

Paleoceanography

Supporting Information for

Deglacial subarctic Pacific surface water hydrography and nutrient dynamics and links to North Atlantic climate variability and atmospheric CO₂

E. Maier^{1#}, M. Méheust¹, A. Abelmann¹, R. Gersonde¹, B. Chapligin², J. Ren¹, R. Stein¹, H. Meyer², R. Tiedemann¹

¹Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27568 Bremerhaven, Germany ²Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 14473 Potsdam, Germany

*corresponding author: Edith Maier, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Alten Hafen 26, 27570 Bremerhaven (edith.maier@awi.de)

Contents of this file

Figures S1 to S5 Tables S1 to S5

Introduction

Figure S1 demonstrates the effectivity of sonication for the purification of diatom samples for isotope analyses, since sonication helps separating diatoms from other biogenic silicates (radiolarians, sponge spicules).

Figure S2 describes in detail the error estimation of the local surface seawater oxygen isotope composition.

Figure S3 shows the diatom isotopic data on different time scales to test the robustness of the main scientific findings.

Figure S4 shows the residual contamination of the purified SO202-27-6 diatom samples with nonbiogenic silicates (determined by Energy Dispersive X-ray spectrometry (EDS) and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES); details are given in the main text, section 3.2). Mass-balance corrections of the diatom oxygen and silicon isotope records show that even assuming extreme theoretical oxygen and silicon isotope values for the contamination the general features of the diatom isotope records are not level out (details on mass-balance corrections are given in the main text, section 3.2).

Figure S5 presents the relative diatom abundances in the pre-sonicated diatom samples and the Si utilization calculated from the SO202-27-6 δ^{30} Si_{diat} values using three different fractionation factors for *C. marginatus* and *C. oculus-iridis*.

Table S1 presents all main information regarding the age models of cores MDo1-2416 and MDo2-2489, for which partly new age control points were determined (for details see main text, section 4).

Table S2 shows the percentages of SiO₂ and Al₂O₃ within the purified diatom samples from cores SO₂O₂-27-6 and MDO₁-2416, determined/estimated by EDS/ICP-OES, as well as inferred percentages of contamination with non-biogenic silicates (e.g. rock fragments, clay minerals) (details are given in the main text, section 3.2)

Table S3 presents the compositions of the pre-sonicated diatom samples, determined by light microscopy, and of the final purified diatom samples, determined by Scanning Electron Microscopy (details on the counting procedures are found in the main text, section 3.2).

Table S4 shows the diatom oxygen and silicon isotope values of cores SO202-27-6 and MD01-2416, as well as standard deviations and number of isotopic measurements. Isotope analyses were carried out according to the procedures described by *Maier et al.* [2013] and *Chapligin et al.* [2010].

Table S5 presents the results of oxygen and carbon isotope analyses on planktic foraminifer *N. pachyderma*_{sin}, as well as the biogenic opal content, opal mass accumulation rates and X-ray fluorescence intensities from Core SO₂₀₂₋₂₇-6 (details on procedures are given in the main text, section 3)

Figure S1. SO202-27-6 diatom sample from core depth 77-79 cm in two steps of purification process (pictures were taken using a ProgRes C10 plus digitale camera coupled to a Zeiss Axioplan II light microscope. (A) Diatom sample after heavy liquid separation and prior to sonication. (B) Final purified diatom sample.

Figure S2. (a) Global mean seawater $\delta^{18}O(\delta^{18}O_{sw})$ and errors [from *Waelbroeck et al.*, 2002]; (b) alkenone-based SST record including error bars (=1.55°C) from Core SO202-27-6. (c) Local surface $\delta^{18}O_{sw}$ record calculated according to the following equation based on *Juillet-Leclerc and Labeyrie* [1987]:

local surface $\delta^{18}O_{sw}=\delta^{18}O_{diat}-34-\sqrt{122-5SST}-mean\,\delta^{18}O_{sw}$

where $\delta^{18}O_{diat}$ is the measured diatom $\delta^{18}O$, SST is the temperature calculated from the alkenonebased SST record from the same core and mean $\delta^{18}O_{sw}$ is the mean seawater $\delta^{18}O$ [from *Waelbroeck et al.*, 2002]. To get SST and mean $\delta^{18}O_{sw}$ for the time points of the $\delta^{18}O_{diat}$ measurements, we did a linear interpolation of both data sets. The errors in local surface $\delta^{18}O_{sw}$ were estimated by propagating the error introduced by the $\delta^{18}O_{diat}$ measurement and the alkenone measurement (0.4°C), the alkenone:temperature calibration (1.5°C) and the removal of global ice volume [from *Waelbroeck et al.*, 2002]. We used the following equation to propagate the error, assuming no covariance among the errors [*Bevington and Robinson*, 2003: p. 41]:

$$\sigma_{local surface \,\delta^{18}O_{sw}}^2 = \sigma_{\delta^{18}O_{diat}}^2 + \sigma_{mean\,\delta^{18}O_{sw}}^2 + \sigma_{SST}^2 f'(SST)^2$$

where

$$\sigma_{SST}^2 = (0.4)^2 + (1.5)^2 = 2.41(°C)^2$$
$$f'(SST) = \frac{-5}{2\sqrt{122 - 5SST}}$$

and $\sigma_{\delta^{18}O_{diat}}^2$ and $\sigma_{mean\,\delta^{18}O_{sw}}^2$ are the errors of the $\delta^{18}O_{diat}$ measurements and of the mean $\delta^{18}O_{sw}$, respectively.

