulk Fe-Mn crusts composition.

Radiogenic isotope geochemistry (Pb, Sr, Nd, Os, Hf) in Fe-Mn crusts has been extensively investigated in order to resolve fundamental paleoceanographic processes such as the evolution of oceanic circulation resulting from opening or closure of oceanic passages (e.g. closure of the Panama gateway, opening of the Drake passage), modifications in continental erosion fluxes after major climatic changes (von Blanckenburg et al., 1996b; Abouchami et al., 1997; Ling et al., 1997; O’Nions et al., 1998; Frank et al., 1999; Reynolds et al., 1999; Frank, 2002; Frank et al., 2002; van de Flierdt et al., 2003; Ling et al., 2005; Peate et al., 2009; Chen et al., 2013), and the impact of hydrothermal inputs (van de Flierdt et al., 2004). It should be noted that most of these studies were carried out on samples from the North Central Pacific Ocean. However other oceanic regions, including the South Pacific, have also important Fe-Mn crusts deposits (Hein et al., 2013) and they are poorly documented.

Stable isotope composition of metals (e.g., Fe, Zn, Ni, Cd, Cu, Tl, Mo) in Fe-Mn crusts and nodules, provide interesting proxies to unravel changes in the marine sources and biogeochemical cycles of metals through time (Zhu et al., 2000; Barling et al., 2001; Rehkämper et al., 2002; Siebert et al., 2003; Levasseur et al., 2004; Rehkämper et al., 2004; Anbar and Rouxel, 2007; Schmitt et al., 2009; Horner et al., 2010; Nielsen et al., 2011; Horner et al., 2015). However, the application of Ni stable isotopes as paleoceanographic proxies is not straightforward since at least three processes may affect the Ni isotope records preserved in Fe-Mn crusts: (1) changes in the relative fluxes of Ni sources and sinks in the ocean, (2) internal biogeochemical cycling of Ni and water mass mixing, and (3) fractionation processes during Ni incorporation at the Fe-Mn crust surface (Wasylkeni et al., 2008; Wasylenki et al., 2011; Gueguen, 2013; Nielsen et al., 2013; Wasylenki et al., 2014a;
Wasylenki et al., 2014b; Bryan et al., 2015) and Ni distribution among Mn-phases (Koschinsky and Halbach, 1995; Koschinsky and Hein, 2003).

The isotope composition of Ni in marine systems has recently attracted significant attention (Cameron and Vance, 2014) owing to its nutrient-type behavior (Sclater et al., 1976; Cameron and Vance, 2014), and multiple sources in seawater (e.g., rivers, atmospheric depositions, hydrothermal vents; Gall et al., 2013; Cameron and Vance, 2014; Little et al., 2015). In a reconnaissance study, Gall et al. (2013) reported up to 1.6 ‰ variations in $\delta^{60/58}\text{Ni}$ ($\delta^{60/58}\text{Ni} = (\text{Ni}^{60}/\text{Ni}^{58})_{\text{sample}} / (\text{Ni}^{60}/\text{Ni}^{58})_{\text{NIST986}} - 1) \times 1000$; see section 2.3) along the growth layers of Fe-Mn crusts from various ocean basins. The apparent absence of relationship between Ni isotope variability and sample locations and depths implies that differences in water masses, surface water productivity and bottom water oxygenation have no influence on Ni isotope signatures preserved in Fe-Mn crusts. The Ni isotope composition of surface scrapings of Fe-Mn crusts also shows significant variations in $\delta^{60/58}\text{Ni}$ (from 0.9 to 2.5 ‰) with values being both heavier and lighter than the modern seawater value determined at 1.44 ±0.15‰ (Cameron and Vance, 2014). While it has been argued that heavier Ni isotopes values may be due to continental input and lighter Ni isotope values reflecting the extent of hydrothermal input in deep waters (Gall et al., 2013), it remains unclear which processes are controlling Ni isotope record in Fe-Mn crusts. Presumably, the importance of local or post-depositional effects associated with Ni adsorption and precipitation in Fe-Mn crusts should also be considered as a potential cause of isotope fractionation as suggested by experimental results of Ni sorption on Fe-oxyhydroxides (Sorensen et al., 2011; Gueguen, 2013; Wasylenki et al., 2015) and Mn-oxyhydroxides (Gueguen, 2013; Wasylenki et al., 2014a) indicating enrichment of the mineral phase in light Ni isotopes, keeping in mind that Ni is essentially hosted in the Mn-phase.
Here, we report Ni isotope composition of two pairs of Fe-Mn crusts collected on two volcanic seamounts from the Northern Pacific Ocean (Apuupuu Seamount, Hawaii) and the Southern Pacific Ocean (near Rurutu Island, Austral archipelago of French Polynesia). This approach allows (a) a direct comparison of Ni isotope record in Fe-Mn crusts from the same seamount in order to address local effects, and (b) a comparison of geochemical composition of crusts between North and South Pacific in order to address the effect of more global geochemical processes. Through a high-resolution profile of major and trace element compositions, 10Be dating and Ni isotope ratios, we tested the following hypotheses: (1) secular variations of Ni isotope in deep seawater should be reflected by co-variations in crusts recovered from the same locality, while differences should provide clues for post-depositional or local effects (2) differences between North and South Pacific crusts should provide information regarding the importance of oceanographic parameters (e.g., water masses) and the potential influence of hydrothermal sources.

2. Materials and methods

2.1. Sample description and microsampling

Two Fe-Mn crusts (samples J2-480 and J2-480-R14) were collected by the Remotely Operated Vehicle (ROV) Jason2 (Woods Hole Oceanographic Institution) on Apuupuu Seamount (155°25’W, 18°32’N), about 50 km south of Mauna Loa Volcano in Hawaii, at ~2000 m water depth during the FeMO cruise (R/V Kilo Moana, University of Hawaii) in October 2009 (Figure 1). Although the samples from Apuupuu Seamount were sampled by using a ROV allowing a precise determination of sample location and depth, sample J2-480 could not be located since it originated from a set of samples that got mixed together in the
ROV sampling basket. In addition, sample J2-480 was not collected attached to its substrate in contrast to sample J2-480-R14. The total thickness of both Apuupuu crusts was ~60 mm. These samples will be referred in the paper as “North Pacific Fe-Mn crusts”.

Two other Fe-Mn crusts (samples ZEP2-DR-05-04 and ZEP2-DR-06-03) were collected by dredging in the South Pacific in the proximity of the Rurutu Island (22°S, 150°W), Austral archipelago of French Polynesia, at 1826 m and 1530 m water depth during the ZEPOLYF2 cruise (R/V L’Atalante, Ifremer-Genavir) in July-August 1999. During this cruise, 24 dredges recovered volcanoclastic sediments, altered and fresh pillow basalts, hyaloclastites and Fe-Mn crusts (Bonneville et al., 2006; Adam and Bonneville, 2008) along the Cook-Austral volcanic chains in South Pacific. These samples will be referenced in this paper as “South Pacific Fe-Mn crusts”. Sample ZEP2-DR05-04 consisted of 25 mm thick Fe-Mn crusts attached to a brecciated basalt substrate mixed with minor phosphorites and carbonates. Sample ZEP2-DR06-03 consisted of 90 mm thick Fe-Mn crusts lacking evidences for substrate attached at its bottom. In all cases, the smooth aspect of the top surface has been used to determine growth direction. Fe-Mn crust samples were further divided into two parts: the “top” corresponding to the surface of the crust in contact with seawater, the “middle” when no substrate was collected attached to the crust or the “bottom” when contact with the substrate is recovered. Based on mineral textures (see section 3) ZEP2-DR05-04 crust was further divided into subsections inner region “I” and outer region "O" (Figure 2).

The outermost layer of each crust (20 to 25 mm in thickness) was cut and embedded in epoxy resin. The surface was polished for petrographic examination and spatially resolved geochemical analyses (see below). Fe-Mn crusts were then subsampled with a microdrilling device (New Wave Micromill®). Layers perpendicular to the direction of growth were drilled to obtain a high-resolution microsampling every 1 to 2 mm of the crust growth layers (Figure
2. Powders from the same layer were mixed and stored in small plastic centrifuge tubes to obtain a total amount of powder between ~30 and 50 mg.

2.2. Major and trace elements concentrations measurement

Between 10 and 20 mg of powdered samples were weighed in Teflon vials and digested in a mixture of 5 mL concentrated HNO₃ and 5 mL 6 mol/L HCl. After evaporation at 80°C on hot plates, the solid residue was dissolved with 5 mL of 6 mol/L HCl and then evaporated to dryness at 80°C. This operation was reiterated once to ensure efficient dissolution of the samples. Solid residues were dissolved in 10 mL 6 mol/L HCl and kept as archive solutions. Reagents used for digestion and chemical procedures were prepared from sub-boiled distilled concentrated hydrochloric and nitric acids using a Cleanacids® device (Analab, France).

Major and trace elements concentrations were measured by Quadrupole Inductively Coupled Plasma Mass Spectrometry (ICP-MS) (X-Series 2, Thermo-Finnigan) at the Pôle-Spectrométrie-Océan (IUEM-Ifremer, Brest, France) (Table 1) and precision was generally better than 5%. Geological reference materials of manganese nodules Nod-A-1 and Nod-P-1 (US Geological Survey) were systematically analyzed along with samples and the measured concentrations fell within 10% uncertainty of the published concentration values (not shown).

2.3. Nickel isotope analysis

Nickel isotopes were measured at the Pôle-Spectrométrie-Océan (IUEM-Ifremer, Brest, France) by MC-ICP-MS (Neptune, Thermo Scientific). Nickel was separated from the geological matrix by ion-exchange chromatography columns involving two steps. First, the
dissolved samples were processed through AG1-X8 resin in 6 mol/L HCl to separate Ni from Fe, Zn and most of Co and Cu that are retained on the column. Elution of Ni was made in 6 mol/L HCl. Afterwards, Ni was purified with Ni-spec resin (Eichrom) by complexation of Ni with a DMG (Dimethylglyoxime) molecule allowing elution of the remaining matrix elements. Eluted Ni fractions were evaporated and dissolved in 0.28 mol/L HNO₃ for MC-ICP-MS analyses. The experimental and analytical method is described in details in Gueguen et al. (2013). Nickel isotope ratios were corrected from instrumental mass bias using the double-spike method as described in Gueguen et al. (2013). The double-spike, a mixture of ⁶¹Ni-⁶²Ni isotopes (⁶⁰Ni/⁵⁸Ni = 0.732349; ⁶¹Ni/⁵⁸Ni = 48.797310; ⁶²Ni/⁵⁸Ni = 44.346698), was added to each sample with a Ni sample/spike ratio of 1 prior to chemical separation through Ni-spec resin. Application of a three-dimensional data reduction procedure was used to determining the true isotope ratios of the samples (Siebert et al., 2001). Nickel isotope compositions are reported in delta notation $\delta^{60}{/}^{58}\text{Ni}$ (per mil) relatively to the Ni isotopic standard NIST SRM 986 (1):

$$\delta^{60}{/}^{58}\text{Ni} = \frac{^{60}\text{Ni}^{/}^{58}\text{Ni}_{\text{sample}}}{^{60}\text{Ni}^{/}^{58}\text{Ni}_{\text{NIST986}}} - 1 \times 1000 \quad (1)$$

Internal precision on Ni isotope delta values are determined as a two-standard error of the mean (2se) calculated with the 50 run cycles used for double-spike calculations (Gueguen et al., 2013) and is typically comprised between 0.03 and 0.04 ‰. External precision, determined by duplicate of digested and purified geological reference materials (Nod-A-1, Nod-P-1) and replicate of analysis of these materials on the mass spectrometer is determined at 0.04 ‰ (2sd; n=7; Table 1d) with $\delta^{60}{/}^{58}\text{Ni}$ values of 1.06 ‰ and 0.34 ‰ respectively. Error bars reported in the figures correspond to the external precision.
2.4. Beryllium isotope analysis

Selected Fe-Mn crusts sub-samples were analyzed for $^{10}\text{Be}/^{9}\text{Be}$ ratio by Accelerator Mass Spectrometry (AMS ASTER) at CEREGE (Aix-en-Provence, France) using previously established methods (Bourles et al., 1989; Lebatard et al., 2008; Arnold et al., 2010). In short, collection of Be was made using a leaching method which consists in a chemical extraction of Be from its matrix using 0.04 M NH$_2$OH-HCl and 25% acetic acid. An aliquot of each sample was measured for ^{9}Be concentrations by graphite furnace atomic adsorption spectrophotometry (GFAAS, Hitachi Z8200). The remaining of the sample was spiked with ^{9}Be, and the total Be was purified using solvent extraction methods and then transformed to BeO for mass spectrometry analysis. ^{10}Be concentrations were calculated from the measured spiked $^{10}\text{Be}/^{9}\text{Be}$ ratios and the true $^{10}\text{Be}/^{9}\text{Be}$ ratio of the sample was calculated using ^{9}Be measured by GFAAS and ^{10}Be measured by AMS. The precision for each sample analysis was determined on repeated measurements (n=4) of the sample and the final uncertainty calculated on the $^{10}\text{Be}/^{9}\text{Be}$ ratio was generally better than 5%.

