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ABSTRACT
Robust regional seismic-hazard assessments require millennial-

scale paleoseismic histories that extend far beyond the range of his-
torical and instrumental data. However, it is difficult to resolve the 
probability density functions for earthquake recurrence from the lim-
ited number of major to great earthquakes most paleoseismic records 
contain. Lake sediment records are repositories of information about 
paleoearthquake recurrence, with a sensitivity and fidelity over mil-
lennial time scales that suggest that they have the potential to yield 
reliable estimates of the recurrence distribution. We present a 7000 
yr paleoseismic record from Lake Tutira (North Island, New Zea-
land) that ranks among the most detailed Holocene paleoearthquake 
chronologies available worldwide, and use it to empirically constrain 
the recurrence distribution of earthquakes with a minimum ground-
shaking intensity of MMI 7 in one of New Zealand’s most seismically 
active areas. Our analysis confirms that a Poisson process describes 
the waiting times of single moderate to major and/or great paleoearth-
quakes in the Hawke’s Bay region.

INTRODUCTION
In New Zealand, as elsewhere, seismic hazard analysis typically 

is performed by assuming time-independent (Poisson) earthquake pro-
cesses (Stirling et al., 2012), even though paleoseismic investigations of 
great (moment magnitude [Mw] ≥ 8] earthquakes that dominate the low-
frequency seismic hazard often reveal a repeating pattern (Berryman et 
al., 2012). However, the high-frequency hazard in active tectonic settings 
originates from a large variety of different seismic sources that generate 
smaller-magnitude, moderate (Mw ≥ 5) earthquakes, which are beyond the 
resolution afforded by most paleoseismic archives. Thus, there is debate 
about how best to validate seismic hazard analysis results over millennial 
time scales (Kulkarni et al., 2013; Baker et al., 2013).

Lake sediments can function as natural seismographs and are a recep-
tive but largely unexplored repository of regional-scale information about 
earthquake ground motions (Strasser et al., 2013, and references therein; 
Moernaut et al., 2014). We use a new high-resolution paleoseismic archive 
from Lake Tutira to constrain the recurrence distribution of earthquakes in 
North Island, New Zealand’s Hawke’s Bay region with a ground-shaking 
intensity of Modified Mercalli Intensity (MMI) ≥ 7. Here the seismic haz-
ard is well illustrated by the deadly A.D. 1931, Mw 7.8 (MMI 9) Napier 
earthquake, and the moderate 2008, Mw 5.9 (MMI 7) earthquake that 
caused >NZ$2 million damage to insured residential households.

LAKE TUTIRA PALEOSEISMIC ARCHIVE
Located in central Hawke’s Bay, Lake Tutira lies 30 km above the 

subduction interface, 160 km landward of Hikurangi Trough (Fig. 1). Its 
bathymetry preserves the former stream-cut valley morphology of steep-
sided, interlocking spurs descending to a narrow, sinuous floor (Orpin et 
al., 2010), and cores extracted from the 1.8 km2 lake have yielded high-
resolution disturbance and storm histories (Page and Trustrum, 1997; Page 
et al., 2010). Collected in 2003, in 37.4 m of water, core LT24 contains 

