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Introduction  

The supporting information presents the inversion methodology and equations, the 

instruments configuration and design, the collected data and the results for the 6 first 

months of the seafloor geodesy experiment carried in the Marmara Sea, Turkey, across 

the Istanbul-Silivri segment : 

 

 Presentation of the non-linear least-square inversion methodology and equations 

(Text S1) 

 Characteristics of the deployed seafloor transponders (Table T1 and Figure F1) 

 Time series of the different data collected by the transponders (Figures F2 to F7) 

o Baselines length evolution (Figure F2 to F5) 

o Water temperature recorded by each device (Figure F6) 

 Tilt (pitch and roll) of each device (Figures F7) 

 Results of the least-square processing, using different inversion parameters (Table 

T2 and Figure F8) 

o Baselines deformation rate φ  

o Sound-speed drift estimation κ 

 Theoretical displacements expected for a simple fault model with various locking 

depths (F9). 
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Text S1 

We present here the non-linear least-square inversion methodology and equations that we 

developed to process together data from the 10 transponders and associated temperature and 

pressure sensors. We designed our inversion to simultaneously determine the two sets of 

independent variables: sound-speed drift at each site and baseline-length variation between sites. 

Input observations are sound-speeds (derived from observed pressure and temperature) at each 

site, and acoustic travel-times between pairs of sites. The unknowns are solved with different 

hypotheses on the behavior of the baselines located on either side of the fault (fixed or 

constrained, presented in section S1.2.1 and S1.2.2, respectively) and on the sound-speed drift 

(section S1.2.3). 

 

S1.1 Approach and formulation 

Based on the elementary relation 𝜏 =
𝑑

𝑐
 where 𝜏 is the one-way travel-time, 𝑐 the sound-speed, 

and 𝑑 the baseline-length between a transponder pair, the observation equation for each pair of 

transponders A and B can be written as follows: 

𝜏𝑡ℎ𝑒𝑜,𝑖,𝐴→𝐵 =
1

2
(𝑑0,𝐴→𝐵 + 𝜑𝐴↔𝐵𝑡𝑖). (

1

𝑐𝐴,𝑖
′ + 𝜅𝐴. 𝑡𝑖

+
1

𝑐𝐵,𝑖
′ + 𝜅𝐵. 𝑡𝑖

)  

with : 

𝜏𝑡ℎ𝑒𝑜,𝑖,𝐴→𝐵  the theoretical one-way travel-time from transponder A to transponder B at 

epoch 𝑖,  

𝑑0,𝐴→𝐵               the baseline-length [m] between transponders A and B at the reference epoch,  

𝜑𝐴↔𝐵  the (constant) deformation rate of the baseline-length between transponders A                 

and B [m/yr], 

𝑡𝑖                the epoch [yr] of the ping relative to the reference, 

𝜅𝐴, 𝜅𝐵 the coefficients of the sound-speed linear drift for transponder A and B                          

respectively [m/s/yr], 

𝑐𝐴,𝑖
′ , 𝑐𝐵,𝑖

′    the computed sound-speed [m/s] at transponders A and B at epoch 𝑖.  

In our modeling, the observables are 𝜏𝑜𝑏𝑠,𝑖,𝐴→𝐵, 𝑐𝐴,𝑖
′  and 𝑐𝐵,𝑖

′ . For each logging session at 

epoch 𝑖, 𝜏𝑜𝑏𝑠,𝑖,𝐴→𝐵 is the averaged time travel between transponders A and B and 𝑐𝐴,𝑖
′  and 𝑐𝐵,𝑖

′  the 
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averaged sound-speed derived from observed temperature and pressure respectively at sites A and 

B.  