3. Results

3.1. Elemental geochemistry

3.1.1. North Pacific Fe-Mn crusts from Apuupuu Seamount

Elemental concentrations and selected elemental ratios are reported in Table 1. Average Mn concentrations are ~14-15 wt%, whereas Fe contents are ~10 wt%. Transition metal concentrations are in the range of ~910 to 4,700 µg/g for Co, Cu and Zn concentrations yield average values of ~1,000 and ~600 µg/g respectively, and the average Ni concentrations vary between ~2,100 and 3,000 µg/g for J2-480 and J2-480-R14, respectively. Beryllium
concentrations are homogenous in the range of 4.3 to 6.2 µg/g in J2-480 and 3.5 to 5.0 µg/g in J2-480-R14. Elements suggestive of authigenic enrichment of phosphatic minerals such as P yield average values of ~25,000 and ~2,400 µg/g for J2-480 and J2-480-R14 respectively. In general, hydrogenetic Fe-Mn crusts display a perfect correlation between P and Ca concentrations, which is likely related to the fact that these two elements are essentially hosted in authigenic phosphatic phases. This is consistent with higher Ca concentrations of 54,000 µg/g obtained for J2-480 in comparison to Ca contents of ~13,000 µg/g measured for J2-480-R14. Lithogenic elements such as Al and Ti have similar concentrations for the two North Pacific Fe-Mn crusts with values of ~4,000 µg/g and ~7,700 µg/g respectively. Although all samples fall in the hydrogenetic field in the ternary diagram (Figure 3) of Bonatti et al. (1972), it should be noted that the bottom of crust J2-480 tends towards the hydrothermal field due to higher Fe concentrations and lower Mn, Ni, Cu and Co concentrations. As reported in other studies, the concentration patterns of, Ni, Co, and Cu tend to covary with Mn concentrations (Koschinsky and Halbach, 1995; Koschinsky and Hein, 2003) suggesting that the Mn-phase controls the distribution and enrichment of these metals in the crust. Therefore, we also normalized transition metal concentrations to Mn in order to avoid possible dilution effects due to the presence of other phases (e.g., phosphates, silicates, Fe-oxyhydroxides). When normalized to Mn concentrations, contents of metals such as Cu, Ni, Co, and Zn to a lesser extent show an increase below ~15 mm in crust J2-480 and below ~9 mm in crust J2-480-R14 (Figure 4). Fe/Mn ratios determined for each growth layer range from 0.45 to 1.46 (g/g) (Table 1) which is typical of values already reported for other hydrogenetic Fe-Mn crusts from the North and Central Pacific Ocean (Halbach et al., 1983; De Carlo et al., 1987; Hein et al., 1988; Puteanus and Halbach, 1988; Koschinsky and Halbach, 1995; Koschinsky et al., 1997; Frank et al., 1999; Hein et al., 2013; Hein and Koschinsky, 2014). In general, compositional variations of transition metals are more
pronounced in J2-480 than in J2-480-R14 (Figure 4). Fe/Mn ratios increase in J2-480 at ~15 mm depth from ~0.60 to ~1.40 whereas it remains stable in J2-480-R14. Al/Fe ratios, which are used as an estimate of the lithogenic contributions, vary between 0.03 and 0.06 in crust J2-480-R14. These variations, however, are not specifically correlated with other metals concentrations. By contrast, Al/Fe sharply increases in J2-480 crust from ~15 mm depth towards the bottom from 0.03 to 0.15 which also corresponds to the increase in other transition metals such as Cu, Ni and Co (Figures 4 and 6).

3.1.2. South Pacific Fe-Mn crusts from French Polynesia

South Pacific Fe-Mn crusts have lower Mn concentrations (average Mn ~9-10 wt%) than North Pacific Fe-Mn crusts and they also have lower Fe contents (average Fe ~8 wt%) (Table 1). Average Co concentrations range between ~4,800 and 5,400 µg/g, while other transition metals like Cu and Zn show average concentrations of ~500 and ~300 µg/g respectively. Ni concentrations are on average comprised between ~1,200 and 2,000 µg/g. Beryllium concentrations are in general lower than in North Pacific Fe-Mn crusts and vary between 1.4 to 4.1 µg/g in ZEP2-DR05-04 and between 2.0 and 3.1 in ZEP2-DR-06-03. The two Fe-Mn crusts display distinct average Ca concentrations, i.e. ~14,000 µg/g in ZEP2-DR05-04 and 44,000 µg/g in ZEP2-DR06-03. Calcium concentrations are in agreement with distinct P concentrations observed between the two Fe-Mn crusts, where P concentrations in ZEP2-DR05-04 are ~3,600 µg/g on average and ~7,700 µg/g in ZEP2-DR06-03. The latter displays a 10-fold increase in Ca and P concentrations from the surface of the crust to the base of the crust, i.e., from ~12,000 µg/g to ~120,000 µg/g for Ca and from ~2,900 µg/g to ~31,000 µg/g for P, with a steep increase from ~12 mm and ~23 mm depth in the crust. This suggests significant phosphatization in ZEP2-DR06-03. Finally, we found similar ranges of
Al and Ti concentrations than for North Pacific Fe-Mn crusts of ~4,000 µg/g and ~2,700 µg/g respectively.

The range of Fe/Mn ratios from 0.53 and 1.31 in the South Pacific Fe-Mn crusts are similar to the ratios measured in North Pacific Fe-Mn crusts and they are also in the range of Fe/Mn ratios reported for other South Pacific Fe-Mn crusts (Frank et al., 1999; Hein et al., 2013). All subsamples of the two Fe-Mn crust profiles fall in the hydrogenetic field (Figure 3) of the Bonatti et al. (1972) diagram. However, differences between North and South Pacific Fe-Mn crusts are observed in terms of enrichment factors between each crust such that Co enrichment, i.e., Co/Mn ratios, are higher (Co/Mn > 0.04) in South Pacific Fe-Mn crusts than for in North Pacific Fe-Mn crusts (Co/Mn ~ 0.02; Figure 5 and Table 1). In addition, we distinguished two distinct regions, “I” and “O”, in ZEP2-DR05-04 crust since they display significant geochemical differences (Figure 4). Region “O” is between 0.5 mm (top) to 16.5 mm depth in the crust, and region “I” includes layers from 17.5 mm to 22 mm depth (i.e., over a thickness of ~4 mm at the bottom of the crust). The region “I” shows a two-fold difference in Ni and Cu concentrations compared to the region "O" (Figure 4). Other layers in the crust show remarkably similar geochemical patterns, in particular with respect to Cu/Mn, Co/Mn, Ni/Mn and Fe/Mn ratios. Ni/Mn ratios vary around an average value of 0.15, while Zn/Mn and Cu/Mn ratios are slightly decreasing from bottom to top of the crusts (i.e., from ~0.002 to 0.040 for Zn/Mn and from ~0.002 to 0.060 for Cu/Mn). Co/Mn ratios decrease from about 0.075 to 0.04 in the first 5-10 mm of the crust, and remain relatively constant at ~0.05 from 10 to 25 mm. This possibly indicates a decrease in growth rates of the crusts. Aluminum enrichment relative to Fe is different between the two crusts, ZEP2-DR06-03 crust displays constant Al/Fe ratio from 10 mm depth towards the bottom of the crust with values ~0.050, while it decreases from 10 mm depth to the top of the crust to values up to 0.026. These values are well below the average Al/Fe ratio of the Upper Continental Crust of 3.06
(Rudnick and Gao, 2014) consistent with a limited detrital component in Fe-Mn crusts. ZEP2-
DR05-04 crust shows constant Al/Fe ratios centered ~0.040, but significantly increase up to
0.112 from 17.5 mm depth towards the bottom of the crust. The shift is concomitant to the
increase in Ni/Mn, Cu/Mn and Zn/Mn ratios.

3.2. Fe-Mn crust dating and calculation of growth rates using Be isotope ratios

A common method for dating Fe-Mn crusts has involved the measurement of the
cosmogenic isotope 10Be (Tanaka and Inoue, 1979; Segl et al., 1984; Bourles et al., 1989;
Morris, 1991; Ling et al., 1997; Frank et al., 1999; Frank et al., 2002; Ling et al., 2005;
Amend et al., 2011). Although the Co-dating method (i.e., Co enrichment in the crust) has
been used in the past (e.g., Halbach et al., 1983), it could yield inaccurate ages in the case of
variable Co fluxes to the oceans (Kyte et al., 1993). The Be dating method is based on the
assumption that 10Be is supplied at a constant rate to the oceans, so that 10Be/9Be ratios should
be uniform in the surface layer of Fe-Mn crusts (Ku et al., 1990; von Blanckenburg et al.,
1996a; Willenbring and von Blanckenburg, 2010a). The advantage of this method is the
determination of an absolute age of Fe-Mn crust, which is not affected by possible hiatuses
during crust growth. Since 10Be has a short half-life of 1.39 Ma (Willenbring and von
Blanckenburg, 2010a), this method can only be used for dating Fe-Mn crusts up to ~20 Ma.
Hence, we measured 10Be/9Be ratios only for the top 2.5 cm of each crust. We calculated
absolute ages of subsamples using an initial 10Be/9Be ratio of 1.1x10$^{-7}$ (von Blanckenburg et
al., 1996a) and a λ value of 0.498667036 myr$^{-1}$ for 10Be (Table 2).
10Be/9Be ratios in J2-480 range from 3.14x10$^{-9}$ at the top of the crust to 2.71x10$^{-10}$
towards the bottom of the crust (Table 2 and Figure 5). A larger range is observed for J2-480-
R14 from 1.75x10$^{-8}$ at the top of the crust to 2.31x10$^{-11}$ towards the bottom. Results for J2-
480-R14 crust show near linear decrease of Ln(10Be/9Be) with crust depth suggesting constant
growth rate, at least for the top 18 mm of the crust (Figure 5) which was estimated at 1.1 ±0.5
mm/Ma. Precise dating of sample J2-480 is impaired by the limited subsampling intervals
(only 3 data points) but an average growth rate of 1.6 mm/Ma was determined. From the top
to bottom layer, J2-480 and J2-480-R14 crust sections span an age from 7.1 to 12.0 Ma and
3.7 to 17.0 Ma respectively. The results suggest that both Fe-Mn crusts from Apuupuu
Seamount have similar average growth rates, consistent with similar Co/Mn ratios of 0.021 ±
0.01 and 0.031 ± 0.01 respectively. A striking result of 10Be dating is that the uppermost layer
of the crusts does not show "zero" ages as expected. Possible explanations are either that Fe-
Mn crusts J2-480 and J2-480-R14 stopped growing some millions years ago (i.e., presence of
hiatuses), or that the top part of the crusts was broken and was not recovered during the
sampling process. The lack of significant Co enrichment in the uppermost layers compared to
other section of the crusts argues against an abrupt decrease in growth rates. Using the
average growth rates obtained for each crust, the estimated thickness of the uppermost crust
layers that appear missing is about 11 mm for J2-480 and 4 mm for J2-480-R14. Hence, it is
possible that the first centimeters of the crust layers were lost during sampling, probably due
to the difficulty to recover these samples from smooth surface of bare rocks using the
articulated arm of the ROV (Figure 2).

