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Stock enhancement or sea ranching? Insights from
monitoring the genetic diversity, relatedness and effective
population size in a seeded great scallop population
(Pecten maximus)
R Morvezen1, P Boudry2, J Laroche1 and G Charrier1

The mass release of hatchery-propagated stocks raises numerous questions concerning its efficiency in terms of local recruitment
and effect on the genetic diversity of wild populations. A seeding program, consisting of mass release of hatchery-produced
juveniles in the local naturally occurring population of great scallops (Pecten maximus L.), was initiated in the early 1980s
in the Bay of Brest (France). The present study aims at evaluating whether this seeding program leads to actual population
enhancement, with detectable effects on genetic diversity and effective population size, or consists of sea ranching with limited
genetic consequences on the wild stock. To address this question, microsatellite-based genetic monitoring of three hatchery-born
and naturally recruited populations was conducted over a 5-year period. Results showed a limited reduction in allelic richness
but a strong alteration of allelic frequencies in hatchery populations, while genetic diversity appeared very stable over time
in the wild populations. A temporal increase in relatedness was observed in both cultured stock and wild populations. Effective
population size (Ne) estimates were low and variable in the wild population. Moreover, the application of the Ryman-Laikre
model suggested a high contribution of hatchery-born scallops to the reproductive output of the wild population. Overall, the
data suggest that the main objective of the seeding program, which is stock enhancement, is fulfilled. Moreover, gene flow
from surrounding populations and/or the reproductive input of undetected sub-populations within the bay may buffer the
Ryman-Laikre effect and ensure the retention of the local genetic variability.
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INTRODUCTION

The mass release of juvenile hatchery-produced individuals, of com-
mercial species, into the wild commonly has one or more of three main
purposes: restocking, stock enhancement or ranching. The practice
has been applied to aquatic, as well as, terrestrial species and is
commonly used to address the depletion of exploited marine species
(Bell et al., 2008). The primary objective of restocking programs is to
re-establish locally extinct or nearly extinct species using nonlocal or
captive broodstock. On the other hand, when wild populations of
marine species are declining but not extinct, owing to overfishing or
degradation of environmental conditions, the mass release of culti-
vated individuals aims at increasing population size (sea ranching)
and/or improving wild recruitment (stock enhancement).
Restocking and stock enhancement programs raise numerous

questions related to their efficiency in terms of local recruitment
and their eventual impact on the genetic diversity of the resulting
population. First, the fitness of cultured versus wild individuals
might differ because of unintentional domestication (Araki and
Schmid, 2010) or poor adaptation to local environmental conditions
(for example, Waal et al., 2013). Second, the effective population

size (Ne) of cultured stocks is commonly much lower than wild
stocks, potentially leading to a depletion of the local genetic variability
due to strong genetic drift. This is particularly the case in marine
bivalves, where very high fecundities associated with high variance
in reproductive success lead to small Ne in cultured populations
(Boudry et al., 2002; Appleyard and Ward, 2006; Lallias et al., 2010b).
As a consequence, enhancing wild populations with hatchery-born
individuals can induce a reduction of their effective population
size. This phenomenon is known as the Ryman-Laikre effect, which
corresponds to the consequence of mixing populations with different
effective population sizes (Ryman and Laikre, 1991; Ryman et al.,
1995). This effect has been documented in a wide range of species
(Utter and Epifanio, 2002) but has appeared to be minimal in bivalve
mollusks in light of their population biology (Gaffney, 2006). The risk
of significantly reducing the effective population size of an enhanced
population due to a Ryman-Laikre effect strongly increases as the
ratio between the number of seeded individuals and the census size
of the recipient population increases, and depends on the respective
effective population sizes (Gaffney, 2006). A similar effect of
highly variable reproductive success, called the Hedgecock effect
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or sweepstake reproductive success, has been documented in
natural populations of bivalves in some locations (Hedgecock
and Pudovkin, 2011).
Stock enhancement can also lead to a significant increase in