The estimated parameters are the 𝑛𝑑0 values of 𝑑0,𝐴→𝐵 (for 𝑛𝑝𝑎𝑖𝑟 transponder pairs, 𝑛𝑑0 =

2𝑛𝑝𝑎𝑖𝑟, because there might be a slight offset between 𝑑0,𝐴→𝐵 and the reciprocal 𝑑0,𝐵→𝐴), the 𝑛𝜑 

values of 𝜑𝐴↔𝐵 (𝑛𝜑 = 𝑛𝑝𝑎𝑖𝑟), the 𝑛𝜅 values of 𝜅𝐴and 𝜅𝐵 (𝑛𝜅 = 𝑛𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑛𝑑𝑒𝑟𝑠).  

We define the unknown vector 𝛸 as  

𝛸 = [𝑑0,𝑖𝑑0 , 𝜑𝑖𝜑 , 𝜅𝑖𝜅] 

with 𝑖𝑑0 ∈ ⟦1,2𝑛𝑝𝑎𝑖𝑟⟧, 𝑖𝜑 ∈ ⟦1, 𝑛𝑝𝑎𝑖𝑟⟧, 𝑖𝜅 ∈ ⟦1, 𝑛𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑛𝑑𝑒𝑟𝑠⟧,  

and the vector of theoretical travel-times as: 

𝛵𝑡ℎ𝑒𝑜 = [𝜏𝑡ℎ𝑒𝑜,𝑖𝜏] 

with 𝑖𝜏 ∈ ⟦1, 𝑛𝑝𝑖𝑛𝑔𝑠⟧. 

We define the function 𝑓 such as: 

𝑓: 𝛸 → 𝛵𝑡ℎ𝑒𝑜(𝛸) 

To linearize the problem, we define the design matrix 𝛢, i.e. the matrix of partial derivatives 

of each theoretical observation with respect to the unknowns. 

 

𝛢 =
d𝑓

d𝛸
=

[
 
 
 
 
 
d𝜏𝑡ℎ𝑒𝑜,1
d𝑑0,𝑖𝑑0

⋯
d𝜏𝑡ℎ𝑒𝑜,1
d𝜑𝑖𝜑

⋯
d𝜏𝑡ℎ𝑒𝑜,1
d𝜅𝑖𝜅

⋮ ⋱ ⋮
d𝜏𝑡ℎ𝑒𝑜,𝑛𝑝𝑖𝑛𝑔𝑠
d𝑑0,𝑖𝑑0

⋯
d𝜏𝑡ℎ𝑒𝑜,𝑛𝑝𝑖𝑛𝑔𝑠

d𝜑𝑖𝜑
⋯

d𝜏𝑡ℎ𝑒𝑜,𝑛𝑝𝑖𝑛𝑔𝑠
d𝜅𝑖𝜅 ]

 
 
 
 
 

 

If 𝛣 is the vector of the difference between the observed travel-times and the predicted values, 

(𝛣 = 𝛵𝑜𝑏𝑠 − 𝛵𝑡ℎ𝑒𝑜 = [𝜏𝑜𝑏𝑠,𝑖 − 𝜏𝑡ℎ𝑒𝑜,𝑖𝜏]), the problem is a standard least-square problem which can 

be written as follows: 

𝛣 = 𝛢𝛿𝛸 + 𝑉 

with 𝛿𝛸 the correction values to 𝛸 so that the unknown 𝛸 respect the least-square condition and 

𝑉, the vector of residuals. 



 

 

5 

 

The objective is to minimize the difference between the observed travel-times and the 

predicted ones in a least-square sense (i.e. to minimize the sum of the squared residuals ∑𝑉𝛵𝑉).  

The least-square model (e.g. Strang and Borre, 1997) allows the definition of the so-called 

“normal equation” : 

𝛢𝛵𝛢𝛿𝛸 = 𝛢𝛵𝛣 

𝛿𝛸 = (𝛢𝛵𝛢)−1𝛢𝛵𝛣 

The new estimated values are 𝛸𝑛𝑒𝑤 = 𝛸 + 𝛿𝛸, and the problem is solved iteratively; the 

solution is usually obtained after 3 iterations, using ∑𝛿𝛸 < 𝜔 as a stop criteria, where 𝜔 is a 

quasi-null arbitrary value of 10−10. 