Taking interpolation of SST and mean $\delta^{18}O_{sw}$ data into account, the variances of local surface $\delta^{18}O_{sw}$ were estimated as follows:

$$\sigma_{local \, surface \, \delta^{18} O_{sw}}^{2}(t_{0}) = \sigma_{\delta^{18} O_{diat}}^{2}(t_{0}) + \left(\frac{t_{0} - t_{1}}{t_{2} - t_{1}}\right)^{2} \sigma_{mean \, \delta^{18} O_{sw}}^{2}(t_{2}) \\ + \left(1 - \frac{t_{0} - t_{1}}{t_{2} - t_{1}}\right)^{2} \sigma_{mean \, \delta^{18} O_{sw}}^{2}(t_{1}) \\ + \frac{25\sigma_{SST}^{2}}{488 - 20(\frac{t_{0} - t_{3}}{t_{4} - t_{3}}SST(t_{4}) + (1 - \frac{t_{0} - t_{3}}{t_{4} - t_{3}}SST(t_{3}))}$$

where

 $\sigma^2_{local \, surface \, \delta^{18}O_{sw}}(t_0)$ is the variance of local surface $\delta^{18}O_{sw}$ at the time t_0 , which corresponds to the time of the $\delta^{18}O_{diat}$ measurement,

 $\sigma^2_{\delta^{18}O_{diat}}(t_0)$ is the variance of the $\delta^{18}O_{diat}$ measurement at the time t_0 ,

 t_1 and t_2 are the time points of the mean $\delta^{_{18}}O_{_{SW}}$ data closest to t_0 , where $t_1 \leq t_0 \leq t_2$,

 $\sigma^2_{mean \, \delta^{18}O_{sw}}(t_1)$ and $\sigma^2_{mean \, \delta^{18}O_{sw}}(t_2)$ are the variances of the mean $\delta^{18}O_{sw}$ data at the time t_1 and t_2 , respectively,

 $\sigma_{SST}^2 = 2.41$,

 t_3 and t_4 are the time points of the SST data closest to t_0 , where $t_3 \leq t_0 \leq t_4$

and

SST(t3) and SST(t4) are the SST values at the time t_3 and t_{4} , respectively.

The resulting error for local surface $\delta^{18}O_{sw}$ is 0.44 ± 0.02‰.

Figure S3. SO202-27-6 δ^{30} Si_{diat} and δ^{18} O_{diat} records plotted on different time scales to test the robustness of our main findings. The SO202-27-6 age models were constructed based on planktic ¹⁴C ages, using different planktic reservoir ages and different age model construction techniques previously applied on deglacial sequences of subarctic Pacific sediment cores: Three age models were constructed solely by calibrating the six raw planktic ¹⁴C ages of SO₂₀₂₋₂₇-6 using the Calib 7.1 software and the Marineo9 calibration dataset [Stuiver and Reimer, 1993; Reimer et al., 2013], however applying different reservoir ages: (1) 700 years over the whole core section (blue line, white circles). A constant reservoir age of about 700 has previously been applied on sediment cores from the NW [Keigwin, 1987; Keigwin et al., 1992; Sabin and Pisias, 1996] and NE Pacific [Lopes and Mix, 2009; Lund et al., 2011]; (2) 950±250 years over the whole core section, as used by Galbraith et al. [2007] for core ODP 887 located close to Core SO202-27-6 (purple line, white diamonds); (3) 700±50 years for ¹⁴C ages <11 ka and 1100±200 years for ¹⁴C ages >11ka, based on *Kienast and McKay* [2001] and Kovanen and Easterbrook [2002] for the NE Pacific (green line, black circles). The fourth age model of SO202-27-6, which we apply in this study, was constructed using a combination of calibrated ¹⁴C ages and correlation to the well-dated Core MDo2-2489, located close to Core SO2o2-27-6 (red line, black squares) (Figure 2; section 4).

It is important to note that the main changes of the isotopic signals discussed in the main text, particularly the low $\delta^{30}Si_{diat}$ at the start of the deglaciation, the high $\delta^{30}Si_{diat}/low \delta^{18}O_{diat}$ during mid-HS1 and the intermediate $\delta^{30}Si_{diat}/high \delta^{18}O_{diat}$ during the B/A, occur within the same time intervals independent from the choice of the age model, highlighting the robustness of our findings.

Figure S4. (a) Contamination of purified SO₂₀₂₋₂₇-6 diatom samples with non-biogenic silicates estimated by inductively coupled plasma optical emission spectrometry (ICP-OES) and energy dispersive X-ray spectrometry (EDS). **(b)** and **(c)** Measured SO₂₀₂₋₂₇-6 $\delta^{18}O_{diat}$ (b; blue curve) and $\delta^{30}Si_{diat}$ (c; red curve) records including isotopic curves mass-balance corrected for contamination with non-biogenic silicates estimated by EDS and using two different theoretical $\delta^{18}O_{cont}$ (+2‰ and +30‰) and $\delta^{30}Si_{cont}$ (-2.5‰ and +1.8‰) values (black curves). Error bars indicate errors (1 σ) of replicate analyses.