relatedness among individuals and, ultimately, inbreeding depression.
Although negative effects of inbreeding have been documented
in shellfish for a variety of fitness-related traits, under experimental
or aquaculture conditions (for example, Saavedra and Guerra 1996,
Bierne et al., 1998), no comprehensive evaluation of the fitness of
released mollusks in the wild have been performed so far. Overall,
Araki and Schmid (2010) found ample evidence of negative impacts
of hatchery-rearing on the fitness (evaluated as reproductive success
of released animals) and diversity of cultured individuals. The vast
majority of studies revealing a significantly lower reproductive success
of hatchery-reared individuals have been conducted on fish (mainly
salmonids and flatfishes, see Araki and Schmid (2010) for details),
whereas similar studies on cultivated marine invertebrates, such
as mollusks, are still scarce. In any case, it is recommended that
a population enhancement program takes into account the main-
tenance of genetic diversity, specifically, by using the largest possible
broodstock, renewing it regularly, releasing families in equal quantity,
and performing genetic monitoring of the recipient populations
(Bell et al., 2008). Examples of beneficial seeding programs in marine
population are rare in the literature (but see Gonzales et al. (2008) for
an example of apparent demographic recovery of the fishery of the
black sea bream in Hiroshima Bay (Japan)).
The great scallop Pecten maximus is a benthic marine bivalve of high

economical value. It is mainly harvested in the United Kingdom and
France. Total landings amounted to 65 632T in 2013 (FAO, 2015).
The main harvest method consists of dredging on natural beds
with sea ranching supplementation implemented in specific locations
to complement the natural production. This is particularly the case in
the Bay of Brest (Beaumont and Gjedrem, 2006), where a seeding
program was initiated in the early 1980s following the dramatic
collapse of the local stock precipitated by a particularly cold winter
in 1962–1963 (Dao et al., 1999). To that aim, a commercial hatchery
was implemented in Le Tinduff harbor (Plougastel, France) in 1983.

The Tinduff hatchery produces between 5 and 10 million spat per
year (F Breton, personal communication). The vast majority is seeded
on wild beds in the Bay of Brest. The broodstock is renewed each year
by sampling new genitors locally. Fifty to 140 genitors are used each
year (F Breton, personal communication). Juveniles are then seeded
on wild scallop beds of the recipient populations and harvested
by dredge when they reach commercial size (10–10.5 cm in length).
Hold et al. (2012) simulated the impact of seeding a Tinduff-produced
cohort in populations of the Isle of Man to assess their potential
genetic impact using the Ryman-Laikre approach. They found that
under certain conditions, only a limited impact was to be expected.
Morvezen et al. (2016) found no significant difference in terms
of genetic variability between the heavily seeded population of the Bay
of Brest and neighboring unseeded or low-seeded wild populations.
However, a precise estimation of the genetic impact, assessing
a possible Ryman-Laikre effect on the effective population size of
seeded populations, remained to be conducted.
In this theoretical and empirical framework, the present study

aims to evaluate whether the seeded individuals, in the Bay of Brest,
contribute to the total reproductive output of the stock as was
expected in the population enhancement program. Such a contribu-
tion should be detectable by the genetic impact on the genetic diversity
and effective population size of the recipient wild population.
If no genetic impact is found, the seeding could be classified as
a sea ranching program with limited effect on the longer term
demography of the scallop population in the Bay of Brest.

MATERIALS AND METHODS

Sample collection
Three different year-classes, born in 2007, 2009 and 2012, were sampled at age
2+ (estimated by counting annual winter ring on the shell, (Mason, 1957)) in
the Bay of Brest, by dredging on wild seeded beds. For each year-class,
hatchery-born scallops and wild-born scallops were differentiated by the
double-ring method: hatchery-born scallops display a stress ring caused by
the seeding procedure in addition to the winter ring in their first year (Fleury
et al., 2005; Alban and Boncoeur, 2008). Each individual valve was checked
by two to three independent readers for a robust assessment of the presence
or absence of the double ring. Samples sizes are given in Table 1. For all