10Be/9Be ratios from 6.91x10$^{-8}$ to 3.51x10$^{-9}$ are observed in ZEP2-DR06-03 crust with
decreasing values from top to bottom of the crust. ZEP2-DR05-04 crust shows a different
pattern where Be isotopes do not follow the expected trend if radioactive decay is the only
controlling factor. In this sample, 10Be/9Be ratios range from 1.40x10$^{-7}$ at about 17.5 mm from
top, 1.02x10$^{-8}$ at ~0.5 mm and 6.50x10$^{-9}$ at 12.5 mm (Table 2 and Figure 5). Hence, ZEP2-
DR05-04 crust displays anomalously high 10Be/9Be ratios in the bottom, i.e., older part of the
crust (Figure 5). In particular, 10Be/9Be ration of 1.4. 10$^{-7}$ measured at 17.5 mm is similar,
albeit slightly higher, than the present-day ^{10}Be/^9Be ratio in seawater. Potential reasons for the aberrant youth of the crust are discussed in more details below. We cautiously avoided using the ^{10}Be/^9Be data to provide age estimates for ZEP2-DR05-04.

Layers of ZEP2-DR-06-03 can be divided into two parts in terms of growth rates. The upper half crust from depth to 0.5 to ~13 mm depth is characterized by an average growth rate estimated at 1.7 ± 0.6 mm/Ma, while the second half part of the crust corresponding to depths between ~13 mm and 23.5 mm has an average higher growth rate of 3.2 ± 0.6 mm/Ma. The variations in growth rates is consistent with the increase in Co/Mn ratios from ~13 mm to 0.5 mm depth in the crust (Figure 5) suggesting enrichment in Co concentrations due to lower growth rates. These growth rates are generally in the range reported in the literature for hydrogenetic Fe-Mn deposits (Frank et al., 1999; Frank, 2002). The time periods spanned by ZEP2-DR06-03 subsamples is between 0.9 and 6.9 Ma.

Considering the very similar profile in Co/Mn ratios obtained in crusts ZEP2-DR05-04 and ZEP2-DR06-03 (Figure 5), including the "kink" at ~5 mm depth, we consider that both crusts have on average similar growth rates.

3.3. Ni isotope ratios

Nickel isotope compositions for North Pacific Fe-Mn crusts subsamples are rather uniform in the range of 1.64 to 1.72 ‰ for crust J2-480 with the exception of the most basal point at 19 mm depth yielding a δ^{60}/58Ni value of +1.41 ‰. Sample J2-480-R14 displays variations from 1.70 to 1.86 ‰ with the exception of the top of J2-480-R14 at 0.2 mm depth, which has a heavier δ^{60}/58Ni of 1.94 ‰ (Figure 6 and Table 2). Average values are 1.65 ± 0.19 ‰ (2sd) and 1.79 ± 0.13 ‰ (2sd) for J2-480 and J2-480-R14 respectively, and although the observed variations exceed the reproducibility of the measurements (i.e., ± 0.04 ‰) the range
falls within the range of previously published data (Gall et al., 2013). Nickel isotope compositions of South Pacific Fe-Mn crusts subsamples vary from 1.75 to 1.95 ‰ in ZEP2-DR06-03 crust with an average value of 1.87 ±0.10 ‰ (2sd, n=14). In ZEP2-DR05-04 crust, the “I” region of the crust show a significant variability in δ$^{60/58}$Ni values from 0.25 to 1.08 ‰ with lowest values at the bottom of the crust in contact with the substrate. In contrast, δ$^{60/58}$Ni values in the “O” region are comprised between 1.54 to 1.86 ‰ with an average value of 1.72 ±0.18 ‰ (Table 2 and Figure 6). Light Ni isotope compositions correlates with low Mn/Ni ratios ($R^2=0.99$ for the last five samples at the bottom of the crust; Figure 7D). With the exception of the inner region “I” of ZEP2-DR05-04 crust, both range of values in the South Pacific Fe-Mn crusts are similar to North Pacific Fe-Mn crusts.

4. Discussion

4.1. Mechanisms of Ni incorporation into Fe-Mn crusts and Ni isotope variability of Fe-Mn crusts surfaces

Nickel isotope composition of surface layers of hydrogenetic Fe-Mn crusts scrapings from various localities previously reported by Gall et al. (2013) shows a range from 0.9 to 2.5 ‰ with an average value of 1.62 ±0.78 ‰, which indicates both lighter and heavier values than the average Ni isotope composition of seawater of 1.44 ±0.15‰ (Cameron and Vance, 2014). However, it is important to recall that even surface scrapings of Fe-Mn crusts do not exactly represent an instantaneous picture of ambient seawater. Considering average growth rates between 1 to 5 mm/Ma typical for Fe-Mn crusts, precise sampling (i.e., scraping) of the first 0.1 to 0.5 mm of Fe-Mn crust yield ages ranging from 0.5 Ma to not less than 20 ka.
Hence, the time resolution is significantly longer than the estimated residence time of Ni in the ocean and it is possible that Ni isotope composition in seawater changed during that time.

Gall et al. (2013) observed that the surface scrapings of Fe-Mn crusts formed close to continental margins yielded heavier $\delta^{60/58}$Ni values up to 2.5 ‰ which could be attributed to a higher contribution of input materials from continental weathering (e.g., rivers and groundwaters). The authors also discussed the effect of deep ocean water redox state and showed that no correlation could be established between oxygen saturation state and Ni isotope variations. In this study, we obtained a single $\delta^{60/58}$Ni value of 1.88 ±0.04‰ for crust layers younger than 0.9 Ma (i.e., sample ZEP2-DR06-03-L1). This value is remarkably similar to the average value of the crust for the last 7 Ma (Tables 1 and 2), suggesting that seawater Ni isotope values as recorded in Fe-Mn crusts remained relatively constant. By comparison, Gall et al. (2013) obtained lighter $\delta^{60/58}$Ni value at 1.04 ± 0.25 ‰ (2sd) for the surface scraping of a Fe-Mn crust recovered about 400 km westward (Fe-Mn crust SO-36, 22°21'S, 150°17'W) of the studied ZEP2-DR06-03 Fe-Mn crust. Both values are different from modern seawater estimated at 1.44 ±0.15 ‰ (Cameron and Vance, 2014).

Recent experimental work has shown relatively large Ni isotope fractionation during Ni sorption to Fe-oxyhydroxides (Gueguen et al., 2011; Sorensen et al., 2011; Gueguen, 2013; Wasylenki et al., 2015) and Mn-oxyhydroxides (Gueguen, 2013; Wasylenki et al., 2014a) with preferential uptake of isotopically light Ni on the mineral surface. Results on natural samples show that to a first approximation the enrichment in the heavy Ni isotopes in the surface layer of Fe-Mn crusts relative to seawater (1.88 ±0.10 ‰ vs 1.44 ±0.15 ‰) is at odds with experimental studies showing preferential enrichment in light Ni isotopes on Mn-oxides surface (e.g., birnessite) by up to -2.5 ‰ (Gueguen, 2013; Wasylenki et al., 2014a).

Enrichment in heavy Ni isotopes for surface scrapings ($\delta^{60/58}$Ni value up to 2.00 ± 0.05 ‰) has been also reported elsewhere in the South or North Central Pacific (Gall et al., 2013). This
suggests either that another mechanism rather than adsorption reactions is responsible for heavy isotope fractionation during Ni uptake in Fe-Mn crusts or that seawater changed rapidly within the last 1 Ma. We discuss below possible mechanisms explaining both heavier and lighter Ni isotope composition in Fe-Mn crusts relative to seawater.

Ferromanganese crusts are formed through the slow precipitation of Fe-Mn colloids, initially formed in seawater, on a hard substrate devoid of sediments (Koschinsky and Halbach, 1995). Metal cations, such as Ni are readily coprecipitated with Fe-Mn colloids and can undergo further precipitation through slow uptake (i.e., adsorption) onto Fe-Mn crust surface. Hence, even if the removal of Ni onto Fe-Mn colloids in the water column is relatively rapid, which should result in significant Ni isotope fractionation, most of Ni adsorption occurs directly on the crust surface. EXAFS results on experimental Ni adsorption on birnessite at neutral pH indicate that adsorbed Ni is structurally incorporated within the mineral with time, e.g., 30% of Ni is incorporated within 408 hours (Peacock, 2009). Thus, it is possible that adsorbed Ni on Fe-Mn crust surface is continuously incorporated in the mineral structure as a result of long exposure of the crust surface to seawater. This process would allow isotopic exchange of Ni with seawater and any potential isotope fractionation that would have initially occurred during adsorption reactions would not necessarily be recorded in the final product of the reaction. In support of this hypothesis, the experimental study of Cd isotope fractionation during adsorption of Cd on birnessite in high ionic strength solution (i.e., artificial seawater) indicated that the isotope fractionation factor between dissolved Cd and adsorbed Cd decreases with time, from 0.4 ‰ at the beginning of experiment to 0.1 ‰ after 912 hours (Wasylenki et al., 2014b). The final Cd isotope fractionation factor ~0.1 ‰ was similar to the isotope fractionation of Cd observed during experiments in low ionic strength solution and that measured between seawater and Fe-Mn crusts (Schmitt et al., 2009; Horner et al., 2010). The experimental data suggest, therefore, a
reversible mechanism during exchange of dissolved Cd and adsorbed Cd in high ionic
strength conditions. It is possible that a similar mechanism explains the range of Ni isotope
composition in Fe-Mn crusts, that is, the structural incorporation of Ni within the crust with
time favors the heavy Ni isotopes while initial adsorption of Ni onto Fe-Mn minerals favors
the light Ni isotopes.

It has been shown that Ni speciation in seawater is dominated by aqueous Ni$^{2+}$ and Ni-
chloro complexes (Bruland, 1980; Bruland, 1983; Bruland et al., 1994; Fujii et al., 2011), as
well as organically-bound species (Van Den Berg and Nimmo, 1987; Nimmo et al., 1989;
Turner et al., 1998). In addition, experimental and theoretical results indicate that Ni isotopes
are prone to large fractionation up to ~2.5 ‰ between isotopically heavy inorganic and
isotopically light organic Ni species in seawater (Fujii et al., 2011), which demonstrates that
Ni speciation in the water column may also affect Ni isotope composition of Fe-Mn crusts. In
the case of the preferential adsorption of aqueous Ni$^{2+}$ species on Mn-oxides colloids relative
to isotopically light organic species (e.g., Nickel carboxylate complexes; Fujii et al., 2011),
the expected enrichment in light Ni isotopes during adsorption will be muted by the inverse
fractionation between inorganic and organic Ni species in solution. In similar manner, Little et
al. (2014b) interpreted heavier Zn isotope compositions of Fe-Mn crusts relative to seawater
as the result of fractionation between free aqueous Zn$^{2+}$ (preferentially adsorbed on Fe-Mn
crusts) and Zn chloro-complexes, the latter being predicted to favor light Zn isotopes. Because
free Ni$^{2+}$ and Ni-chloro complexes are also the predominant species occurring in seawater
(Fujii et al., 2011), with Ni-chloro complexes being enriched in light Ni isotopes compared to
aqueous Ni$^{2+}$ (Fujii et al., 2011), similar mechanisms could affect both Ni and Zn isotopes in
Fe-Mn crusts. However, although Ni speciation certainly plays an important role in the
fractionation of Ni isotopes between Fe-Mn crusts and seawater, it is unlikely that the relative
abundance of free Ni$^{2+}$ and Ni-chloro complexes is variable in seawater. Hence, Ni speciation
in seawater is unlikely to explain the range of Ni isotopes in Fe-Mn crusts within oceanic basins. Processes involving the pathways of Ni incorporation in Fe-Mn crusts therefore provide the most plausible mechanisms, together with post-depositional effects as discussed in the following section 4.2.