Figure S5. (a) Relative diatom abundances in the pre-sonicated SO202-27-6 diatom samples. Only one sample contains diatoms other than from the genus *Coscinodiscus*. **(b)** Measured SO202-27-6 δ^{30} Si_{diat} record. **(c)** Si utilization calculated from the SO202-27-6 δ^{30} Si_{diat} values, assuming a closed system with a Rayleigh –type fractionation according to the following equation:

$$\delta^{30}Si_{diat} = \delta^{30}Si_{isw} - (\frac{1-f}{f})\varepsilon\ln(1-f)$$

where $\delta^{30}Si_{isw}$ is the $\delta^{30}Si$ value of the silicic acid of the initial source seawater, f is the degree of Si utilization and ε is the fractionation factor. Since there is yet no information on silicic acid $\delta^{30}Si$ from the open ocean NE Pacific water column, we used a $\delta^{30}Si_{isw}$ value of $\pm 2.04\%$ for our calculations, which corresponds to the highest $\delta^{30}Si_{diat}$ measured in Core SO202-27-6. We applied 3 different fractionation factors (ε) for *C. marginatus* and *C. oculus-iridis* to test the influence of potentially different ε on the Si utilization pattern and on absolute values of Si utilization. An ε of $\pm 1.1\%$ corresponds to the average ε determined by *De la Rocha et al.* [1997] and *Milligan et al.* [2004] for diatom species from the genus *Thalassiosira*, which belong to the same diatom suborder as the genus *Coscinodiscus*. We furthermore calculated Si utilization using a ε of -0.92% for *C. marginatus* and vice versa; These are the endmember ε determined in culture studies of *Thalassiosira* species [*Sutton et al.*, 2013; *Sun et al.*, 2014]. While the application of different ε does not change the relative pattern of Si utilization, absolute changes and values of Si utilization strongly depend on the applied ε .

Table S1. Age control points of cores **(A)** MD01-2416 and **(B)** MD02-2489. Planktic (*N. pachyderma_{sin}*) radiocarbon ages of **(A)** Core MD01-2416 [*Sarnthein et al.*, 2004; 2007], and **(B)** Core MD02-2489 [*Gebhardt et al.*, 2008], including newly calibrated ages. Reservoir ages and ¹⁴C-plateau boundaries were taken from *Sarnthein et al.* [2015]. **(A)** The depth of the ¹⁴C-plateau IIa base/IIb top within Core MD01-2416, not provided by *Sarnthein et al.* [2015], was determined assuming a constant sedimentation rate over ¹⁴C-plateau II (depth marked by an *). **(B)** Since the ¹⁴C record of Core MD02-2489 does no reach as far back as to allow for the determination of the base of ¹⁴C-plateau Va [see *Sarnthein et al.*, 2015], the age model prior to 19.130 ka BP (top of ¹⁴C-plateau Va) was constructed based on calibration of the ¹⁴C value at 520 cm depth, using Calib 7.1, the Marine13 data set and a reservoir age of 1560±310 a (determined for ¹⁴C-plateau Va by *Sarnthein et al.* [2015]), and linear interpolation in between.

						Cal	ib 7.1 ca	ibrated	ages (ka BP)
	¹⁴ C ages	¹⁴ C age error	Reservoir age		Derivation of				
	(ka)	(a)	(a)	Calibrated	cal. age (¹⁴ C-plateau			2σ	Relative area
Depth (cm)	(Sarnthein et	(Sarnthein et	(Sarnthein et al.,	ages	boundaries after	Median	2σ min	тах	under proba-
MD01-2416	al.,2004; 2007)	al., 2004; 2007)	2015)	(ka BP)	Sarnthein et al. (2015)	(ka BP)	(ka BP)	(ka BP)	bility distribution
0.75	5.684	30	570 ± 138	5.900	Calib 7.1	5.900	5.593	6.205	-
16	6.745	33	570 ± 138	7.077	Calib 7.1	7.077	6.754	7.383	-
39	7.869	36	570 ± 138	8.161	Calib 7.1	8.161	7.867	8.431	-
51	9.985	35	570 ± 138	10.754	Calib 7.1	10.754	10.402	11.125	-
88	12.690	50	570 ± 138	13.640	Plateau la top				
98			570 ± 138	13.940	Plateau la base				
104	13.140	60	723 ± 284	14.050	Plateau I top				
136	13.090	60	723 ± 284	14.920	Plateau I base		,	·	,
140.5	13.795	60	431 ± 253	15.250	Plateau IIa top				
			431 ± 253						
164.5*			/1140 ± 199	16.050	P IIa base/ PIIb top*	•			
175			1140 ± 199	16.400	Plateau IIb base				
179	16.100	100	1479 ± 135	16.900	Plateau III top				
199	16.230	199	1479 ± 135	17.580	Plateau III base				