Table 1 Genetic diversity, effective population size and family structure for each sampled cohort

W07 H07 W09 H09 W12 H12

N 96 55 40 100 69 76

Ar± s.e. 9.08±1.44 8.46±1.47 9.29±1.45 8.48±1.25 8.97±1.44 7.42±1.03

He± s.e. 0.69±0.08 0.70±0.07 0.68±0.08 0.69±0.08 0.70±0.07 0.70±0.06

Ne (single sample)
LD 932 (313.6–∞) 39.4 (32–49.9) ∞ 28.7 (25–32.8) ∞ (255.7–∞) 27.6 (23.0–33.5)

Het_ex ∞ ∞ ∞ ∞ ∞ ∞
Sibship 95 (75–130) 35 (22–59) 62 (41–99) 50 (33–80) 95 (68–137) 30 (19–51)

Coancestry 29.9 (10.4–59.5) 10.9 (3.8–21.8) 20.9 (6.3–44.2) 14.9 (4.8–30.4) 105.8 (0–531.2) 11.5 (6.1–18.7)

Ne (temporal)
Pollack −127.2 NA 71.0 NA 161.7 NA

Nei and Tajima −131.5 NA 66.2 NA 156.2 NA

Jorde and Ryman −155.4 NA 38.1 NA 155.7 NA

Harmonic mean (unweighted) 302.47 27.45 58.62 32.80 179.55 25.56

W, wild samples (without double ring). H, hatchery samples (with double ring). Years of birth are given for each sample after their origin. Ar, Allelic richness; He, gene diversity; LD, estimation of
Ne with the single sample method of linkage disequilibrium method (Waples and Do, 2008); Het_ex, heterozygote excess method (Zhdanova and Pudovkin, 2008); Sibship, parentage method
(Wang, 2009); Coancestry, coancestry method (Nomura, 2008); Pollack, Estimation of Ne with the temporal method of Pollack (1983), then transformed in yearly Nb with Waples et al. (2007)
method; Nei and Tajima, idem with Nei and Tajima (1981) method; Jorde and Ryman, idem with Jorde and Ryman (2007) method; Harmonic mean (unweighted), Harmonic mean of Ne
estimators.
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individuals, a fragment of adductor muscle or mantle was collected and
preserved in 70–95% ethanol for further DNA analyses.

DNA extraction and microsatellite genotyping
DNA extraction was performed using the QIAamp DNA Mini Kit (Qiagen,
Hilden, Germany), according to the manufacturer’s instructions. DNA
concentrations were estimated using a Nanodrop (Thermo Fisher Scientific
Inc., Waltham, MA, USA) and diluted to 10 ng DNA per milliliter. Genetic
variation at 12 microsatellite loci was assayed using three multiplex PCR
amplifications (mx1, m2, mx4), as described in Morvezen et al. (2013, 2016).

Statistical analysis
Allelic richness (Ar) and gene diversity (He) were assessed for each locus
and each population (that is, year-classes populations of each origin) using
FSTAT v2.93 (Goudet, 2001), accounting for sample size differences by the
rarefaction method implemented in the software. Null allele frequencies
were estimated using the Van Oosterhout algorithm implemented in
MICROCHECKER v2.2 (Van Oosterhout et al., 2004). Significant differ-
ences between samples were tested using a Friedman Chi-squared test for
non-independent data, followed by pairwise paired Wilcoxon tests with
false discovery rate correction for multiple testing (Benjamini and
Hochberg, 1995) in R (R Core Team, 2013).
Pairwise FST values (Weir and Cockerham, 1984) were calculated with