4.2. Evidence for diagenetic alteration and post-depositional effects in Fe-Mn crusts and the response of Ni isotopes to late-stage alteration

The high $^{10}\text{Be}/^{9}\text{Be}$ ratios in the region “I” of ZEP2–DR05–04 crust (Table 2 and Figures 5) is at odds with the general assumption that Fe-Mn crusts are composed of Fe-Mn oxides layers that accumulated successively through time onto a hard substrate, implying that $^{10}\text{Be}/^{9}\text{Be}$ ratios in the crust profile should decrease from top to bottom. The inner region “I” of this crust also corresponds to the region where important geochemical variability is observed, in particular with respect to Mn, Fe, Ni, and Cu concentrations. There is an increase in Cu/Mn, Ni/Mn, Zn/Mn and Al/Fe ratios at the bottom of ZEP2-DR05-04 while Co/Mn ratios remain similar to the other crust ZEP2-DR06-03 recovered from the same area. In the outer region "O" of the crust, Cu/Mn, Fe/Mn and Zn/Mn are remarkably similar between both crusts. This suggests that growth rates or water mass parameters are not the major controls on the enrichment in Ni and other transition metals in crust ZEP2-DR05-04. Below, we consider three possible explanations that may account for the anomalously high $^{10}\text{Be}/^{9}\text{Be}$ ratios and associated geochemical variations: (1) unusually high initial $^{10}\text{Be}/^{9}\text{Be}$ ratios; (2) diffusion processes; (3) phosphatization effects; and (4) protracted seawater circulation throughout the base of the crust in contact with the substrate.

Hypothesis (1): most of the flux of cosmogenic ^{10}Be to the ocean has an atmospheric origin and is directly related to the flux of the incoming cosmic ray particles (Willenbring and
von Blanckenburg (2010b, 2010a); Steinhilber et al. (2012) and references therein). Although variations in geomagnetic field strength and changes in solar modulation produce fluctuations in 10Be flux, it remained roughly constant over the last 12 Ma (Willenbring and von Blanckenburg, 2010b). 9Be fluxes to the ocean, mainly derived from fluvial inputs also remained constant, precluding a change of initial 10Be/9Be ratios during the formation of the crusts. In addition, 9Be concentrations are relatively constant through the Fe-Mn crust layers (Table 2), suggesting that unusual high 10Be/9Be ratios are not the results of 9Be depletion. Although cosmic spherules have been already reported in Fe-Mn crusts (e.g., Kosakevitch, 1987; Halbach et al., 1989), high initial 10Be/9Be ratios are unlikely to originate from the presence of meteoritic particles with high 10Be content since cosmic particles yield 10Be below 0.17 pg/g (Nishiizumi et al., 1991). Stuart and Lee (2012) detected the presence of micrometeorites using He isotopic composition of Fe-Mn crusts, however their Fe-Mn crust was dated using cosmogenic 10Be isotope implying that extraterrestrial inputs have not modified the 10Be/9Be ratios of Fe-Mn crust. Hence, the presence of extraterrestrial material is probably not the cause of elevated 10Be/9Be isotope ratios, and probably also elevated Ni/Mn ratios in our sample.

Hypothesis (2) can also be disregarded since it was demonstrated that on the time-scale considered for dating Fe-Mn crusts diffusion of Be is very limited (Henderson and Burton, 1999). If diffusion processes affect Be in the crust, it could modify the isotopic pattern showing decreasing values from top (young crust) to the bottom (old crust) and skewed the age model based on 10Be/9Be isotope ratios.

Hypothesis (3): the presence of accessory phases such as fluorapatite and calcite generally indicates alteration processes in the Fe-Mn crust with possible remobilization of transition metals in the crust. This effect, known as phosphatization, has been described in some Pacific Fe-Mn crusts (Halbach and Puteanus, 1984; Hein et al., 1993). Phosphorus and
calcium in Fe-Mn crusts are essentially hosted in accessory fluorapatite and calcite phases, with minor contribution from detrital materials and their concentrations vary in our Fe-Mn crusts, in particular crust ZEP2-DR06-03 (Table 1). However, variations in P concentrations are not correlated with any variations in transition metal concentrations nor with isotopic variations (Figure 7), suggesting that phosphatization effects can be discounted for explaining the compositional variability in our Fe-Mn crusts. More specifically, the bottom of crust ZEP2-DR05-04 (with anomalous \(^{10}\text{Be}/^{9}\text{Be}\) ratios) does not show any specific trend in P concentrations (Figure 7) indicating that the crust did not undergo major phosphatization, which is thus unlikely to be the cause for the variations observed in other geochemical proxies. Finally, large P/Ni ratios also do not correlate with \(^{60/58}\text{Ni}\) values (Figure 7).

Finally, hypothesis (4) and the effect of post-depositional fluid circulation through the crust is likely the most plausible explanation for our observations. Several lines of evidence suggest that the region “I” of the crust has been affected by alteration processes. First, sample ZEP2-DR05-04 consists of 25 mm thick Fe-Mn crusts attached to a brecciated basalt substrate mixed with phosphorites and carbonates. Hence, it is possible that continuous circulation of fluids occurred through fractures from the underlying substrate. Fluid circulation would continuously bring seawater-derived Be with higher \(^{10}\text{Be}/^{9}\text{Be}\) ratios (i.e., present-day \(^{10}\text{Be}/^{9}\text{Be}\) ratio) thus producing the anomalous Be isotope composition in region “I” of the crust.

Substantial alteration and reprecipitation of Mn-oxides phases at the expense of Fe-oxides would have also promoted the observed enrichment in transition metals such as Ni, Cu, Zn due to their high affinities towards the Mn-phase.

One of the most striking feature observed in ZEP2-DR05-04 crust is the fractionation of Ni isotopes towards lighter \(^{60/58}\text{Ni}\) values at the bottom of the crust from 1.06 to 0.25 ‰, which strongly correlate with the geochemical variations described above, in particular decreasing Mn/Ni ratios (Figure 7D). Four possible scenarios may account for such light Ni
isotope compositions, (1) lighter Ni isotope composition of ambient seawater at the time of
crust formation, (2) meteoritic or basaltic/detrital inputs, (3) hydrothermal or halmyrolitic
inputs (i.e., alteration of the substrate by fluids on the seafloor), and (4) alteration and
reprecipitation processes of Mn-oxide phases.

A primary isotopic signal acquired from local seawater for explaining lighter Ni
isotopes in the Fe-Mn crust would require either a change in the isotopic composition of local
sources of Ni or a change in the input and/or output fluxes of Ni in the oceans. A local source
would likely have affected the two Fe-Mn crusts collected at the same location, while a
change in the input and/or output fluxes in the oceans should have affected the four Fe-Mn
crusts collected in the same oceanic basin, i.e., the Pacific Ocean. Nonetheless, both
hypotheses are inconsistent with the Ni isotope composition of the three other Fe-Mn crusts,
which therefore rules out the possibility that light $\delta^{60/58}$Ni values in ZEP2-DR05-04 are a
primary signal from seawater.

Secondly, considering the ubiquitous occurrence of Fe-Ni cosmic spherules in South
Pacific Fe-Mn crusts (e.g., Kosakevitch, 1987; Halbach et al., 1989), the potential
contribution of meteoritic Ni should be evaluated. Nickel isotope compositions of iron
meteorites reported in previous studies yield a range of $\delta^{60/58}$Ni values from 0.24 and 0.36‰
(Moynier et al., 2007; Cook et al., 2008; Cameron et al., 2009; Gueguen et al., 2013).
However, iron meteorites such as Gibeon Iron (class IVA) and Nantan Iron (class IIICD) have
Ni/Fe ratios of about 0.07, which are similar to those obtained in the bottom section of crust
ZEP2-DR05-04. Hence, using simple mass balance considerations, it is unlikely that the entire
pool of Ni at the base of ZEP2-DR05-04 crust derived solely from meteoritic input.

As reported in Figure 7D, light $\delta^{60/58}$Ni values in ZEP2-DR05-04 crust correlate with
lower Mn/Ni ratios (R²=0.99; for the 5 subsamples at the bottom of the crust), implying
possible mixing relationships between typical hydrogenous Ni end-member (Mn/Ni ~ 60;
δ^{60/58}Ni ~ 1.8 ‰) and light δ^{60/58}Ni values from the basaltic substrate (low Mn/Ni; δ^{60/58}Ni ~ 0.57‰; (Gall et al., 2012; Gueguen et al., 2013). However, the presence of detrital or volcanic material can be discounted for explaining geochemical variations in ZEP2-DR05-04 crust. Although Ti along with Al is often used as an indicator of the presence of detrital phases and silicate-rich material in marine sediments, Koschinsky and Halbach (1995) showed that a large proportion of Ti in hydrogenetic Fe-Mn crusts is mainly derived from seawater as colloidal Ti (i.e., uncharged Ti hydroxo-complexes adsorbed on the positively-charged Fe-colloids) and is not controlled by detrital material. Addition of crustal material to the Fe-Mn crust would have affected both Al and Ti enrichment in the crust in similar manners. Al/Fe ratios are constant in ZEP2-DR05-04 crust while Ti/Al ratios decrease in the altered portion of the crust (Table 1). The latter would be consistent with alteration of Fe-phases and loss of Ti hosted in the Fe-phase to the fluid, implying that crustal Ni is unlikely to be the cause for light δ^{60/58}Ni values.

The third scenario, involving halmyrolitic reactions could potentially reconcile isotopically light Ni isotopes, low Mn/Ni ratios and anomalous Be isotope ratios. Halmyrolysis has been described in volcanic context and is defined as low temperature alteration of volcanic material by seawater (Staudigel and Hart, 1983; Staudigel et al., 1996). Although limited data are available on Ni isotope fractionation during alteration of volcanic rocks, preliminary study has shown that fresh and altered basalts have the same δ^{60/58}Ni values (Gueguen et al., 2013). In contrast, continental weathering of ultramafic complexes on land has been shown to produce light Ni isotope enrichment in laterites, leading to preferential loss of heavy Ni isotopes in the dissolved phase (Ratié et al., 2015), consistent with light Ni isotopes being retained in Fe-oxides (Wasylecki et al., 2014b). Based on these results, one should expect that halmyrolytic processes would promote the release of a non-fractionated to heavy Ni isotope signature in the alteration fluids (i.e., relative to fresh basalt), which is not
consistent with the light (i.e., near-zero) $\delta^{60/58}$Ni values observed in ZEP2-DR05-04 crust. As discussed in Gall et al. (2013), lighter $\delta^{60/58}$Ni values down to 0.9 ‰ were interpreted as reflecting hydrothermal inputs of Ni, although no distinction was mentioned between low or high-temperature processes. It is important to note however, that significant hydrothermal inputs in Fe-Mn crusts would have increased Fe/Mn ratios (i.e., Chu et al., 2006) while adding isotopically light Ni (i.e., near crustal values). This would have also resulted in significant dilution of other transition metals, in particular Co (Manheim and Lanebostwick, 1988), which is not observed here. Hence, we do not favor a potential hydrothermal or halmyrolitic origin for the enrichment of Ni in this crust.