(A) MD01-2416

es (ka BP)		Relative area	under proba-	bility distribution	£	~	~	-	0.997	~	~		·	ı	,	,	,	,		,	~	۲-
ibrated ag			2σ max	(ka BP)	8.579	10.092	10.660	12.070	13.143	13.873	14.249	•	ı	,	,	,	,	,		•	21.312	31.883
alib 7.1 cal			2σ min	(ka BP)	7.434	8.587	9.247	10.327	11.540	12.714	12.862	•	ı		,	,	,	,			19.583	30.034
Ü			Median	(ka BP)	8.003	9.310	9.933	11.135	12.445	13.297	13.567		I	ı	,	,	,	,			20.427	31.131
	Derivation of	cal. age (¹⁴ C-plateau	boundaries after	Sarnthein et al. (2015)	Calib 7.1	Calib 7.1	Calib 7.1	Calib 7.1	Calib 7.1	Calib 7.1	Calib 7.1	Plateau I top	Plateau I base	Plateau IIa top	P IIa base / P IIb top	Plateau IIb base	Plateau III top	Plateau III base	Plateau IV top	Plateau IV base	Plateau Va top	Calib 7.1
		Ď		_								_	_	_	_						_	
		Calibrate	ages	(ka BP	8.003	9.310	9.933	11.135	12.445	13.297	13.567	14.050	14.920	15.250	16.050	16.400	16.900	17.300	18.000	18.980	19.130	31.131
	Reservoir age	(a) Calibrate	(Sarnthein et ages	al., 2015) (ka BP	440 ± 285 8.003	440 ± 285 9.310	440 ± 285 9.933	440 ± 285 11.135	440 ± 285 12.445	440 ± 285 13.297	440 ± 285 13.567	440 ± 285 14.050	440 ± 285 14.920	550 ± 305 15.250	550 ± 305/120 16.050	550 ± 120 16.400	805 ± 155 16.900	805 ± 155 17.300	1110 ± 334 18.000	1110 ± 334 18.980	1560 ± 310 19.130	1560 ± 310 31.131
	¹⁴ C age error Reservoir age	(a) (a) Calibrate	(Gebhardt et (Sarnthein et ages	al., 2008) al., 2015) (ka BP	40 440 ± 285 8.003	45 440 ± 285 9.310	50 440 ± 285 9.933	70 440 ± 285 11.135	60 440 ± 285 12.445	30 440 ± 285 13.297	70 440 ± 285 13.567	35 440 ± 285 14.050	90 440 ± 285 14.920	80 550 ± 305 15.250	80 550 ± 305/120 16.050	90 550 ± 120 16.400	- 805 ± 155 16.900	- 805 ± 155 17.300	110/100 1110 ± 334 18.000	- 1110 ± 334 18.980	65 1560 ± 310 19.130	170 1560 ± 310 31.131
	¹⁴ C ages ¹⁴ C age error Reservoir age	(ka) (a) (a) Calibrate	(Gebhardt et (Gebhardt et (Sarnthein et ages	al., 2008) al., 2008) al., 2015) (ka BP	7.570 40 440 ± 285 8.003	8.715 45 440 ± 285 9.310	9.210 50 440 ± 285 9.933	10.140 70 440 ± 285 11.135	11.080 60 440 ± 285 12.445	11.870 30 440±285 13.297	12.120 70 440±285 13.567	12.730 35 440±285 14.050	12.800 90 440 ± 285 14.920	13.820 80 550 ± 305 15.250	14.180 80 550 ± 305/120 16.050	14.430 90 550 ± 120 16.400	805±155 16.900	805±155 17.300	16.750 110/100 1110 ± 334 18.000	1110 ± 334 18.980	18.042 65 1560 ± 310 19.130	30.521 170 1560 ± 310 31.131

Table S1. (continued).

(B) MD02-2489

			ICP-OES	
SO202-27-6 Depth (cm)	Age (ka BP)	SiO₂ assumed (%)	Al ₂ O ₃ (%)	non-biogenic silicate contamination (%)
9-11	9.888	99.51	0.15	0.81
21-23	13.134	99.09	0.14	1.22
B)				
			EDS	
SO202-27-6 Depth (cm)	Age (ka BP)	SiO₂ (%)	Al ₂ O ₃ (%)	non-biogenic silicate contamination (%)
1-3	7.029	98.1	1.0	4.2
5-6	8.458	98.9	0.5	2.1
9-11	9.888	99.3	0.2	1.1
13-15	11.144	98.9	0.4	2.1
17-19	12.113	99.1	0.2	1.3
21-23	13.081	98.8	0.3	1.9
25-27	14.050	98.2	0.4	2.7
29-31	14.353	98.8	0.2	1.5
33-35	14.655	98.7	0.2	1.8
37-39	15.003	98.8	0.3	1.7
41-43	15.485	98.9	0.3	1.7
45-47	15.862	97.9	0.6	3.3
53-55	17.087	97.7	0.8	4.0
57-59	18.002	98.0	0.7	3.4
61-63	18.918	98.6	0.3	1.9
77-79	22.391	96.9	1.4	6.0
Avg		98.5	0.5	2.6
SD (1σ)		0.6	0.3	1.3
C)				

Table S2. Contamination of purified diatom samples with non-biogenic silicates estimated from	m
SiO ₂ and Al ₂ O ₃ percentages determined (A) by ICP-OES for Core SO202-27-6 and (B, C) by EDS for	or
cores (B) SO202-27-6 and (C) MD01-2416.	