GENETIX v4.05 (Belkhir et al., 2001), and heterogeneity in allelic
frequencies between pairs of samples was tested with GENEPOP v4.2 (G-
test; 1000 dememorisations, 100 batches and 10 000 iterations per batch;
Rousset, 2008). The presence of outlier loci was checked using LOSITAN
(50 000 simulations, infinite mutation model, 95% confidence intervals;
Antao et al., 2008).
Relatedness was calculated with COANCESTRY v1.0 (Wang, 2011), using

the triadic likelihood method described by Wang (2007). This estimator was
chosen because it is least biased when data contain many unrelated individuals
(Wang, 2007), as expected in wild populations of marine mollusks. Significance
of mean differences in relatedness between samples was assessed by 10 000
permutations in COANCESTRY.
Effective population size (Ne) was estimated according to seven different

methods. NEESTIMATOR v2.01 (Do et al., 2014) was used to apply the
heterozygosity method (Zhdanova and Pudovkin, 2008), the linkage disequili-
brium method (Waples and Do, 2008), the coancestry method (Nomura,
2008), as well as three temporal methods (Nei and Tajima, 1981; Pollack, 1983,
Jorde and Ryman, 2007). The sibship method (Wang, 2009) was calculated
using COLONY (Jones and Wang, 2010). Temporal methods were calculated
on the three possible time frames (that is, 2007–2012, 2007–2009, 2009–2012)
and then decomposed into estimates of yearly effective number of breeders
(Nb) using the method implemented in SALMONNB v1.1 (Waples et al, 2007).
This method has been developed for the Pacific salmon, a semelparous species,
but could be applicable in our case (Waples, personal communication, and
see discussion for expanded explanation). All details concerning the options
used for Ne calculations are presented in Supplementary Material.
All Ne estimates were combined using an unweighted harmonic mean, as

suggested by Waples and Do (2010). Variance-weighted harmonic mean would
have been preferable (Waples and Do, 2010), but variance estimates could
not be obtained for all estimators, as some were equal to infinity. Negative
estimates of Ne were also included in the harmonic mean. Negative values of
Ne are most probably caused by sampling noise being greater than the signal,
which is likely to happen with moderate to high Ne (Waples and Do, 2010).
Therefore, not including those estimates would bias the mean (see Results).
Finally, the relative reproductive success (x) of hatchery-born scallops

was estimated using the Ryman-Laikre equation (See below, Ryman and
Laikre, 1991) for three possible time frames (i) combining 2007 wild
and hatchery samples to produce 2009 wild samples, (ii) combining 2009 wild
and hatchery samples to produce 2012 wild samples, and (iii) on overall data
(2007–2012), using combined Ne estimates. Estimates of the relative repro-
ductive success were used to predict Ne resulting from crossings between 2012
wild and hatchery populations.

Ryman-Laikre (1991) equation–NC: Effective population size of the cultivated
population.
NW: effective population size of the recipient, wild population. NE: Effective

population size of the resulting offspring from the mixing of the two
populations. x: relative reproductive contribution of the cultivated population.

1

NE
¼ x2

NC
þ ð1� xÞ2

NW

RESULTS

Genotype scoring and null alleles
One locus (PmRM007) was excluded from further analysis because
of inconsistencies in allele scoring. Null alleles were detected at 3
(PmRM027, PmRM012, PmRM043) out of the 11 remaining loci,
which is consistent with previous studies using the same markers
(Morvezen et al., 2013, 2016). Most analyses (except the most
computationally intensive, COANCESTRY and COLONY) were
performed with and without those loci and provided similar results.
Further results are thus given for all 11 loci.

Genetic diversity
Wild-born samples displayed the highest allelic richness values
(Ar= 8.97–9.29), whereas hatchery samples showed a lower Ar, which
was approximately 0.5–1.5 lower (Table 1). Allelic richness differed
significantly among samples (Friedman Chi-squared= 14.32; df= 5;
P= 0.013). However, no significant difference was detected in pairwise
comparisons after Benjamini and Hochberg (1995) false discovery rate
correction for multiple testing (paired Mann–Whitney test, P40.05 for
all comparisons). Observed heterozygosity appeared relatively similar
among all samples (Ho~0.70), without any significant difference
(Friedman Chi-squared= 1.45, df= 5, P= 0.917). No significant differ-
entiation was detected among wild populations (FST non-significantly
different from zero; no significant heterogeneity in allelic frequencies
(G-test, P40.05), Table 2). All pairwise FST involving a hatchery cohort
were significantly greater than zero (0.0049oFSTo0.0265), except for
the pair H07-N09 (FST= 0.0045, P= 0.087). The highest FST values
were found among hatchery populations. All pairwise G-tests involving
a hatchery sample were significant, indicating a strong heterogeneity in
allelic frequencies (Table 2). No outlier loci was detected by LOSITAN
(P40.05 for all loci)