the most complete sediment record, comprising a 27.14 m sequence of 
interlayered airfall tephras, autochthonous organic-rich muds, well-graded 
sandy muds and thin clay layers, and massive to weakly graded silty clays 
(Orpin et al., 2010). The sandy mud and clay layers are interpreted as 
storm deposits (Page et al., 2010). A sharp basal contact, dispersed car-
bonaceous debris, faint laminations, and weak fining-up grading in the 
silty clay units are indicative of their emplacement by sediment mass 
flows. Analogous seismically induced mass-transport deposits that fill 
topographic lows in small, confined subaqueous basins have been termed 
homogenites (Sturm et al., 1995).
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Figure 1. Tectonic setting of Lake Tutira (LT; North Island, New Zea-
land) and continental slope (MD) core sites, denoted by crosses (af-
ter Mountjoy and Barnes, 2011; Wallace et al., 2009). NIDFB—North 
Island dextral fault belt. Gray lines are active faults; numbered gray 
contours are modeled depth to plate interface; open and solid cir-
cles are epicenters of A.D. 1921 and 1931 earthquakes. Ellipses de-
limit area affected by ground shaking of Modified Mercalli Intensity 
> 7 caused by an Mw 8.3 earthquake on a fault in the plate boundary 
(H; indicated by bold, dashed line), and Mw 7.9 and 7.3 earthquakes 
on Lachlan (L; bold black line) and Whakatane (W; bold black line) 
faults, respectively (after Litchfield et al., 2009). Subduction interface 
source is projected to surface from 5 km depth, whereas other faults 
are mapped surface positions. Dashed gray square delimits search 
area, centered on Lake Tutira, used to extract data from New Zealand 
earthquake catalogue (quakesearch.geonet.org.nz/).
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Two homogenite lithotypes are differentiated in core LT24 (see the 
GSA Data Repository1) on the basis of their diatom diversity and dissemi-
nated organic content (Orpin et al., 2010). The first lithotype incorporates 
aerophilic diatoms and little organic matter (carbon content <2%). These 
features are indicative of sediment conveyed more or less directly from ter-
restrial sources to the lake depocenter, and this allochthonous homogenite 
lithotype is presumed to have originated from weakly turbulent gravity-
driven flows initiated around the lake margin by large rainstorms. Along 
with terrigenous material, organic-rich muds also accumulate on the steep 
slopes surrounding the core site at a lower ambient rate. Consistent with 
this lacustrine source, the second homogenite lithotype has a diatom flora 
dominated by autochthonous planktic and tychoplanktic species and a 
higher (3%–4%) carbon content.

Storms and earthquakes both have the potential to remobilize lake-
margin sediments (Orpin et al., 2010), and we reinterrogated the LT24 sed-
iment record with the object of disassociating, on the basis of their juxtapo-
sition with storm deposits, autochthonous homogenites provoked by large 
rainstorms from those generated by earthquakes. Seventeen autochthonous 
homogenites immediately overlie thick storm deposits and are presumed 
to have been created when terrigenous inputs overloaded the lake margin. 
We tested the efficacy of our separation using Spearman’s rank-order cor-
relation, which measures the strength of association between two variables 
(Borradaile, 2003). For the shortest congruent time frame, the correlation 
coefficient (P > 0.05) reveals no significant relation between the 200 yr 
bin frequencies with which storm deposits and the remaining 2–492-mm-
thick, autochthonous homogenites occur in the sediment record. Thus, we 
infer that earthquakes generated these 119 homogenites.

Our linear age-depth model relies on 17 dated depths and is based on 
the rate at which autochthonous organic-rich mud accumulates between 
the event lithotypes (see the Data Repository). Confidence ranges (95%) 
for the age estimates of the earthquake-triggered homogenites are between 
±2 yr and ±210 yr. We find earthquake-triggered homogenites in core 
LT24 that correlate (±1 yr) with the shallow 1931 Mw 7.8 (MMI 9) and 
deep 1921 Mw 6.6 (MMI 7) Hawke’s Bay earthquakes, and which occur 
within ±3–38 yr of ten major and/or great earthquakes recognized in the 
terrestrial paleoseismic record (Fig. 2). However, these 12 events collec-
tively account for only 10% of the earthquakes that we infer Lake Tutira 
recorded during the past 7000 yr (see the Data Repository).

Global and New Zealand studies have shown that landslide size 
scales with MMI (Keefer, 1984; Hancox et al., 2002). Ground shak-
ing ≥MMI 7 is thought to represent the lower limit of intensity likely 
to cause subaqueous landslides (Keefer, 1984), and >120-mm-thick 
homogenites are attributed to the 1921 and 1931 Hawke’s Bay earth-
quakes (Fig. 2). To illustrate the influence different earthquake sources 
have on Lake Tutira, we refer to the MMI 7 contour for the simulated 
events on three active east-coast faults (Fig. 1), estimated from the 
National Seismic Hazard Model (NSHM) for New Zealand (Litchfield 
et al., 2009). The modeled events represent an Mw 8.3 earthquake on 
the Hawke’s Bay segment of the Hikurangi subduction interface; an Mw 
7.9 earthquake on the northern section of the Lachlan fault; and an Mw 
7.3 earthquake on the southern segment of the Whakatane fault. These 
reference points suggest that major and great earthquakes on the subduc-
tion interface, offshore thrust faults, and strike-slip faults in the North 
Island dextral fault belt all potentially have the ability to produce the 
MMI ≥ 7 required to remobilize lake-margin sediments in Lake Tutira. 
This knowledge permits us to broaden the perspective that comparison 
with the terrestrial paleoseismic records afford. We do this by consider-
ing the evidence for Holocene earthquakes provided by a contiguous 

marine turbidite paleoseismic record from the adjacent continental slope 
(Pouderoux et al., 2012).