			EDS	
MD01-2416 Depth (cm)	- Age (ka BP)	SiO₂ (%)	Al ₂ O ₃ (%)	non-biogenic silicate contamination (%)
4-8*	6.292	99.17	0.10	1.1
12-16*	6.920	99.18	0.12	1.1
22-26*	7.454	99.07	0.18	1.3
32-36*	7.925	99.14	0.07	1.0
38-40	8.161	98.82	0.24	1.7
42-46	9.241	99.13	0.12	1.1
48-50	10.322	99.05	0.12	1.2
52-56*	10.995	99.08	0.11	1.2
62-66*	11.796	99.07	0.12	1.2
68-70	12.197	99.05	0.11	1.2
72-76*	12.638	99.13	0.10	1.1
78-80	12.999	98.86	0.14	1.4
82-86*	13.400	98.94	0.12	1.3
92-96*	13.849	99.03	0.11	1.2
102-106	14.125	98.98	0.09	1.2
Avg		99.0	0.1	1.2
SD (10)		0.1	0.0	0.2

*data from *Maier et al.* [2013]

.

Table S3. Composition of **(A)** pre-sonicated and **(B)** final purified SO202-27-6 diatom samples. **(A)** Relative abundances of diatoms, radiolarians and sponge spicules are related to the total counts and relative abundances of *Coscinodiscus marginatus* and *Coscinodiscus oculus-iridis* are related to the diatom species assemblage, determined by light microscopy. Note that the sample 29-31 cm is the only sample were non-*Coscinodiscus* diatoms contribute to the diatom species assemblage (5.3%). **(B)** All relative abundances, determined under the Scanning Electron Microcope (SEM), are related to the total counts.

		light microscopy (pre-sonication)						
SO202-27-6 Depth (cm)	Age (ka BP)	total counts	diatoms (%)	radiolarians (%)	sponge spicules (%)	<i>C. marginatus</i> (% of diatom abundance)	<i>C. oculus-iridis</i> (% of diatom abundance)	
1-3	7.029	201	96.5	3.5	0.0	97.4	2.6	
5-6	8.458	216	84.3	15.3	0.5	94.5	5.5	
9-11	9.888	159	88.1	10.7	1.3	97.1	2.9	
13-15	11.144	221	62.4	34.4	3.2	94.9	5.1	
17-19	12.113	158	88.6	11.4	0.0	95.0	5.0	
21-23	13.081	215	88.8	9.8	1.4	93.7	6.3	
25-27	14.050	123	91.1	8.9	0.0	92.9	7.1	
29-31	14.353	169	88.8	11.2	0.0	83.3	11.3	
33-35	14.655	213	92.5	7.0	0.5	96.4	3.6	
37-39	15.003	154	92.2	7.1	0.6	97.9	2.1	
41-43	15.485	139	84.2	13.7	2.2	98.3	1.7	
45-47	15.862	189	76.2	23.3	0.5	97.2	2.8	
53-55	17.087	217	53.5	46.5	0.0	92.2	7.8	
57-59	18.002	354	36.4	62.1	1.4	94.6	5.4	
61-63	18.918	233	70.0	29.2	0.9	90.2	9.8	
77-79	22.391	224	84.8	14.3	0.9	94.7	5.3	
Avg		199	79.9	19.3	0.8	94.4	5.3	
SD (10)		54	16.5	16.2	0.9	3.7	2.7	

(B)

(A)

					SEM (purif	ied)	
SO202-27-6 Depth (cm)	Age (ka BP)	total counts	diatoms (%)	radiolarians (%)	sponge spicules (%)	non-biogenic silicate contamination (%)	not identified (%)
1-3	7.029	423	96.5	3.3	0	0.2) O
5-6	8.458	391	96.4	3.1	0	0.3	0.3
9-11	9.888	496	97.8	1.6	0.2	0.4	0
13-15	11.144	394	97.5	0.5	1.0	1.0	0
17-19	12.113	509	97.2	2.6	0	0.2	0
21-23	13.081	337	91.4	8.0	0	0.6	0
25-27	14.050	249	96.4	3.2	0	0.4	0
29-31	14.353	289	88.2	10.0	0.7	0.3	0.7
33-35	14.655	242	95.9	3.3	0	0.8	0
37-39	15.003	344	90.7	6.1	0	3.2	0
41-43	15.485	322	99.1	0.6	0	0.3	0
45-47	15.862	326	92.0	6.7	0.6	0.6	0
53-55	17.087	269	91.8	5.2	0	2.6	0.4
57-59	18.002	281	91.8	6.8	0	1.4	0
61-63	18.918	349	90.0	9.2	0	0.6	0.3
. 77-79	22.391	233	95.7	3.9	0	0.4	0
Avg		341	94.3	4.6	0.2	0.8	0.1
SD (1σ)		84	3.3	2.9	0.3	0.9	0.2

Table S4. Measured $\delta^{18}O_{diat}$ and $\delta^{30}Si_{diat}$ values of Cores **(A)** SO202-27-6 and **(B)** MD01-2416 including standard deviations (SD, 1 σ) and number of isotopic measurements (n).