Relatedness
Relatedness was globally higher within hatchery populations (Figure 1).
A small but notable trend in the increase of relatedness with time was
observed in wild and hatchery populations. This temporal increase in

Table 2 FST (below diagonal) and G-test P-value (above diagonal) for

all pairs of populations

W07 H07 W09 H09 W12 H12

W07 — *** NS *** NS ***

H07 0.0054** — *** *** *** ***

W09 0.0013 0.0045 — *** NS ***

H09 0.0077** 0.0107*** 0.0068* — *** ***

W12 —0.0006 0.0049* 0.0048 0.0064** — ***

H12 0.0198*** 0.0261*** 0.0212*** 0.0265*** 0.0161*** —

Significance of FST are calculated by 10 000 permutations. Significance after Benjamini and
Hochberg correction for multiple testing is given in bold: NS, non-significant, *Po0.05;
**Po0.01, ***Po0.001. W, wild sample (without double ring); H, hatchery samples (with
double rings). Year of birth is given for each sample after the origin.

Stock enhancement or sea ranching in a great scallop population?
R Morvezen et al

144

Heredity



relatedness was significant (10 000 permutations, Po0.001), except
between 2009 and 2012 for the wild populations.

Effective population sizes and reproductive contribution of the
hatchery seed
Effective population size estimates varied largely among methods
(Table 1). However, Ne estimates were systematically higher in wild
populations than in hatchery populations in a given year, for all Ne
estimates and for the combined estimates (varying between 58.62 and
302.47 for wild populations and between 25.56 and 32.80 for hatchery
populations). The combined estimate without the negative values for
the wild population of 2007 was 88.8 (302.47 when included),
indicating that removing negative values did bias the mean toward
a underestimation of Ne (see Waples and Do, 2010 for an extensive
discussion about the biological meaning of negative Ne estimates).
For the rest of the analysis, only the combined estimate including
negative values was considered.
A high variability in Ne was observed among years in wild

populations, with a particularly low Ne found in 2009 across
all methods (mean Ne= 58.62). The relative reproductive contribution
of the 2007 hatchery cohort was estimated to be x= 0.67 in the 2009
wild cohort, meaning an estimated reproductive output of 67% for
hatchery-born scallops for this year. However, it was not possible to
estimate x for the 2009 hatchery cohort in the 2012 wild cohort because
Ne increased in 2012 compared with 2009, which is not mathematically
possible if we assume that 2009 wild and hatchery samples are the
breeding populations producing 2012 wild sample (see discussion).
Over all data (2007–2012), x was estimated at a value of 0.34.

DISCUSSION

Genetic diversity
Although hatchery populations displayed a lower allelic richness than
wild-born ones, the difference was weak and not strongly supported
statistically. This suggests that the genetic diversity of hatchery seed
was not reduced much compared with the recipient wild population,
contrary to what is often observed in hatchery production of bivalves
(Taris et al., 2007; Lind et al., 2009; Lallias et al., 2010a). This might
result from the care taken by the Tinduff hatchery in their crossing
procedure (F Breton, personal communication): the great scallop
being a simultaneous hermaphrodite, most individuals are commonly
used both as male and female and batches of mixed spermatozoa from
five to six individuals are used to individually fertilize ovocytes from

each female. This likely maximizes parental contributions in he
resulting progenies. However, FST and G-test results indicated a high
genetic differentiation between wild and hatchery populations, as
previously reported in other mollusks such as, the European flat oyster
(Lallias et al., 2010a) and abalone (Hara and Sekino, 2007).
This differentiation reflects a strong alteration of allelic frequencies
in the hatchery that is most likely due to genetic drift resulting from
the limited size of the broodstock (commonly 30–60 individuals),
combined with high variance in reproductive success (Boudry et al.,
2002; Morvezen et al., 2013).
Even if limited, the reduction in allelic diversity and alteration of