Finally, the fourth possible and favored scenario for explaining Ni isotope fractionation is the effect of post-depositional alteration and reprecipitation of Mn-oxide phases of the crust. Preliminary results suggest significant Ni isotope fractionation during Ni sorption on Mn-oxides (e.g., birnessite; Gueguen, 2013; Wasylenki et al., 2014a). Data from ZEP2-DR05-04 crust indicate large light Ni isotope fractionation towards light values (from 1.08 to 0.25 ‰), supporting the assumption that Ni sorption to Mn-oxides surfaces in natural deposits also fractionates Ni isotopes. Hence, our observations demonstrate that Ni sorption on Mn-oxides is a fundamental process controlling Ni isotope fractionation in the natural environment. Here, we propose that Mn-oxide alteration involving dissolution and reprecipitation could explain Ni isotope variations without necessarily involving additional inputs of Ni or change of seawater composition. The sharp increase in Ni/Mn ratios (Figure 4) without a concomitant decrease in Co/Mn ratios in region “I” of the crust (Figure 5) argue against an initial rapid precipitation of Mn-oxides from seawater during formation of the crust, and therefore hydrothermal input which would have resulted in lowering Co/Mn ratios (Manheim and Lanebostwick, 1988). In addition, $\delta^{60/58}$Ni values are not correlated with Co/Mn ratios (Figure 7). The strong enrichment in Ni may be explained by a two-step model,
by which Ni is first adsorbed or incorporated in primary Mn-oxides phases, then release in
porewater during the alteration stage and then reprecipitated in open system. In this case, the
full expression of Ni isotope (i.e., probably more than 1.1 ‰ relative to seawater, which is
still lower than experimental values of > 2 ‰; Gueguen, 2013; Wasylenki et al., 2014a) is
recorded in the crust resulting in unexpectedly light $\delta^{60/58}$Ni values compared to the average
value of the Fe-Mn crust (~1.8 ‰). This scenario is also consistent with 10Be/9Be ratios since
abnormal values are also probably the result of re-equilibration with surrounding seawater or
alteration fluids (i.e., open system reprecipitation).

In summary, we interpret the light Ni isotope compositions of crust ZEP2-DR05-04 as
the result of fractionation from a source having a Ni isotope composition akin to that of
seawater, i.e., ~ 1.4 ‰ (Cameron and Vance, 2014), during adsorption reactions and late-
stage alteration processes. We consider sorption processes as being important drivers of Ni
isotope variations in Fe-Mn crusts, in addition to varying Ni isotope composition in seawater.

4.3. Temporal Ni isotopes record in Fe-Mn crusts and implications for paleoceanography

Prior to interpreting Ni isotope profile in Fe-Mn crust, it is crucial to first assess the
effect of diffusion processes, which could explain the homogenous Ni isotope composition in
Fe-Mn crusts. In-situ diffusion rate of Ni along the whole section of the crust can be
determined according to the equations from Henderson and Burton (1999). The distribution
coefficient of a given element is calculated as of the concentration in the surface of the crust
and in seawater, which is then compared with the diffusivity and the distribution coefficient of
uranium ($D_{\text{eff}}^{X} = (D_{\text{eff}}^{U}K_{\text{crust}}^{X})/K_{\text{crust}}^{U}$, where D_{eff} are the effective diffusivities and K_{crust} are
the distribution coefficients of element X and uranium (U)). Using this approach, we obtain a
diffusion rate on the order of $\sim 10^{-9}$ cm2/year which is slow enough compared to crust growth.
rate so we can reasonably assume that Ni does not diffuse in Fe-Mn crusts. Hence, diffusion
processes will not disturb Ni isotope composition in Fe-Mn crusts and pristine isotope
composition should be preserved at the sampling scale carried out in this study.

Although the concentration of Ni varies in the water column due to its nutrient-type
behavior, the relatively long oceanic residence time of Ni of ~10-30,000 yrs (Sclater et al.,
1976; Bruland and Lohan, 2003; Gall et al., 2013; Cameron and Vance, 2014) in comparison
to the ~1,500 yrs mixing time of oceans, likely implies that Ni distribution in deep waters is
relatively well-mixed and homogenous. Nickel isotope profiles in the Pacific, Atlantic and
Southern Ocean water columns do not show any variations with depth (Cameron and Vance,
2014), thus we can reasonably presume that Ni isotopes are homogenous in deep waters. At
steady state, the Ni isotope composition of seawater is controlled by the relative fluxes of Ni
inputs to the ocean (e.g., rivers, atmospheric deposits, hydrothermal sources) and Ni uptake
(e.g., authigenic sinks, organic matter burial). The riverine flux and the authigenic sink (i.e.,
Ni scavenged in Mn-oxides phases) are respectively the main input and output fluxes of Ni in
the ocean (Gall et al., 2013; Cameron and Vance, 2014), implying that the modern marine Ni
isotope mass balance is controlled by the isotopic composition of these fluxes. Considering
the relatively long residence time of Ni in the deep ocean, changes of either Ni input or output
should have been recorded in both South and North Pacific crusts. In contrast, one may
presume that different Ni isotope records between Fe-Mn crusts from the same oceanic basin
would reflect either local sources, changes of Ni isotope fractionation factor between seawater
and Fe-Mn crusts or post-depositional processes.

With the exception of the lower section of the crust ZEP2-DR05-04 which we argue is
the result of post-depositional alteration processes (see the previous section 4.2), our results
show fairly homogenous Ni isotope compositions in Pacific Fe-Mn crusts over the last ca. 17
Ma (Figure 6). We obtained, within uncertainties, similar average $\delta^{60/58}$Ni values of 1.72
±0.18 ‰ (2sd) and 1.87 ±0.10 ‰ (2sd) in the South Pacific, and 1.65 ±0.19 ‰ (2sd) and 1.79
±0.13 ‰ (2sd) in the North Pacific, thus confirming limited Ni isotope variations over the last 17 Ma and between different locations in the Pacific Ocean. By combining the four profiles from our study with the CD29-2 profile of Gall et al. (2013), we reconstructed a complete record of Ni isotope variations in seawater over the last ~80 Ma (Figure 8). Besides the light Ni isotope excursion occurring around 48-50 Ma in CD29-2, there is no change in the average oceanic δ⁶⁰⁵⁸Ni value during the last ~80 Ma. This result is important since important oceanic changes (e.g., closing of the Panama gateway, onset of the Northern Hemisphere glaciation) occurred during that period, but didn't produce changes of Ni isotope composition of seawater remains fairly constant during the Cenozoic.

The negative Ni isotope excursion observed in CD29-2 Fe-Mn crust (Figure 8) by Gall et al. (2013) and attributed to inputs from hydrothermal sources in the water column, could in fact be the result of Ni isotope fractionation during precipitation and formation processes occurring either in the water column or during formation of the crust, as we have demonstrated for one of our Fe-Mn crusts. The flux of Ni from deep-sea hydrothermal vents is poorly constrained so far (Cameron and Vance, 2014; Little et al., 2015), hence it is unclear how Ni isotope variations in Fe-Mn crusts would respond to hydrothermal input. If lighter Ni isotope compositions are indeed related to hydrothermal inputs, other isotopic proxies and possibly Fe isotopes should also be influenced, which warrant additional studies of other metal isotope systematics in Fe-Mn crusts.

5. Conclusions

In this study we have reported the geochemical composition and Ni isotope composition of four hydrogenetic Fe-Mn crusts from the North and South Pacific oceans.
Recent Ni isotope compositions reported for hydrogenetic Fe-Mn crusts suggested that Ni isotopes could be used as a tracer of metal sources in modern oceans, in particular hydrothermal sources. Here, we demonstrated that Ni isotopes could also be fractionated due to local effects such as alteration processes producing a range of Ni isotope compositions encompassing the total range of $\delta^{60/58}$Ni values measured in Fe-Mn crusts so far. One of the Fe-Mn crusts from the South Pacific presents unusual geochemical variations including high Mn and Ni contents, anomalously high $^{10}\text{Be}/^{9}\text{Be}$ ratios, and light $\delta^{60/58}$Ni values in the range of 1.08 to 0.25 ‰ for subsamples close to or in contact with the altered substrate. These results suggest that post-depositional processes involving alteration and reprecipitation of Mn-rich oxide phases as well as substrate-seawater interactions have locally affected the geochemical composition of the bottom of the crust. We argue that seawater circulation through fractures within the substrate explains the anomalously high $^{10}\text{Be}/^{9}\text{Be}$ ratios in the crust, while rapid reprecipitation of Mn-oxides would have produced large Ni isotope fractionation and preferential incorporation of metals with strong affinity for Mn (e.g., Ni, Cu and Co). We show that despite a light Ni isotope excursion at ~48-50 Ma in one Pacific Fe-Mn crust published in another study, all Ni isotope data obtained so far including our new dataset indicate that the mean $\delta^{60/58}$Ni value in Pacific Fe-Mn crusts has remained constant at ~1.8 ‰ suggesting limited Ni isotope variations of seawater through the Cenozoic. The lack of systematic change in the average $\delta^{60/58}$Ni value of seawater over the last ~80 Ma and the fact that secondary processes involving Ni sorption reactions on Fe-Mn oxides can produce light Ni isotope excursion in Fe-Mn crusts, calls for a critical re-evaluation of the use of Ni isotopes as paleoceanographic proxies. Although we cannot completely rule out the influence of hydrothermal inputs and local sources on the Ni isotope composition of deep seawater and more generally of the effect of variable Ni sources as previously suggested, our results emphasize that enrichment processes and rates of precipitation are likely to be
important if not the main factors controlling Ni isotope variations in oceanic Fe-Mn deposits.

Our results confirm recent experimental data showing that Ni isotopes fractionate during sorption on Fe- and Mn-oxyhydroxides (Gueguen et al., 2011; Sorensen et al., 2011; Gueguen, 2013; Wasylenki et al., 2014a; Wasylenki et al., 2015). Our results have also implications for interpretation of Ni isotope variations in metalliferous sediments in the deep geological time (e.g., Precambrian Banded Iron Formations) as we showed that precipitated-recrystallization processes may overprint primary Ni isotope systems. The Ni isotope composition of hydrothermal fluids and hydrothermal deposits and whether local Ni sources (e.g., rivers and hydrothermal vents) may be recorded in the Ni isotope composition of Fe-Mn crusts should be also explored in future studies.

Acknowledgments:

We thank Philippe Fernagu (Ifremer, Brest, France) for his help during preparation of Fe-Mn crusts samples for microdrilling and Didier Bourlès (CEREGE, Université d’Aix-Marseille, France) for Be isotope analyses. We thank the ROV Jason-II pilots and the crews of the RV Kilo Moana for assistance with deployments and sample collection during the cruise. We also thank the Microbial Observatory Project (FeMO) Principle Investigators: Katrina Edwards (USC), Dave Emerson (Bigelow), Craig Moyer (WWU), Hubert Staudigel (UCSD-SIO), and Brad Tebo (OHSU) for their support and input during cruise operations. Support was provided by the LabexMer ANR-10-LABX-19-01, Europole Mer and FP7 (#247837) grant.

Figure captions:
Figure 1: Locations of the sampling sites (A) and photographs of North Pacific Fe-Mn crusts sampling (B and C) using ROV Jason2 during FeMO cruise 2009 on the R/V Kilo Moana (University of Hawaii). Photographs are courtesy of Woods Hole Oceanographic Institution. The map (A) was generated with GeoMapApp (http://www.geomapapp.org/).

Figure 2: Photographs of the four Fe-Mn crusts samples after microdrill sampling using a microdrilling device. Labels “top”, “middle”, and “bottom” are specified for each Fe-Mn crust. “Top” corresponds to the surface in contact with seawater, “middle” is the part of the crust towards the substrate and “bottom” is when the crust was collected with its substrate, and thus it corresponds to the contact between the crust and substrate. Yellow dashed lines correspond to the positions drilled for making one sample per line drilled. Regions “I” and “O” of crust ZEP2-DR05-04 (D) are noted, and description of these regions are provided in the text.

Figure 3: Ternary diagram plotting Fe, Mn and (Ni+Cu+Co) x 10 concentrations of Fe-Mn crusts from the North Pacific (Apuupuu Seamount) J2-480 and J2-480-R14, and Fe-Mn crusts from the South Pacific (Austral archipelago of French Polynesia) ZEP2-DR05-04 and ZEP2-DR06-03. Lines plotted between points represent the time-series of each Fe-Mn crust. The diagram is adapted from Bonatti et al. (1972) and shows the three fields in which Fe-Mn rich deposits are commonly classified: hydrothermal (light brown area), hydrogenetic (blue area) and diagenetic (yellow area).