 

S1.2 Application of constraints 

In the inversion, changes in baselines are treated in three different ways: they are either let 

entirely unconstrained (“free mode") or set to a given value, for instance zero, (“fixed mode”) or 

constrained to tend towards a given value, with a chosen uncertainty or weight (“constrained 

mode”). These conditions are differently applied whether the baseline crosses or does not cross 

the fault, since we assume that all the strain occurs along the fault. 

S1.2.1 Fixing baselines on either side of the fault 

To impose null values on the 𝜑 parameter for baselines that do not cross the fault, we use the 

Helmert's method described by Ghilani (2011). If we have 𝑛𝐹𝑖𝑥 fixed baselines, the normal 

equation is augmented by the constraint equations as follows: 

[𝛢
𝛵𝛢 Ϝ𝛵

Ϝ 0
] [
𝛿𝛸
𝛬
] = [

𝛢𝛵𝛣
𝛣𝐹𝑖𝑥

] 

𝛣𝐹𝑖𝑥 is the vector of the constrained values, which can be written: 

𝛣𝐹𝑖𝑥 = [𝜑𝐹𝑖𝑥,𝑖𝐹𝑖𝑥]𝑛𝐹𝑖𝑥
 

So, in our case:  

𝛣𝐹𝑖𝑥 = [0]𝑛𝐹𝑖𝑥 

Ϝ  is the binary matrix of the constraint equations, where Ϝ𝑖,𝑗 = 1 when 𝛿𝛸𝑗 = 𝐵𝐹𝑖𝑥,𝑖 is 

required, and 0 elsewhere, 

𝛬  is the vector of Lagrangian multipliers. 
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S1.2.2 Constraining baselines towards specific values 

Another way to control the baseline behavior is to constrain the 𝜑 parameter to a given value 

with an uncertainty set by weights on the parameter (Strang and Borre, 1997). The approach is to 

treat the 𝜑 parameters as observables, alongside with the travel-times and thus to set an additional 

observation equation for each baseline we wish to constrain: 

𝑔:𝜑𝐴↔𝐵 ⟶𝜙𝐶𝑜𝑛𝑠𝑡𝑟,𝐴↔𝐵 

The observation vector 𝛵𝑇ℎ𝑒𝑜 has a new component 𝜙𝐶𝑜𝑛𝑠𝑡𝑟,𝐴↔𝐵, and the matrix 𝛢 an additional 

partial derivative 
d𝑔

d𝛸
. 

For this approach, a weight matrix 𝛲 must be introduced, to normalize the two observables 𝜏 

and 𝜙 of different nature, respectively with weights 𝑝𝜏 and 𝑝𝜙. The weight 𝑝𝑖 of an observable 𝑖 

is defined as 
1

𝜎𝑖
2 where 𝜎𝑖 is the standard deviation of the observable 𝑖. 

𝛲 = 𝑑𝑖𝑎𝑔 (𝑝𝜏, … , 𝑝𝜏⏟        
𝑛𝜏

𝑝𝜙, … , 𝑝𝜙⏟        
𝑛𝜙

) 

To account for the weighting, the normal equation becomes: 

𝛿𝛸 = (𝛢𝛵𝛲𝛢)−1𝛢𝛵𝛲𝐵 

Based on travel-time short-term repeatability, the weights for the travel-time observations are 

taken as 𝜎𝜏 = 2𝜇𝑠. The weights on the 𝜑 parameters depend on how strongly we want to 

constrain them to the targeted value (which, in our case, is 0 on either side of the fault). We tested 

𝜎𝜙 = 10
−2, 10−4 and 10−6 mm/yr; the latter value yields similar results to the fixed baseline 

case described above. A single 𝜑 parameter is estimated for common baselines in the F and G 

networks. 