allelic frequencies could potentially accumulate over generations,
gradually eroding the genetic variability of the great scallop population
in the Bay of Brest. However, no trend was observed over time
in sampled wild populations (that is, stability in allelic richness, no
significant FST or G-Test among wild samples), as would be expected
if significant genetic erosion was occurring. This result must be
interpreted cautiously and the study should be extended over a
longer period of time to be able to detect a significant temporal
trend. Moreover, analyzing years pre-dating the first seeding (that is,
before 1980s) or corresponding to the first seeding events (early 1980s)
would be ideal but is unfortunately precluded by the absence (to our
knowledge) of historical samples. According to previous results
(Morvezen et al., 2016), the level of genetic diversity in the wild
population of the Bay of Brest is very similar to those in neighboring
wild scallop populations, supporting the temporal stability found in
the present study among wild populations.
The temporal stability of genetic diversity displayed by the wild

population could be explained by four alternative (and not mutually
exclusive) hypotheses. First, regular gene flow from wild populations
surrounding the Bay of Brest may maintain a high diversity in the wild
population harbored in the Bay. Such gene flow might be promoted
by the large tidal amplitude in the Bay, leading to strong renewal of the
water during each tidal cycle (~40%; Delmas and Tréguer, 1983), and
is congruent with observed FST estimates between populations along
the French Atlantic coast and the English Channel (Morvezen et al.,
2016). Second, military areas closed to fishing may harbor unexploited
sub-populations, which could ensure the retention of genetic diversity
within the Bay by contributing significantly to the total reproductive
output of the Bay. Third, the reproductive success of hatchery-
propagated scallops could be limited in the wild, as previously
reported in salmonids (Araki et al., 2007; Christie et al., 2012, 2014;
Milot et al., 2013), thus avoiding negative genetic impacts in the wild
seeded population. However, to our knowledge, this observation has
never been made in bivalves and this hypothesis is contradicted by
estimates of the relative reproductive contribution of hatchery
populations provided in the present study (see below). Fourth,
practices implemented in the local scallop hatchery may limit the loss
in genetic diversity: the broodstock is fully renewed every year by
random dredging wild adults (identified according to the double-ring
method) in the wild population (Alban and Boncoeur, 2008).
However, this practice alone could not completely avoid erosion,
even limited, of the genetic variability (Waples, 1999).

Relatedness
As expected, relatedness was higher in hatchery populations than in
the wild ones owing to the inherently strong familial structure caused
by the low number of breeders. The increase in relatedness over time
in the wild population, albeit small, may reflect some introgression
between highly related hatchery individuals and their wild counter-
parts. This temporal increase is also observed in hatchery populations,

Figure 1 Temporal evolution of relatedness in wild and hatchery populations.
TrioML: relatedness estimator calculated by COANCESTRY (Wang, 2011),
using Wang (2007) method. Significant values between time points are
shown (***Po0.001).

Stock enhancement or sea ranching in a great scallop population?
R Morvezen et al

145

Heredity



possibly because the broodstock originates from the local wild
population, thus amplifying the effect with hatchery crosses over time.
The increase in relatedness is concerning, as inbreeding depression has
been shown to occur at relatively low levels of inbreeding over
several generations in bivalve mollusks (Evans et al., 2004). Again, this
observation must be interpreted with caution, as only three time
points over 5 years have been studied and the increase is weakly
supported statistically (notably between 2009 and 2012). Moreover,
marker-based estimators of relatedness have been shown to be subject
to bias when highly related and unrelated individuals are compared
(Wang, 2014). The reliability of these estimates is particularly poor
at the individual level (Taylor, 2015), but our results comparing
populations should be accurate. To strengthen the results, genetic
monitoring should be extended over a longer time.