(A)							
		S	O202-27-6				
	Age	δ³⁰Si _{diat}	SD ð ³⁰Si _{diat}		δ ¹⁸ Ο _{diat}	SD δ ¹⁸ O _{diat}	
Depth (cm)	(ka BP)	(‰)	(1 σ ; ‰)	n	(‰)	(1 σ ; ‰)	n
1-3	7.029	1.52	0.50	3	40.39	0.17	3
5-7	8.458	2.01	0.06	2	39.97	0.08	2
9-11	9.888	2.02	0.13	3	39.78	0.05	2
13-15	11.144	1.63	0.02	2	41.51	0.03	2
17-19	12.113	1.59	0.01	2	43.22	0.06	2
21-23	13.081	1.40	0.10	2	43.69	0.18	3
25-27	14.050	1.53	0.35	3	43.64	0.04	3
29-31	14.353	1.45	0.08	3	43.81	0.38	3
33-35	14.655	1.42	0.08	2	43.43	0.21	2
37-39	15.003	1.67	0.08	2	43.13	0.06	3
41-43	15.485	1.65	0.12	3	42.84	0.04	2
45-47	15.862	2.04	-	1	41.12	-	1
53-55	17.087	1.16	-	1	42.52	-	1
57-59	18.002	1.23	-	1	43.17	-	1
61-63	18.918	1.54	-	1	43.01	-	1
77-79	22.391	1.63	0.13	2	42.91	0.22	2

(B)

		MC	01-2416				
	Age		SD ð ³⁰ Si _{diat}			SD δ ¹⁸ O _{diat}	
Depth (cm)	(ka BP)	δ ³⁰ Si _{diat} (‰)	(1 σ ; ‰)	n	δ ¹⁸ Ο _{diat} (‰)	(1 σ ; ‰)	n
4-8*	6.292	1.19	0.01	2	42.31	0.29	2
12-16*	6.920	1.37	0.11	4	42.48	0.10	3
22-26*	7.454	1.31	0.06	2	42.57	0.20	2
32-36*	7.925	1.30	0.04	2	42.60	0.09	2
38-40	8.161	1.35	0.15	2	42.76	0.05	2
42-46	9.241	1.38	0.14	3	42.64	0.13	4
48-50	10.322	1.22	-	1	43.21	-	1
52-56*	10.995	1.30	0.04	3	43.10	0.08	2
62-66*	11.796	1.38	0.01	2	43.10	0.04	2
68-70	12.197	1.54	0.52	2	43.88	0.25	2
72-76*	12.638	1.46	0.01	3	43.68	0.13	2
78-80	12.999	1.10	-	1	43.99	-	1
82-86*	13.400	1.32	0.02	5	43.70	0.07	3
92-96*	13.849	1.34	0.01	2	43.64	0.05	2
102-106	14.125	1.29	0.02	3	43.84	0.35	3

*isotope data from Maier et al. [2013]

(A)					(B)			(C)		
Depth (cm)	Age (ka BP)	δ ¹⁸ Ο (‰) Nps	δ ¹³ C (‰) Nps	Size fraction (µm)	Depth (cm)	Age (ka BP)	SiO2 (Gew%)	Depth (cm)	Age (ka BP)	Opal MAR (g/(cm2*ka))
0-1	6.493	2.385	0.598	125-250	0-1	6.493	12	0-1	6.493	24
4-5	7.922	2.582	0.466	125-250	3-4	7.386	10	10-11	9.888	17
8-9	9.352	2.603	0.580	125-250	7-8	8.816	10	20-21	12.597	29
12-13	10.781	2.553	0.417	125-250	10-11	9.888	7	30-31	14.353	96
16-17	11.750	2.873	0.407	125-250	11-12	10.245	7	40-41	15.297	55
20-21	12.718	3.127	0.232	125-250	15-17	11.386	6	50-51	16.283	27
24-25	13.687	3.175	0.235	125-250	19-20	12.355	8	60-61	18.460	16
28-29	14.239	3.22	0.201	125-250	20-21	12.597	10	70-71	20.749	20
32-33	14.542	3.378	0.126	125-250	23-24	13.324	9	80-81	22.781	28
36-37	14.844	3.657	0.103	125-250	27-28	14.126	8			
40-41	15.344	3.748	0.173	>400	30-31	14.353	18			
44-45	15.721	3.962	0.015	125-250	31-32	14.428	11			
48-49	16.108	4.015	0.028	125-250	35-36	14.731	6			
52-53	16.743	3.928	0.025	125-250	39-40	15.168	6			
56-57	17.659	3.910	0.035	125-250	40-41	15.297	7			
60-61	18.574	3.796	0.073	125-250	43-44	15.579	4			
64-65	19.490	3.901	0.088	125-250	47-48	15.956	4			
68-69	20.405	3.765	0.072	125-250	50-51	16.283	4			
72-73	21.321	3.732	0.014	125-250	51-52	16.400	5			
76-77	22.100	3.751	0.127	125-250	55-56	17.316	7			
80-81	22.878	3.725	0.162	315-400	59-60	18.231	4			
84-85	23.657	3.814	-0.052	315-400	60-61	18.460	6			
88-89	24.435	3.847	0.178	125-250	63-64	19.147	6			
					67-68	20.062	5			
					70-71	20.749	7			
					71-72	20.978	6			
					75-76	21.808	6			
					79-80	22.586	6			
					80-81	22.781	7			
					83-84	23.365	4			
					87-88	24.143	4			

Table S5. Proxy data of Core SO₂₀₂₋₂₇-6. (A) $\delta^{18}O_{Nps}$ and $\delta^{13}C_{Nps}$ values; (B) biogenic opal content; (C) opal mass accumulation rates; (D) XRF intensities (Fe, Ca and Si/Ti ratios).