Core MD06-3003 was collected in 2006 from the 1400-m-deep 
Paritu Trough, which lies 5 km above the subduction interface, 20 km 
inboard of Hikurangi Trough (Fig. 1). Here the sedimentary record reg-
isters the effect of major earthquakes on at least seven offshore active 
faults (Pouderoux et al., 2014), and during the past 7000 yr, Mw > 6.5 
earthquakes (MMI ≥ 8) triggered failures on the continental slope that 
generated 25, 20–360-mm-thick, fine-grained turbidites. We use the Kol-
mogorov-Smirnov (K-S) test, which is sensitive to differences between 
the frequency distributions of two (unequally sized) samples (Borradaile, 
2003), to compare the cumulative time distributions of the earthquake-
triggered turbidites in core MD06-3003 and the 119 homogenites in core 
LT24 (Fig. 2). We accept the null hypothesis (P = 1.0; D = 0.0356) that the 
data are drawn from the same population and, on this basis, we infer that 
the association between the two classes of observation arises because both 
types of sediment mass flows were initiated by earthquakes. Nonetheless, 
there are nearly five times more earthquake-triggered homogenites in 
LT24 than turbidites in MD06-3003 (see the Data Repository).

Sedimentation rates govern subaqueous slope stability (Strasser et al., 
2007), and the average accumulation rate on the continental slope (0.6 mm 
yr–1) is much lower than in Lake Tutira (≥2 mm yr–1) (Orpin et al., 2010; 
Pouderoux et al., 2012). For this reason, more time is required to load 
the continental slope with sediment prior to failure. Both the magnitude 
and focal depth of earthquakes relative to the point of interest also influ-
ence the threshold of sediment mass flows (Keefer, 1984), and MMIs an 
order of magnitude higher than that ordinarily required to trigger subaque-
ous landslides are thought to have initiated the slope failures that created 
the mid-slope basin turbidite record (Pouderoux et al., 2014). Thus, we 
construe that the richness of the Lake Tutira paleoseismic record results 
from: (1) the faster rate at which the lake-margin sediments accumulated, 
and (2) the heightened sensitivity that the lacustrine environment has to 
ground shaking near the threshold (MMI 7) for subaqueous landsliding 
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Figure 2. Dimensionless (measured / aggregate mean [69.5 mm]) 
earthquake-triggered homogenite thickness in core LT24, and cumu-
lative time distributions of paleoseismic events that cores LT24 (bold 
black line, N = 119) and MD06-3003 (bold gray line, N = 25) record. 
Open circles denote uncorrelated homogenites; solid and shaded 
circles denote homogenites thought to be associated with prehis-
toric earthquakes on subduction thrust and Lachlan fault; error bars 
are uncertainties in estimates of radiocarbon ages for prehistoric 
earthquakes in terrestrial paleoseismic record (N.J. Litchfield, 2014, 
personal commun.); shaded square is homogenite correlated with 
the A.D. 1931 earthquake (which conceals symbol for the 1921 earth-
quake). MMI—Modified Mercalli Intensity.

1GSA Data Repository item 2015042, stratigraphic column, age model, 
and paleoearthquake chronology, is available online at www.geosociety.org/pubs​
/ft2015.htm, or on request from editing@geosociety.org or Documents Secretary, 
GSA, P.O. Box 9140, Boulder, CO 80301, USA.
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caused by more frequent, moderate earthquakes and deeper (focal depth 
>30 km) earthquakes that occur further away from Hikurangi Trough, 
down the dip of the subduction zone.