Figure 4: Elemental ratios of Fe/Mn, Co/Mn, Ni/Mn and Cu/Mn (g/g) versus depth (mm) in the crust from South Pacific (Austral Archipelago of French Polynesia): ZEP2-DR05-04 and ZEP2-DR06-03 and North Pacific (Apuupuu Seamount). Increasing Ni/Mn in this region “I”
in comparison to other part of the crust and to crust ZEP2-DR06-03 indicate that it has undergone geochemical perturbations probably as a result of fluid circulation in the substrate.

Increasing Ni/Mn in four data points of crust ZEP2-DR-05-04 are likely not related to variations in growth rates as illustrated by the lack of variations in Fe/Mn (A) and Co/Mn (E) ratios.

Figure 5: Plots of the logarithm of $^{10}\text{Be}/^{9}\text{Be}$ ratios vs depth in South Pacific (Austral Archipelago of French Polynesia) crusts (A and C) and in North Pacific (Apuupuu Seamount) Fe-Mn crusts (B and D). The red lines in plots A and C show the limit between region “O” (outer) from region “I” (inner) in crust ZEP2-DR05-04 (see text for ample descriptions). Anomalously high $^{10}\text{Be}/^{9}\text{Be}$ ratios in region “I” of crust ZEP2-DR05-04 (A) likely indicate that seawater fluids circulation in the substrate with high Be isotopes ratios affected the crust directly in contact with the substrate. These fluids promoted alteration of Mn-oxides.

Figure 6: Ni isotope composition (‰) of the Fe-Mn crusts versus depth in the crust. The four Fe-Mn crusts display similar average pattern, with the exception of crust ZEP2-DR05-04 showing a decrease in $^{60/58}\text{Ni}$ values from an average of ~1.8 ‰ to a value of 0.25 ‰ from ~17 mm to ~22 mm in the crust. The 2sd error shown for our samples on the figure is based on replicate measurements of several geological reference materials (GRMs).

Figure 7: Nickel isotope composition (‰) versus (A) P/Mn, (B) P/Ni, (C) Co/Mn and (D) Mn/Ni ratios (g/g) in the four Fe-Mn crusts. Symbols are for the same as in Figures 4, 5 and 6. The green line in plot (D) represents the linear fitting for the last 5 subsamples of ZEP2-DR-05-04 crust towards the bottom indicating a clear correlation between light Ni isotope compositions and low Mn/Ni ratios, suggesting mixing between two end-members. These
end-members are presumably a hydrogenetic component represented by the average $\delta^{56/58}$Ni value of Fe-Mn crusts from the South Pacific of $1.76 \pm 0.23 \%$ (2sd) and the $\delta^{60/58}$Ni value of a fluid similar to the substrate (i.e., basalt) in which it has circulated with a value of $\sim 0 \%$.

Figure 8: Time-series of the Ni isotope composition ($\%$) of South Pacific (Austral Archipelago of French Polynesia) and North Pacific (Apuupuu Seamount) Fe-Mn crusts and the CD29-2 crust profile from Gall et al. (2013). Symbols are identical to those in Figures 4 and 5 for samples from this study and grey triangles represent the CD29-2 crust profile. The blue band represents the range of $\delta^{60/58}$Ni values for modern seawater. Nickel isotope composition is constant and similar within uncertainty in our three Fe-Mn crusts from both North and South Pacific Oceans. The combination of our isotopic profiles from ~ 0 to ~ 17 Ma and the CD29-2 profile from ~ 8 Ma to ~ 75 Ma implying shows that despite some small Ni isotope excursions the average Ni isotope composition of Pacific deep waters has not varied through Cenozoic and remains at a mean $\delta^{56/58}$Ni value of $\sim 1.8 \%$. The 2sd error shown for our samples on the figure is based on measurements of GRMs replicate.

Table captions:

Table 1: Elemental concentrations (μg/g or wt%) and elemental ratios (g/g), and Ni isotope composition ($\%$) of North Pacific (Apuupuu) and South Pacific (Tahiti) Fe-Mn crusts.

Table 2: 10Be/9Be ratios, 9Be concentrations (μg/g), Co/Mn ratios (g/g), age (Ma) and growth rates (mm/Ma) of Fe-Mn crusts from North Pacific (Apuupuu) and South Pacific (Tahiti).
References

Table 1: Elemental concentrations, elemental ratios, and Ni isotope composition of North Pacific (Apuupuu) and South Pacific (Tahiti) Fe-Mn crusts.

<p>	Sample name	Depth in the crust (mm)	Mn (wt%)	Fe (wt%)	Al (µg/g)	Ti (µg/g)	Ca (µg/g)	P (µg/g)	Ni (µg/g)	Cu (µg/g)	Zn (µg/g)	Fe/Mn	Ni/Mn	Cu/Mn	Zn/Mn	Ni/Co	Ti/Al	Al/Fe	P/Ni	δ65/63Ni (‰)	2se (%‰)
ZEP2-DR05-04-L1	Average	10.31	8.36	3996	7693	14466	3646	5462	2002	548	345	1.72	0.17	0.02	0.04	1.31	0.89	0.04			
ZEP2-DR05-04-L2	0.5	17.07	8.95	3604	11864	17876	3662	12406	2790	383	398	1.89	0.04	0.04	0.04	1.31	1.82	0.05			
ZEP2-DR05-04-L3	1	13.53	8.12	2809	9051	14012	2386	8922	2483	410	335	1.82	0.05	0.05	0.05	1.31	1.82	0.05			
ZEP2-DR05-04-L4	2.5	15.71	8.77	3998	10937	15973	3230	8495	2919	564	417	1.82	0.05	0.05	0.05	1.31	1.82	0.05			
ZEP2-DR05-04-L5	3.5	11.02	7.23	3351	8808	12023	2334	5536	2063	435	327	1.69	0.03	0.03	0.03	1.11	1.71	0.03			
ZEP2-DR05-04-L6	4.5	7.37	6.59	2868	6520	8593	1944	3047	1287	328	229	1.65	0.02	0.02	0.02	1.11	1.71	0.03			
ZEP2-DR05-04-L7	5.5	8.33	7.96	3697	7181	10927	2838	3750	1259	422	261	1.75	0.04	0.04	0.04	1.11	1.74	0.03			
ZEP2-DR05-04-L8	6.5	12.76	11.90	4883	9760	19372	5969	5882	1919	674	414	1.81	0.03	0.03	0.03	1.11	1.74	0.03			
ZEP2-DR05-04-L9	7.5	9.84	9.50	3917	7785	13743	4033	4782	1464	576	341	1.72	0.03	0.03	0.03	1.11	1.72	0.03			
ZEP2-DR05-04-L10	8.5	9.32	8.62	3478	7014	17582	5784	4684	1365	545	316	1.67	0.04	0.04	0.04	1.11	1.72	0.03			
ZEP2-DR05-04-L11	9.5	8.19	8.30	2885	5669	10238	2574	4226	1240	476	260	1.63	0.03	0.03	0.03	1.11	1.72	0.03			
ZEP2-DR05-04-L12	10.5	7.60	7.44	3558	5760	11681	2844	3952	1336	515	276	1.54	0.03	0.03	0.03	1.11	1.72	0.03			
ZEP2-DR05-04-L13	11.5	7.33	7.69	3140	5436	11421	3131	3675	1188	465	248	1.69	0.02	0.02	0.02	1.11	1.72	0.03			
ZEP2-DR05-04-L14	12.5	12.98	11.37	6809	9821	21638	6105	6346	2753	947	529	1.08	0.03	0.03	0.03	1.11	1.72	0.03			
ZEP2-DR05-04-L15	13.5	7.48	6.95	3966	5251	14892	3748	3150	1871	555	337	1.01	0.04	0.04	0.04	1.11	1.72	0.04			
ZEP2-DR05-04-L16	14.5	10.13	7.99	6070	8280	17988	4239	5205	3238	810	473	0.63	0.04	0.04	0.04	1.11	1.72	0.04			
ZEP2-DR05-04-L17	15.5	6.64	5.07	5694	5089	16289	4215	3321	3395	670	403	0.25	0.05	0.05	0.05	1.11	1.72	0.05	</p>		
<table>
<thead>
<tr>
<th>Sample name</th>
<th>Depth in the crust (mm)</th>
<th>Mn (wt%)</th>
<th>Fe (wt%)</th>
<th>Al (µg/g)</th>
<th>Ti (µg/g)</th>
<th>Ca (µg/g)</th>
<th>P (µg/g)</th>
<th>Co (µg/g)</th>
<th>Cu (µg/g)</th>
<th>Zn (µg/g)</th>
<th>Fe/Mn</th>
<th>Ni/Mn</th>
<th>Cu/Mn</th>
<th>Zn/Mn</th>
<th>Ni/Co</th>
<th>Ti/Al</th>
<th>Al/Fe</th>
<th>P/Ni</th>
<th>δ^{66}Ni (‰) 2se (‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEP2-DR06-03</td>
<td></td>
</tr>
<tr>
<td>ZEP2-DR06-03-L1</td>
<td>0.5</td>
<td>8.78</td>
<td>8.23</td>
<td>3601</td>
<td>7586</td>
<td>44011</td>
<td>7707</td>
<td>4843</td>
<td>1248</td>
<td>473</td>
<td>257</td>
<td>1.87</td>
<td>0.10</td>
<td>0.003</td>
<td>1.74</td>
<td>1.88</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZEP2-DR06-03-L2</td>
<td>2.5</td>
<td>12.38</td>
<td>9.77</td>
<td>3484</td>
<td>10527</td>
<td>14623</td>
<td>3687</td>
<td>7774</td>
<td>1745</td>
<td>451</td>
<td>304</td>
<td>0.19</td>
<td>0.0025</td>
<td>0.22</td>
<td>3.02</td>
<td>0.04</td>
<td>2.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZEP2-DR06-03-L3</td>
<td>4</td>
<td>12.46</td>
<td>9.96</td>
<td>3660</td>
<td>11517</td>
<td>14250</td>
<td>3575</td>
<td>7225</td>
<td>1777</td>
<td>483</td>
<td>217</td>
<td>0.25</td>
<td>0.0025</td>
<td>0.025</td>
<td>7.43</td>
<td>0.14</td>
<td>2.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZEP2-DR06-03-L4</td>
<td>5.5</td>
<td>9.53</td>
<td>8.33</td>
<td>2764</td>
<td>8890</td>
<td>10726</td>
<td>2871</td>
<td>5385</td>
<td>1320</td>
<td>393</td>
<td>254</td>
<td>0.68</td>
<td>0.0025</td>
<td>0.025</td>
<td>7.43</td>
<td>0.14</td>
<td>2.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZEP2-DR06-03-L5</td>
<td>7.5</td>
<td>7.72</td>
<td>10.09</td>
<td>3621</td>
<td>10999</td>
<td>11741</td>
<td>3278</td>
<td>3948</td>
<td>1011</td>
<td>420</td>
<td>328</td>
<td>0.17</td>
<td>0.0027</td>
<td>0.027</td>
<td>7.43</td>
<td>0.14</td>
<td>2.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZEP2-DR06-03-L6</td>
<td>9.5</td>
<td>9.69</td>
<td>8.30</td>
<td>3794</td>
<td>7393</td>
<td>21139</td>
<td>3010</td>
<td>4807</td>
<td>1687</td>
<td>477</td>
<td>259</td>
<td>0.18</td>
<td>0.0027</td>
<td>0.027</td>
<td>7.43</td>
<td>0.14</td>
<td>1.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZEP2-DR06-03-L7</td>
<td>11</td>
<td>8.56</td>
<td>7.78</td>
<td>4380</td>
<td>7062</td>
<td>21185</td>
<td>3347</td>
<td>3552</td>
<td>1279</td>
<td>480</td>
<td>239</td>
<td>0.16</td>
<td>0.0028</td>
<td>0.028</td>
<td>7.43</td>
<td>0.14</td>
<td>2.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZEP2-DR06-03-L8</td>
<td>12.5</td>
<td>8.38</td>
<td>8.20</td>
<td>4312</td>
<td>7047</td>
<td>27977</td>
<td>3886</td>
<td>3952</td>
<td>1134</td>
<td>504</td>
<td>245</td>
<td>0.16</td>
<td>0.0029</td>
<td>0.029</td>
<td>7.43</td>
<td>0.14</td>
<td>3.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZEP2-DR06-03-L9</td>
<td>14</td>
<td>8.36</td>
<td>8.52</td>
<td>4277</td>
<td>6783</td>
<td>48600</td>
<td>4067</td>
<td>4299</td>
<td>1146</td>
<td>557</td>
<td>258</td>
<td>0.15</td>
<td>0.0031</td>
<td>0.031</td>
<td>7.43</td>
<td>0.14</td>
<td>3.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZEP2-DR06-03-L10</td>
<td>16</td>
<td>6.93</td>
<td>7.41</td>
<td>3743</td>
<td>5682</td>
<td>74906</td>
<td>5642</td>
<td>3551</td>
<td>972</td>
<td>492</td>
<td>230</td>
<td>0.07</td>
<td>0.0071</td>
<td>0.0071</td>
<td>7.43</td>
<td>0.14</td>
<td>5.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZEP2-DR06-03-L11</td>
<td>17.5</td>
<td>7.49</td>
<td>8.14</td>
<td>3648</td>
<td>6102</td>
<td>73244</td>
<td>8949</td>
<td>3954</td>
<td>1015</td>
<td>562</td>
<td>247</td>
<td>0.09</td>
<td>0.0075</td>
<td>0.0075</td>
<td>7.43</td>
<td>0.14</td>
<td>8.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZEP2-DR06-03-L12</td>
<td>19</td>
<td>6.96</td>
<td>7.03</td>
<td>3289</td>
<td>5546</td>
<td>71144</td>
<td>11887</td>
<td>3570</td>
<td>916</td>
<td>500</td>
<td>222</td>
<td>0.09</td>
<td>0.0072</td>
<td>0.0072</td>
<td>7.43</td>
<td>0.14</td>
<td>12.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZEP2-DR06-03-L13</td>
<td>21</td>
<td>6.82</td>
<td>7.46</td>
<td>3723</td>
<td>5554</td>
<td>95379</td>
<td>19236</td>
<td>3729</td>
<td>912</td>
<td>516</td>
<td>226</td>
<td>0.10</td>
<td>0.0076</td>
<td>0.0076</td>
<td>7.43</td>
<td>0.14</td>
<td>21.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZEP2-DR06-03-L14</td>
<td>23.5</td>
<td>6.27</td>
<td>6.40</td>
<td>3335</td>
<td>5062</td>
<td>118434</td>
<td>31536</td>
<td>3255</td>
<td>881</td>
<td>490</td>
<td>211</td>
<td>0.02</td>
<td>0.0078</td>
<td>0.0078</td>
<td>7.43</td>
<td>0.14</td>
<td>35.78</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ZEP2-DR06-03 Fe-Mn crust