Table S5. (continued).

_(D)

			XRF					XRF	
Depth	Age			Si/Ti	Depth	Age			Si/Ti
(cm)	(ka BP)	Fe (cps)	Ca (cps)	(cps/cps)	(cm)	(ka BP)	Fe (cps)	Ca (cps)	(cps/cps)
1	6.672	104731	149744	1.98	51	16.400	149985	54060	2.36
2	7.029	107781	160505	2.25	52	16.629	155679	50490	2.28
3	7.386	107482	179962	2.45	53	16.858	171213	68159	2.45
4	7.744	104935	176828	2.31	54	17.087	154331	84726	2.64
5	8.101	106917	179897	2.43	55	17.316	130295	117858	2.94
6	8.458	105477	175967	2.32	56	17.544	123394	129278	3.06
7	8.816	104681	182799	2.34	57	17.773	124008	135124	3.19
8	9.173	98047	196291	2.18	58	18.002	121637	144686	3.04
9	9.530	97919	210582	2.18	59	18.231	114262	171946	3.17
10	9.888	100662	217745	2.12	60	18.460	116713	156529	3.17
11	10.245	103885	246838	2.18	61	18.689	127889	135680	3.06
12	10.602	102377	252492	2.05	62	18.918	127186	150658	3.08
13	10.902	107716	232884	1.90	63	19.147	114478	154913	3.12
14	11.144	82325	343187	2.73	64	19.375	118410	140561	2.99
15	11.386	97089	320880	2.59	65	19.604	115297	139094	2.88
16	11.629	71635	387743	3.29	66	19.833	124342	123026	2.76
17	11.871	72541	357148	3.09	67	20.062	126747	119028	2.97
18	12.113	63956	374529	3.23	68	20.291	124397	117498	2.93
19	12.355	68222	356364	3.35	69	20.520	128784	112986	2.82
20	12.597	66090	346450	3.29	70	20.749	127896	100113	2.71
21	12.839	59680	343759	3.62	71	20.978	129637	85915	2.47
22	13.081	69718	305852	3.01	72	21.207	108213	61259	2.25
23	13.324	62497	315354	3.50	73	21.418	118033	79309	2.67
24	13.566	58495	293276	3.48	74	21.613	125646	116630	2.86
25	13.808	56738	231679	3.71	75	21.808	127287	95137	2.60
26	14.050	60406	227146	3.53	76	22.002	122967	104003	2.58
27	14.126	62807	248132	3.78	77	22.197	125011	115549	2.70
28	14.201	66717	241181	4.27	78	22.391	117437	118272	2.88
29	14.277	68098	236726	4.40	79	22.586	109135	114328	2.90
30	14.353	66648	225043	4.63					
31	14.428	63177	208682	4.32					
32	14.504	67946	236835	4.01					
33	14.580	69595	233724	4.18					
34	14.655	75936	201380	4.16					
35	14.731	72998	215420	3.65					
36	14.807	76566	211101	3.40					
37	14.882	103203	165404	3.04					
38	15.003	112819	157739	3.02					
39	15.168	102409	181839	3.17					
40	15.297	103859	180319	3.06					
41	15.391	105162	180983	3.12					
42	15.485	119696	148001	3.00					
43	15.579	119816	93156	2.73					
44	15.674	140755	84299	2.52					
45	15.768	133905	92525	2.65					
46	15.862	144245	81589	2.56					
47	15.956	154566	69765	2.43					
48	16.050	158619	52041	2.31					
49	16.167	152824	48904	2.39					
50	16.283	151868	54213	2.50					

References Supporting Information

Bevington, P. R., and D. K. Robinson (2003), Data Reduction and Error Analysis for Physical Sciences, 3rd edition, McGraw-Hill, New York.

Chapligin, B., H. Meyer, H. Friedrichsen, A. Marent, E. Sohns, and H.-W. Hubberten (2010), A highperformance, safer and semi-automated approach for the δ^{18} O analysis of diatom silica and new methods for removing exchangeable oxygen, *Rapid Communications in Mass Spectrometry*, 24, 2655-2664.

De la Rocha, C. L., M. A. Brzezinski, and M. J. DeNiro (1997), Fractionation of silicon isotopes by marine diatoms during biogenic silica formation, *Geochimica et Cosmochimica Acta*, *61*, 5051-5056.

Galbraith, E. D., S. L. Jaccard, T. F. Pedersen, D. M. Sigman, G. H. Haug, M. Cook, J. R. Southon, and R. Francois (2007), Carbon dioxide release from the North Pacific abyss during the last deglaciation, *Nature*, 449, 890-894.