S1.2.3 Constraining sound-speed drift 

 To avoid excessive and, thus, unrealistic values in sensor drift parameters, we imposed 𝜅 

coefficients to tend towards zero with a 𝜎𝜅 standard deviation, using a method similar to the one 

described above. 𝜎𝜅 is determined from the manufacturer’s sensor drift uncertainties, 9 ppm/yr 

and 7 ppm/yr, respectively for the temperature and pressure sensors, which gives 𝜎𝜅 = 2.6 ×

10−5 m/s/yr on the resulting sound-speed drift.  
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 Network F Network G 

 University of Brest Geomar Institute 

Acoustic stations   

Number of stations 4 6 

Acoustic transponder Sonardyne AMT (22.5 kHz) Sonardyne AMT (17.0 kHz) 

Temperature sensor Valeport Sonardyne 

Pressure sensor Paroscientific Digiquartz Paroscientific Digiquartz 

Sound-speed sensor Valeport Valeport 

Inclinometer sensors Jewell Jewell 

Session parameters   

Session interval 1h 2h 

Wake-up interval as Master 5 min 20 min 

Number of samples / session   

Ranges 3 at 5s interval 1 

Sound-speed 10 (1 as Master + 3*3 as Slave) 2 (1 as Master + 1 as Slave) 

Temperature 10 (1 as Master + 3*3 as Slave) 2 (1 as Master + 1 as Slave) 

Pressure 1 1 

Attitude (on orthogonal axes) 1 every 24h (24 sessions) 1 every 20h (10 sessions) 

Number of ranging per baseline 

Per session 6 2 

Per day 144 24 

Expected autonomy 5 years 3 years 

 

Table T1.  Configuration and logging sessions of the acoustic transponders in Geomar (G) and 

University of Brest (F) subsea geodetic networks deployed in the Kumburgaz Basin.  
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κ [m/s/yr] 

Station number Fig. 2 Fig. H.a) Fig. H.b) Fig. H.c) Fig. H.d) Fig. H.e) Fig. H.f) 

Sound-speed drift Constrained Free Constrained Free Constrained Free Constrained 

2304 & 2001 6.75E-05 3.71E-02 3.75E-05 -3.55E-04 3.25E-05 -2.84E-04 2.20E-07 

2305 & 2002 -1.77E-05 -1.77E-02 -2.72E-05 -1.66E-02 -2.46E-05 -1.66E-02 -4.00E-08 

2302 & 2004 4.38E-05 1.87E-02 3.91E-05 5.41E-02 3.40E-05 5.41E-02 9.00E-08 

2307 & 2003 -8.91E-06 2.37E-03 -3.07E-05 -5.85E-03 -2.83E-05 -5.86E-03 -1.50E-07 

2303 -1.74E-05 -2.16E-02 -2.30E-05 -2.17E-02 -2.23E-05 -2.17E-02 -8.00E-08 

2301 -2.17E-06 1.98E-03 -4.36E-06 -6.97E-02 -4.16E-06 -6.97E-02 -1.00E-08 

 

Table T2A. Estimated sound-speed drift κ corresponding to the least-square inversions presented 

in figures 2 and F8. Constrained models use 𝜎𝜅 = 2.6 × 10
−5 m/s/yr . SV = Sound-Velocity. 

 

 

 

 

φ [mm/yr] 

 Fig. 2 Fig. H.a) Fig. H.b) Fig. H.c) Fig. H.d) Fig. H.e) Fig. H.f) 