Average

δ^{66}Ni (‰) 2se (‰)
Sample name	Depth in the crust (mm)	Mn (wt%)	Fe (wt%)	Al (µg/g)	Ti (µg/g)	Ca (µg/g)	Co (µg/g)	Ni (µg/g)	Cu (µg/g)	Zn (µg/g)	Fe/Mn	Ni/Mn	Cu/Mn	Zn/Mn	Ni/Co	Ti/Al	Al/Fe	P/Ni	
J2-480 Fe-Mn crust																			
Average																			
J2-480-R1	0.2	10.95	9.30	2794	10066	67980	32497	2742	730	663	582	0.85	0.007	0.0061	0.0053	0.48	3.60	0.03	44.51
J2-480-R2	2.5	11.23	7.80	1665	8039	47308	21279	2545	1629	843	465	0.69	0.014	0.0075	0.0041	0.94	4.83	0.02	13.07
J2-480-R3	5	9.91	7.10	1471	6220	31387	13294	2294	1355	795	458	0.72	0.014	0.0080	0.0046	0.97	4.23	0.02	9.81
J2-480-R4	7	14.87	9.59	2312	8625	45545	19196	4341	2116	1204	614	0.65	0.014	0.0081	0.0041	0.92	4.19	0.02	9.06
J2-480-R5	9	22.81	10.27	2176	8790	35156	11551	5574	3597	1837	761	0.45	0.016	0.0081	0.0033	0.95	4.04	0.02	3.21
J2-480-R6	11	19.83	11.55	2485	9252	69904	31549	4507	2814	1411	692	0.58	0.014	0.0071	0.0035	0.90	3.72	0.02	11.21
J2-480-R7	12.5	18.32	10.81	2829	9900	84690	39523	3709	2863	1331	709	0.59	0.016	0.0073	0.0039	0.90	3.53	0.03	13.81
J2-480-R8	14	17.21	11.84	2845	7906	61954	28104	2953	3001	1300	659	0.57	0.017	0.0076	0.0038	0.92	2.78	0.03	9.36
J2-480-R9	15	15.30	11.96	4224	7231	66488	30368	2809	2817	1310	644	0.78	0.013	0.0086	0.0042	0.94	1.71	0.04	10.78
J2-480-R10	16.5	8.01	11.54	9245	4765	59716	29250	1095	1225	888	432	1.44	0.015	0.0111	0.0054	0.95	0.52	0.08	23.88
J2-480-R12	19	6.16	9.03	13204	4499	30826	14550	917	1190	779	293	1.46	0.019	0.0126	0.0048	0.99	0.34	0.15	12.23
Table 1: continued

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Depth in the crust (mm)</th>
<th>Mn (wt%)</th>
<th>Fe (wt%)</th>
<th>Al (µg/g)</th>
<th>Ti (µg/g)</th>
<th>Ca (µg/g)</th>
<th>P (µg/g)</th>
<th>Ni (µg/g)</th>
<th>Cu (µg/g)</th>
<th>Zn (µg/g)</th>
<th>Fe/Mn</th>
<th>Ni/Mn</th>
<th>Cu/Mn</th>
<th>Zn/Mn</th>
<th>Ni/Co</th>
<th>Ti/Al</th>
<th>Al/Fe</th>
<th>P/Ni</th>
<th>δ^{15}N (‰)</th>
<th>Zse (‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J2-480-R14-L1</td>
<td>0.2</td>
<td>15.56</td>
<td>11.82</td>
<td>4952</td>
<td>9779</td>
<td>13237</td>
<td>2750</td>
<td>4691</td>
<td>3048</td>
<td>712</td>
<td>850</td>
<td>0.76</td>
<td>0.020</td>
<td>0.0046</td>
<td>0.0055</td>
<td>0.65</td>
<td>1.97</td>
<td>0.04</td>
<td>0.90</td>
<td>1.94</td>
</tr>
<tr>
<td>J2-480-R14-L10</td>
<td>3</td>
<td>12.95</td>
<td>10.73</td>
<td>5972</td>
<td>9719</td>
<td>11778</td>
<td>2376</td>
<td>3720</td>
<td>2554</td>
<td>707</td>
<td>945</td>
<td>0.83</td>
<td>0.020</td>
<td>0.0055</td>
<td>0.0073</td>
<td>0.69</td>
<td>1.63</td>
<td>0.05</td>
<td>0.53</td>
<td>1.41</td>
</tr>
<tr>
<td>J2-480-R14-L9</td>
<td>5</td>
<td>14.66</td>
<td>10.87</td>
<td>5936</td>
<td>10458</td>
<td>13635</td>
<td>2579</td>
<td>4707</td>
<td>3036</td>
<td>841</td>
<td>924</td>
<td>0.74</td>
<td>0.021</td>
<td>0.0057</td>
<td>0.0063</td>
<td>0.64</td>
<td>1.76</td>
<td>0.05</td>
<td>0.85</td>
<td>1.75</td>
</tr>
<tr>
<td>J2-480-R14-L8</td>
<td>7</td>
<td>17.31</td>
<td>10.36</td>
<td>6500</td>
<td>9819</td>
<td>13693</td>
<td>2661</td>
<td>5414</td>
<td>3325</td>
<td>911</td>
<td>630</td>
<td>0.60</td>
<td>0.019</td>
<td>0.0053</td>
<td>0.0036</td>
<td>0.61</td>
<td>1.51</td>
<td>0.06</td>
<td>0.80</td>
<td>1.75</td>
</tr>
<tr>
<td>J2-480-R14-L7</td>
<td>9</td>
<td>16.03</td>
<td>9.37</td>
<td>3441</td>
<td>9087</td>
<td>13503</td>
<td>2126</td>
<td>5977</td>
<td>3443</td>
<td>948</td>
<td>576</td>
<td>0.58</td>
<td>0.021</td>
<td>0.0059</td>
<td>0.0036</td>
<td>0.58</td>
<td>2.64</td>
<td>0.04</td>
<td>0.82</td>
<td>1.86</td>
</tr>
<tr>
<td>J2-480-R14-L6</td>
<td>10</td>
<td>17.38</td>
<td>9.71</td>
<td>2180</td>
<td>8542</td>
<td>14658</td>
<td>2378</td>
<td>6250</td>
<td>3819</td>
<td>1037</td>
<td>735</td>
<td>0.56</td>
<td>0.022</td>
<td>0.0060</td>
<td>0.0042</td>
<td>0.61</td>
<td>3.92</td>
<td>0.02</td>
<td>0.52</td>
<td>1.80</td>
</tr>
<tr>
<td>J2-480-R14-L5</td>
<td>12</td>
<td>13.74</td>
<td>10.53</td>
<td>2917</td>
<td>8317</td>
<td>13802</td>
<td>2330</td>
<td>5267</td>
<td>3156</td>
<td>1008</td>
<td>593</td>
<td>0.77</td>
<td>0.023</td>
<td>0.0073</td>
<td>0.0043</td>
<td>0.60</td>
<td>2.85</td>
<td>0.03</td>
<td>0.74</td>
<td>1.74</td>
</tr>
<tr>
<td>J2-480-R14-L4</td>
<td>14</td>
<td>16.40</td>
<td>10.00</td>
<td>2458</td>
<td>6755</td>
<td>14323</td>
<td>2118</td>
<td>5613</td>
<td>3447</td>
<td>1061</td>
<td>758</td>
<td>0.61</td>
<td>0.021</td>
<td>0.0065</td>
<td>0.0046</td>
<td>0.61</td>
<td>2.75</td>
<td>0.02</td>
<td>0.61</td>
<td>1.78</td>
</tr>
<tr>
<td>J2-480-R14-L3</td>
<td>16</td>
<td>18.51</td>
<td>11.76</td>
<td>3468</td>
<td>5845</td>
<td>14249</td>
<td>2523</td>
<td>4384</td>
<td>3680</td>
<td>1193</td>
<td>650</td>
<td>0.64</td>
<td>0.020</td>
<td>0.0064</td>
<td>0.0035</td>
<td>0.84</td>
<td>1.69</td>
<td>0.03</td>
<td>0.69</td>
<td>1.81</td>
</tr>
<tr>
<td>J2-480-R14-L2</td>
<td>18</td>
<td>13.18</td>
<td>10.44</td>
<td>4445</td>
<td>5020</td>
<td>12142</td>
<td>2261</td>
<td>3401</td>
<td>3048</td>
<td>1075</td>
<td>552</td>
<td>0.79</td>
<td>0.023</td>
<td>0.0082</td>
<td>0.0042</td>
<td>0.90</td>
<td>1.13</td>
<td>0.04</td>
<td>0.74</td>
<td>1.74</td>
</tr>
<tr>
<td>J2-480-R14-L1</td>
<td>20</td>
<td>11.23</td>
<td>8.96</td>
<td>5480</td>
<td>4522</td>
<td>11554</td>
<td>2340</td>
<td>2811</td>
<td>2737</td>
<td>950</td>
<td>471</td>
<td>0.80</td>
<td>0.024</td>
<td>0.0085</td>
<td>0.0042</td>
<td>0.97</td>
<td>0.93</td>
<td>0.06</td>
<td>0.85</td>
<td>1.70</td>
</tr>
</tbody>
</table>