Gebhardt, H., M. Sarnthein, P. M. Grootes, T. Kiefer, H. Kuehn, F. Schmieder, and U. Röhl (2008), Paleonutrient and productivity records from the subarctic North Pacific for Pleistocene glacial terminations I to V, *Paleoceanography*, *23*, PA4212.

Keigwin, L. D. (1987), North Pacific deep water formation during the last glaciation, *Nature, 330*, 362-364.

Keigwin, L. D., G. A. Jones, and P. N. Froelich (1992), A 15,000 year paleoenvironmental record from Meiji Seamount, far northwestern Pacific, *Earth and Planetary Science Letters*, 111, 425-440.

Kienast S.S., and J. L. McKay (2001), Sea Surface Temperatures in the subarctic Northeast Pacific reflect millennial-scale Climate Oscillations during the last 16 kyrs, *Geophysical Research Letters*, 28, 1563-1566.

Kovanen, D. J., and D. J. Easterbrook (2002), Paleodeviations of radiocarbon marine reservoir values for the northeast Pacific, *Geology*, *30*, 243-246.

Juillet-Leclerc, A., and L. Labeyrie (1987), Temperature dependance of the oxygen isotopic fractionation between diatom silica and water, *Earth and Planetary Science Letters*, *8*4, 69-74.

Lopes, C., and A. C. Mix (2009), Pleistocene megafloods in the northeast Pacific, *Geology*, 37, 79-82.

Lund, D. C., A. C. Mix, and J. Southon (2011), Increased ventilation age of the deep northeast Pacific Ocean during the last deglaciation, *Nature Geoscience*, 4, 771-774.

Maier, E., B. Chapligin, A. Abelmann, R. Gersonde, O. Esper, J. Ren, H. Friedrichsen, H. Meyer, and R. Tiedemann (2013), Combined oxygen and silicon isotope analysis of diatom silica from a deglacial subarctic Pacific record, *Journal of Quaternary Science*, *28*, 571-581.

Milligan, A. J., D. E. Varela, M. A. Brzezinski, and F. M. M. Morel (2004), Dynamics of silicon metabolism and silicon isotopic discrimination in a marine diatom as a function of pCO_2 , *Limnology and Oceanography*, 49, 322-329.

Reimer, P. J., E. Bard, A. Bayliss, J. W. Beck, P. G. Blackwell, C. Bronk Ramsey, C. E. Buck, H. Cheng, R. L. Lawrence, M. Friedrich, P. M. Grootes, T. P. Guilderson, H. Haflidason, I. Hajdas, C. Hatté, T. J.

Heaton, D. L. Hoffman, A. G. Hogg, K. A. Hughen, K. F. Kaiser, B. Kromer, S. W. Manning, M. Niu, R. W. Reimer, D. A. Richards, E. M. Scott, J. R. Southon, R. A. Staff, C. S. M. Turney, and J. van der Pflicht (2013), INTCAL13 and MARINE13 radiocarbon age calibration curves o-50,000 years cal BP, *Radiocarbon*, 55, 1869-1887.

Sabin, A. L., and N. G. Pisias (1996), Sea Surface Temperature Changes in the Northeastern Pacific Ocean during the Past 20,000 Years and Their Relationship to Climate Change in Northwestern North America, *Quaternary Research*, *46*, 48-61.

Sarnthein, M., S. Balmer, P. M. Grootes and M. Muddelsee (2015), Planktic and benthic ¹⁴C reservoir ages for three ocean basins calibrated by a suite of ¹⁴C plateaus in the glacial-to-deglacial Suigetsu atmospheric ¹⁴C record, *Radiocarbon*, *57*, 129-151.

Sarnthein, M., P. M. Grootes, J. P. Kennett, and M.-J. Nadeau (2007), ¹⁴C Reservoir Ages Show Deglacial Changes in Ocean Currents and Carbon Cycle, *Geophysical Monograph Series*, 173, 175-196.

Sarnthein, M., H. Gebhardt, T. Kiefer, M. Kucera, M. Cook, and H. Erlenkeuser (2004), Mid Holocene origin of the sea-surface salinity low in the subarctic North Pacific, *Quaternary Science Reviews*, 23, 2089-2099.

Stuiver, M., and P. J. Reimer (1993), Extended ¹⁴C data base and revised CALIB 3.0 ¹⁴C age calibration program, *Radiocarbon*, 35, 215-230.

Sun, X., M. Olofsson, P.S. Andersson, B. Fry, C. Legrand, C. Humborg and C.-M. Mörth (2014), Effects of growth and dissolution on the fractionation of silicon isotopes by estuarine diatoms, *Geochimica et Cosmochimica Acta*, 130, 156-166.

Sutton, J. N., D. E. Varela, M. A. Brzezinski, C. P. Beucher (2013), Species-dependent silicon isotope fractionation by marine diatoms, *Geochimica et Cosmochimica Acta*, 104, 300-309.

Waelbroeck, C., L. Labeyrie, E. Michel, J. C. Duplessy, J. F. McManus, K. Lambeck, E. Balbon, and M. Labracherie (2002), Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records, *Quaternary Science Reviews*, *21*, 295-305.