Baselines on either side 

of the fault 
Fixed Fixed Fixed Fixed 

Constrained  

σ = 10-4m/yr 

Constrained  

σ = 10-4m/yr 

Constrained  

σ = 10-4m/yr 

2301-2302 0 0 0 0 1.1E-01 -6.2E-03 2.4 

2301-2304 0 0 0 0 3.8E-01 8.9E-03 8.1 

2302-2304  

& 2001-2004 
0 0 0 0 -1.9 7.1E-03 -14.8 

2303-2305 0 0 0 0 4.9E-01 1.8E-03 10.8 

2303-2307 0 0 0 0 3.4E-01 -8.7E-04 15.5 

2305-2307  

& 2002-2003 
0 0 0 0 7.9E-01 -2.1E-03 6.4 

Fault-crossing baselines 
Constrained 
σ = 10-4m/yr 

Constrained 
σ = 10-4m/yr 

Constrained 
σ = 10-4m/yr 

Constrained 
σ = 10-4m/yr 

Free Free Free 

2301-2303 11.9 11.6 10.2 -19.2 10.2 -19.2 10.2 

2301-2305 -3.4 -3.5 -1.7 -12.0 -1.7 -12.0 -1.7 

2301-2307 9.5 9.5 8.3 -13.7 8.3 -13.7 8.3 

2302-2303 5.9 5.9 7.1 12.3 7.1 12.3 7.1 

2302-2305  

& 2002-2004 
-3.0 -2.9 -6.1 0.1 -6.1 0.1 -6.1 

2303-2304 9.2 9.5 5.8 -3.4 5.8 -3.4 5.8 

2304-2305  

& 2001-2002 
3.1 3.6 0.3 -2.5 0.3 -2.5 0.3 

2304-2307  

& 2001-2003 
12.9 13.8 1.3 0.2 1.3 0.2 1.3 

 

Table T2B. Estimated lengthening/shortening rate φ corresponding to the least-square inversions 

presented in figures 2 and F8. 
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Figure F1. Seafloor acoustic ranging systems deployed in the Kumburgaz Basin in the Marmara 

Sea. Left, Geomar units (G network), right, University of Brest units (F network).  
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Figure F2. Distance time series derived from measurements along baselines of the G network. 

Circles in insets denote the position of the transponders.  
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Figure F3. Distance time series derived from measurements along baselines of the G network. 

Circles denote the position of the transponders.  
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Figure F4. Distance time series derived from measurements along baselines of the G network. 

Circles denote the position of the transponders.  
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Figure F5. Edited distance time-series derived from measurements along baselines of the F 

network. Squares denote the position of the F transponders. Circles indicate the location of G 

transponders that are not collocated with the F units.   
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Figure F6. Temperature recorded by the transponders deployed in the Kumburgaz Basin. Logs 

evidence recurrent cold water pulses across the Kumburgaz Basin and linear trends in opposite 

direction for nearby sensors that we interpret as instrumental drifts. 
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Figure F7. Tilt data recorded by orthogonal inclinometers of the transponders deployed in the 

Kumburgaz Basin. Only units F-2004 (cyan) and G-2303 (grey) display changes or oscillations in 

their attitude. 
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Figure F8. Results from least-square inversions of baseline data and sound-speed drifts, 
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assuming fixed ( experiments a) b) c) ) or constrained ( experiments e) f) g) ) baselines on either 

side of the fault, and for different conditions imposed on sound-speed drift (κ) and deformation 

rate (φ): a) free κ and constrained φ for fault-crossing baselines; b) constrained κ and free φ for 

fault-crossing baselines; c) free κ and φ for fault-crossing baselines; d) free φ for fault-crossing 

baselines, constrained φ for baselines on either side of the fault at 10-4 m/yr, free κ; e) free φ for 

fault-crossing baselines, constrained φ for baselines on either side of the fault at 10-4 m/yr, 

constrained κ f) free φ for fault-crossing baselines, constrained φ for baselines on either side of 

the fault at 10-2 m/yr, constrained κ. Deforming baselines are denoted by dashed lines, with color 

indicating the magnitude and sign of baseline-length variation. Estimated sound-speed drift is 

represented by circles of size proportional to its magnitude. 

 

 

 

 

Figure F9: Theoretical displacements expected for a simple fault model with various locking 

depths. The displacements are computed using Savage and Burford (1973) formulation on a 

profile perpendicular to a vertical fault passing through our sub-marine geodetic network, 

assuming a 18 mm/yr far-field strike-slip motion. The grey shading shows areas monitored by on-

land GPS stations and sub-marine acoustic ranging (this study). Although on-land GPS data could 

theoretically be sufficient to discriminate between various locking depths, available stations 

(Ergintav et al. 2014) are not well aligned relative to this profile and do not fully constrain any 

solution. 
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