Effective population sizes
The observed lack of consistency among the different Ne estimators is
not surprising. Despite the increase in research interest, statistical and
software refinements, and the development of new genetic markers
and methods, estimating effective population size remains a challenge.
This is particularly the case with organisms, such as the great scallop,
which display complex life-history traits. Indeed, most methods for
estimating effective population size have been developed for a narrow
scope of life-history traits: non-overlapping generations, relatively
small variance in reproductive success and separated sexes (Waples
and Do, 2010). Those criteria are not met with the great scallop and
as a consequence using and interpreting most Ne estimates should
be carried out with caution. Moreover, the possibility of substantial
immigration in the population could further bias estimates, as gene
flow could have different impacts on different estimators (see Gilbert
and Whitlock (2015), for a comprehensive analysis; for more details
on the differences between estimation methods, see Barker (2011),
Hare et al. (2011), Phillipsen et al. (2011) and Holleley et al. (2014)).
In a complex case, like the great scallop, the best estimate of Ne

is usually the combination (via harmonic mean) of all available
methods into one value to dilute the differential biases associated with
each method and thereby improve the accuracy of Ne estimation
(Waples and Do, 2010). However, this methodology can be challen-
ging, especially combining estimates from single sample methods and
temporal methods as they do not apply to the same time frames
(Nomura, 2008; Waples and Do, 2010). One approach for combining
single sample and temporal Ne consists of considering temporal Ne as
equivalent to the harmonic mean of the effective number of breeders
per generation (that is, yearly Nb) for the generations engulfed in the
time period of interest. This oversimplification is more realistic when
generations are not overlapping (as in semelparous species) and with a
fixed age structure of breeders (Waples et al., 2007). Although this
might not seem realistic for a marine bivalve, the case of the Bay of
Brest is peculiar: scallops are harvested just after their first reproductive
season (that is, age 2+) and, because of the high fishing pressure,
individuals may reproduce only once (A Jollivet, personal commu-
nication). Therefore, Pecten maximus in the Bay of Brest can be
functionally considered as a quasi-semelparous species with limited age
structure among mature individuals. Thus, the method developed in
salmon for estimating yearly Nb from temporal Ne estimates appears
viable in the present study (Waples, personal communication).
For the hatchery broodstock, combined Ne estimates (which can be

assimilated to yearly Nb) appear slightly lower than usual broodstock
census size. This result can be explained by the high variance in
reproductive success that strongly reduces the effective number of
breeders. High variance in reproductive success is often observed in

bivalve hatcheries (Boudry et al., 2002; Lallias et al., 2010b), including
in the great scallop (Morvezen et al., 2013). For the wild populations,
some estimates and some upper confidence interval included infinity.
Most Ne estimation methods perform better in populations with small
Ne (Waples and Do, 2010) and an estimation including infinity
could be indicative of a moderate to large Ne. However, the mean Ne
estimates are much lower than expected in a bivalve displaying large
population census sizes and mass-spawing with fecundation in the
open sea. Small Ne/N ratios have often been reported in the literature
(Frankham, 2007), sometimes even as low as 10− 6 in the Pacific oyster
(Hedgecock et al., 1992). In the present study, estimating Ne/N is
difficult because of the lack of data concerning the census size of the
great scallop population in the Bay of Brest. However, considering the
total annual landings for this stock (~100–300T, Alban and Boncoeur,
2008), the census size should be at least in the order of magnitude of
106–107, giving an approximation of Ne/N in the order of magnitude
of 10− 4–10− 5. A small Ne/N ratio could be caused by sweepstake
reproductive success where a small number of individuals contribute
to the majority of the next generation (Hedgecock and Pudovkin,
2011). Although such a phenomenon could result in a strong variance
in allelic frequencies through generations and induce chaotic genetic
patchiness (Larson and Julian, 1999), a stable genetic diversity was
found over the three successive wild populations studied. The
estimation of Ne for the 2009 wild cohort is the most surprising. It
is threefold to fivefold lower than Ne estimates for both 2007 and 2012
wild populations. This could be explained by a strong sampling bias,
as the 2009 wild sample is the smallest in the data set and Ne
estimators are sensitive to sampling errors (Waples and Do, 2010).
It could also be an indicator of a strong Ryman-Laikre effect, due to a
large reproductive contribution of hatchery-born individuals during
this particular year (see below for Ryman-Laikre effect discussion).
Overall, the results suggest that the annual effective number of