**2sd was calculated on replicate measurements (see text for details).
<table>
<thead>
<tr>
<th>Sample name</th>
<th>Depth in the crust (mm)</th>
<th>Co/Mn</th>
<th>Be (µg/g)</th>
<th>Be/Be*Be</th>
<th>Age* (Ma)</th>
<th>Growth rate** (mm/Ma)</th>
<th>Age (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEP2-DR05-04 Fe-Mn crust</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZEP2-DR05-04-L1</td>
<td>0.5</td>
<td>0.073</td>
<td>2.6</td>
<td>1.02E-08</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ZEP2-DR05-04-L2</td>
<td>1</td>
<td>0.066</td>
<td>2.0</td>
<td>na</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ZEP2-DR05-04-L3</td>
<td>2.5</td>
<td>0.054</td>
<td>2.6</td>
<td>na</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ZEP2-DR05-04-L4</td>
<td>3.5</td>
<td>0.050</td>
<td>2.5</td>
<td>na</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ZEP2-DR05-04-L5</td>
<td>4.5</td>
<td>0.041</td>
<td>1.9</td>
<td>na</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ZEP2-DR05-04-L6</td>
<td>6.5</td>
<td>0.045</td>
<td>2.9</td>
<td>7.41E-09</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ZEP2-DR05-04-L7</td>
<td>8.5</td>
<td>0.046</td>
<td>4.1</td>
<td>na</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ZEP2-DR05-04-L8</td>
<td>10</td>
<td>0.049</td>
<td>3.4</td>
<td>na</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ZEP2-DR05-04-L9</td>
<td>11.5</td>
<td>0.050</td>
<td>3.2</td>
<td>na</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ZEP2-DR05-04-L10</td>
<td>12.5</td>
<td>0.055</td>
<td>2.9</td>
<td>6.50E-09</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ZEP2-DR05-04-L11</td>
<td>13.5</td>
<td>0.052</td>
<td>2.6</td>
<td>na</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ZEP2-DR05-04-L12</td>
<td>15.5</td>
<td>0.052</td>
<td>2.5</td>
<td>na</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ZEP2-DR05-04-L13</td>
<td>16.5</td>
<td>0.050</td>
<td>2.2</td>
<td>na</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ZEP2-DR05-04-L14</td>
<td>17.5</td>
<td>0.049</td>
<td>4.0</td>
<td>1.40E-07</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ZEP2-DR06-03 Fe-Mn crust</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZEP2-DR06-03-L1</td>
<td>0.5</td>
<td>0.076</td>
<td>2.0</td>
<td>6.91E-08</td>
<td>0.9</td>
<td>-</td>
<td>0.9</td>
</tr>
<tr>
<td>ZEP2-DR06-03-L2</td>
<td>2.5</td>
<td>0.063</td>
<td>3.0</td>
<td>na</td>
<td>-</td>
<td>-</td>
<td>2.1</td>
</tr>
<tr>
<td>ZEP2-DR06-03-L3</td>
<td>4</td>
<td>0.058</td>
<td>3.0</td>
<td>na</td>
<td>-</td>
<td>-</td>
<td>3.1</td>
</tr>
<tr>
<td>ZEP2-DR06-03-L4</td>
<td>5.5</td>
<td>0.057</td>
<td>2.6</td>
<td>na</td>
<td>-</td>
<td>-</td>
<td>4.0</td>
</tr>
<tr>
<td>ZEP2-DR06-03-L5</td>
<td>7.5</td>
<td>0.051</td>
<td>3.1</td>
<td>8.35E-09</td>
<td>5.2</td>
<td>1.45</td>
<td>5.2</td>
</tr>
<tr>
<td>ZEP2-DR06-03-L6</td>
<td>9.5</td>
<td>0.051</td>
<td>2.3</td>
<td>na</td>
<td>-</td>
<td>-</td>
<td>5.5</td>
</tr>
<tr>
<td>ZEP2-DR06-03-L7</td>
<td>11</td>
<td>0.042</td>
<td>2.3</td>
<td>6.07E-09</td>
<td>5.8</td>
<td>1.89</td>
<td>5.8</td>
</tr>
<tr>
<td>ZEP2-DR06-03-L8</td>
<td>12.5</td>
<td>0.047</td>
<td>2.6</td>
<td>na</td>
<td>-</td>
<td>-</td>
<td>5.9</td>
</tr>
<tr>
<td>ZEP2-DR06-03-L9</td>
<td>14</td>
<td>0.051</td>
<td>2.4</td>
<td>na</td>
<td>-</td>
<td>-</td>
<td>6.0</td>
</tr>
<tr>
<td>ZEP2-DR06-03-L10</td>
<td>16</td>
<td>0.051</td>
<td>2.2</td>
<td>na</td>
<td>-</td>
<td>-</td>
<td>6.0</td>
</tr>
<tr>
<td>ZEP2-DR06-03-L11</td>
<td>17.5</td>
<td>0.053</td>
<td>2.4</td>
<td>5.20E-09</td>
<td>6.1</td>
<td>2.86</td>
<td>6.1</td>
</tr>
<tr>
<td>ZEP2-DR06-03-L12</td>
<td>19</td>
<td>0.051</td>
<td>2.1</td>
<td>na</td>
<td>-</td>
<td>-</td>
<td>6.3</td>
</tr>
<tr>
<td>ZEP2-DR06-03-L13</td>
<td>21</td>
<td>0.055</td>
<td>2.2</td>
<td>4.28E-09</td>
<td>6.5</td>
<td>3.23</td>
<td>6.5</td>
</tr>
<tr>
<td>J2-480 Fe-Mn crust</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J2-480-R1</td>
<td>0.2</td>
<td>0.025</td>
<td>6.1</td>
<td>3.14E-09</td>
<td>7.1</td>
<td>-</td>
<td>7.1</td>
</tr>
<tr>
<td>J2-480-R2</td>
<td>2.5</td>
<td>0.023</td>
<td>4.6</td>
<td>na</td>
<td>-</td>
<td>-</td>
<td>7.4</td>
</tr>
<tr>
<td>J2-480-R3</td>
<td>5</td>
<td>0.023</td>
<td>4.3</td>
<td>na</td>
<td>-</td>
<td>-</td>
<td>7.7</td>
</tr>
<tr>
<td>J2-480-R4</td>
<td>7</td>
<td>0.029</td>
<td>5.3</td>
<td>na</td>
<td>-</td>
<td>-</td>
<td>7.9</td>
</tr>
<tr>
<td>J2-480-R5</td>
<td>9</td>
<td>0.024</td>
<td>4.8</td>
<td>na</td>
<td>-</td>
<td>-</td>
<td>8.2</td>
</tr>
<tr>
<td>J2-480-R6</td>
<td>11</td>
<td>0.023</td>
<td>5.7</td>
<td>na</td>
<td>-</td>
<td>-</td>
<td>8.4</td>
</tr>
<tr>
<td>J2-480-R7</td>
<td>12.5</td>
<td>0.020</td>
<td>6.1</td>
<td>na</td>
<td>-</td>
<td>-</td>
<td>8.6</td>
</tr>
<tr>
<td>J2-480-R8</td>
<td>14</td>
<td>0.017</td>
<td>5.3</td>
<td>1.40E-09</td>
<td>8.7</td>
<td>1.60</td>
<td>8.7</td>
</tr>
<tr>
<td>J2-480-R9</td>
<td>15</td>
<td>0.018</td>
<td>6.2</td>
<td>na</td>
<td>-</td>
<td>-</td>
<td>9.4</td>
</tr>
<tr>
<td>J2-480-R10</td>
<td>16.5</td>
<td>0.014</td>
<td>6.1</td>
<td>na</td>
<td>-</td>
<td>-</td>
<td>10.4</td>
</tr>
<tr>
<td>J2-480-R11</td>
<td>19</td>
<td>0.015</td>
<td>4.7</td>
<td>2.71E-10</td>
<td>12.0</td>
<td>1.58</td>
<td>12.0</td>
</tr>
<tr>
<td>J2-480-R14 Fe-Mn crust</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J2-480-R14-L11</td>
<td>0.2</td>
<td>0.030</td>
<td>3.6</td>
<td>1.75E-08</td>
<td>3.7</td>
<td>-</td>
<td>3.7</td>
</tr>
<tr>
<td>J2-480-R14-L10</td>
<td>3</td>
<td>0.029</td>
<td>3.7</td>
<td>na</td>
<td>-</td>
<td>-</td>
<td>5.5</td>
</tr>
<tr>
<td>J2-480-R14-L9</td>
<td>5</td>
<td>0.032</td>
<td>4.0</td>
<td>3.81E-09</td>
<td>6.7</td>
<td>0.74</td>
<td>6.7</td>
</tr>
<tr>
<td>J2-480-R14-L8</td>
<td>7</td>
<td>0.031</td>
<td>3.9</td>
<td>na</td>
<td>-</td>
<td>-</td>
<td>7.8</td>
</tr>
<tr>
<td>J2-480-R14-L7</td>
<td>9</td>
<td>0.037</td>
<td>3.5</td>
<td>1.32E-09</td>
<td>8.9</td>
<td>1.01</td>
<td>8.9</td>
</tr>
<tr>
<td>J2-480-R14-L6</td>
<td>10</td>
<td>0.036</td>
<td>3.6</td>
<td>na</td>
<td>-</td>
<td>-</td>
<td>9.4</td>
</tr>
<tr>
<td>J2-480-R14-L5</td>
<td>12</td>
<td>0.038</td>
<td>5.0</td>
<td>na</td>
<td>-</td>
<td>-</td>
<td>10.5</td>
</tr>
<tr>
<td>J2-480-R14-L4</td>
<td>14</td>
<td>0.034</td>
<td>4.0</td>
<td>3.53E-10</td>
<td>11.5</td>
<td>1.22</td>
<td>11.5</td>
</tr>
<tr>
<td>J2-480-R14-L3</td>
<td>16</td>
<td>0.024</td>
<td>4.5</td>
<td>na</td>
<td>-</td>
<td>-</td>
<td>12.4</td>
</tr>
<tr>
<td>J2-480-R14-L2</td>
<td>18</td>
<td>0.026</td>
<td>3.9</td>
<td>1.50E-10</td>
<td>13.2</td>
<td>1.36</td>
<td>13.2</td>
</tr>
<tr>
<td>J2-480-R14-L1</td>
<td>20</td>
<td>0.025</td>
<td>3.9</td>
<td>2.31E-11</td>
<td>17.0</td>
<td>1.18</td>
<td>17.0</td>
</tr>
</tbody>
</table>

*Derived from Be isotopes.
Figure 1
Figure 3
Figure 4
Figure 5

South Pacific

North Pacific

(A)

(B)

(C)

(D)

(E)

(F)

Depth (mm)

Depth (mm)

Depth (mm)

Depth (mm)

Depth (mm)

Co/Mn

Co/Mn

ln(10Be/9Be)

ln(10Be/9Be)

ln(10Be/9Be)

ln(10Be/9Be)

ln(10Be/9Be)

Region “O” Region “I”

Region “O” Region “I”

Region “O” Region “I”

ZEP2−DR−05−04

J2−480−R14

ZEP2−DR−06−03

J2−480
Figure 6
Figure 7

(A) $\delta^{60/58}\text{Ni}$(‰) vs. P (µg/g)

(B) $\delta^{60/58}\text{Ni}$(‰) vs. P/Ni

(C) $\delta^{60/58}\text{Ni}$(‰) vs. Co/Mn

(D) $\delta^{60/58}\text{Ni}$(‰) vs. Mn/Ni

$y = 0.0335x - 0.4089$

$R^2 = 0.99$
Figure 8

The graph illustrates the δ^{60/58}Ni (‰) values over different ages (Ma), with data points for various samples labeled as J2-480, J2-480-R14, and ZEP2-DR-06-03, as well as CD29-2 (Gall et al., 2013). The data points are spread across the age range of 0 to 80 Ma. The 2σ deviation is indicated on the graph.

The δ^{60/58}Ni values decrease as age increases, with the majority of the data points falling below the 1.5‰ level, which is marked as Modern Seawater on the graph.