breeders is small and variable in the wild, consistent with a sweepstake
reproductive success (Hedgecock and Pudovkin, 2011). Moreover, this
effect could be amplified by genetic drift resulting from hatchery
propagation if seeded scallops contribute significantly to reproduction.

Relative reproductive contribution of hatchery and wild-born
populations
Estimates of the relative reproductive contribution were highly variable
and sometimes not possible. This could indicate that the simplistic
hypotheses underlying the Ryman-Laikre model might not be realistic
enough to be informative in the case of the great scallop. In particular,
the relative contribution could not be assessed for the 2009–2012 period,
clearly showing that the hypothesis of a simple reproductive mixing
between 2009 hatchery and wild populations is not sufficient to explain
the observed Ne in 2012. Nevertheless, estimates of x (0.34–0.67) suggest
a Ryman-Laikre effect, with a high contribution of hatchery stocks to the
total reproductive output of the wild population. These values should
not be considered as a definitive result but as a possible indication of
reproductive contribution of the hatchery seeds. To our knowledge, no
previous study has used the Ryman-Laikre equation to estimate relative
reproductive success. A comprehensive assessment of potential bias,
assumptions and limits of this methodology should be conducted to
evaluate the reliability of this estimate.
Accordingly, the increase in relatedness over time is also an

indicator that seeded individuals appear to contribute to some degree
to the reproduction of the great scallop population in the Bay of Brest
(see above). The Ryman-Laikre effect might be the cause for the
relatively small Ne observed in the wild population (in particular
in 2009), but it seems to be counterbalanced by other processes,
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as Ne appears to be able to increase even after a dramatic reduction
(in 2012). Again, as explained above, gene flow from neighboring
populations as well as undetected population sub-structure could
explain both the retention of genetic diversity and the apparent
recovering of effective population size.

Conclusion: sea ranching or stock enhancement?
The present study suggests that hatchery-born scallops may signifi-
cantly contribute to the reproduction of the wild population, fulfilling
the objective of the population enhancement program conducted in
the Bay of Brest, which is to provide additional breeders. In spite of
the relative alteration of the genetic diversity and lower effective
population size in the hatchery populations, the genetic variability
appears relatively stable over time in the wild population supplemen-
ted with hatchery seed. In particular, gene flow from surrounding
populations and/or the reproductive input of putative unexploited
sub-populations within the bay may buffer the Ryman-Laikre effect
and ensure the retention of the local genetic variability. Although the
first goal of the supportive breeding program is to enhance the local
recruitment and improve the productivity of the scallop population in
the Bay of Brest, the stock is far from having recovered to its historical
levels (Alban and Boncoeur, 2008). Various factors may strongly limit
the demographic growth of the local population, such as trophic
competition with non-native invasive species like Crepidula fornicata
(Thouzeau et al., 2000) or Crassostrea gigas (Lejart and Hily, 2011),
increased predation, or emerging environmental pressures (eutrophica-
tion, toxic algal bloom; Anderson et al., 2002, 2012). Genetic monitoring
of the population in the Bay of Brest should be continued over a longer
period of time and extended to other seeded scallop populations. This
would provide opportunities to better assess the extent of the reproduc-
tive success of hatchery-born scallops in the wild and their impact on the
effective population size and genetic diversity of seeded populations.
Moreover, further investigations are required to evaluate whether the
reproductive contribution of hatchery populations may affect the local
adaptation of wild populations and their adaptive potential to environ-
mental changes (see Laikre et al., 2010). This issue appears particularly
crucial to ensure the long-term persistence of enhanced populations,
particularly in a context of global changes.
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