PALEOEARTHQUAKE RECURRENCE TIME AND 
DISTRIBUTION

Within the ~90 km2 NSHM grid cell surrounding Lake Tutira, we 
find that moderate (Mw ≥ 5.0) earthquakes are predicted to cause ground 
shaking of MMI 7 every 39 yr. The paleoseismic events that core LT24 
records have an average recurrence time of 57 yr. Although the load gener-
ated by seismic acceleration causes a submerged slope to fail, we expect 
ground shaking to trigger lacustrine landslides less frequently than the 
NSHM predicts. This is because subaqueous slope stability and homogen-
ite formation is governed by the rate at which the lake margin is recharged 
with sediment in the time between successive mass flows (cf. Orpin et al., 
2010, their figure 8). These factors also determine the volume of material 
available for remobilization. For this reason, as the variable dimension-
less thickness (2.7 ± 1.4) of homogenites which we believe correlate with 
major and/or great subduction thrust earthquakes suggests (Fig. 2), there is 
no simple correspondence between earthquake magnitude and homogen-
ite thickness. Nonetheless, the Lake Tutira paleoseismic record contains 
sufficient empirical information to generate a probability density function 
on recurrence.

Recurrence is described by the waiting time, W, defined as the time 
interval between subsequent events. To obtain the waiting-time density, 
D(W), which is the probability that the waiting time takes values in a nar-
row bin around W, divided by the size of the bin, we use the well-estab-
lished method of counting waiting times over logarithmically scaled bins 
(Corral, 2006; Deluca and Corral, 2013). The bins increase exponentially 
in size, but appear to be of uniform width when plotted on a logarithmic 
scale. Incorporating the mean value, W, yields the dimensionless waiting 
time, W/W, and dimensionless probability density, W·D(W), and allows 
us to directly compare the shape of differently scaled probability densi-
ties in logarithmic space by collapsing the data onto a single curve. Fig-
ure 3 shows the waiting times of the 119 paleoseismic events that Lake 
Tutira records, and the K-S test confirms (P = 0.77; D = 0.0525) the visual 
impression that they follow an exponential distribution. For comparison, 
we show the distribution of the waiting times of 1102 Mw > 4 earthquakes 
that occurred between 1 January 2000 and 31 August 2012 (quakesearch​
.geonet.org.nz/) within and adjacent to the section of the subduction 
margin characterized by frequent, moderate earthquakes (Wallace et al., 
2009). The same exponential (Poisson) behavior (P = 0.81; D = 0.0299) is 
observed in the instrumental record at W/W > 0.03 (Fig. 3).

DISCUSSION AND CONCLUSION
Consistent with a Poisson process, we expect the waiting-time distri-

bution for a sequence of events that occur randomly and independently of 
one another to exhibit an exponential distribution. The implication is that 
moderate to great earthquakes in the Hawke’s Bay region do not influ-
ence each other, so that in each instant of time there is a fixed probability 
of an earthquake occurring. They constitute a palimpsest of tectonically 
and mechanically driven events that contrast with the more or less regu-
lar occurrence of large characteristic earthquakes (Wallace et al., 2009). 
Nonetheless, moderate to major earthquakes on the Hikurangi margin 
are known to trigger smaller-magnitude aftershock sequences (Doser and 
Webb, 2003). Thus, the underlying Poisson process should have an excess 
of short waiting times superimposed on it that, according to Omori’s Law 
for aftershocks, follow a power-law distribution (Touati et al., 2011). If the 
Omori sequences are well separated, the short waiting times represent the 
times between aftershocks. However, our age-depth model cannot resolve 
intra-annual waiting times. Lake Tutira likely also censors the small and 
moderate-sized aftershocks which have short waiting times, whereas the 
instrumental record does not. This is because time is required to recharge 

the lake margin with sediment after each mass flow, and a minimum 
ground shaking intensity ≥ MMI 7 is required to trigger subaqueous land-
slides. Consequently, we see power-law scaling in the instrumental record 
at small temporal scales (W/W < 0.03), which goes unrecorded in the lake 
sediment record (Fig. 3). Nonetheless, concurrence between the Lake 
Tutira paleoseismic and instrumental records at larger temporal scales 
(W/W > 0.03) leads us to conclude that, as is typically expected at the 
regional scale (Stirling et al., 2012), a Poisson random process of indepen-
dent and uncorrelated events should be used to describe the characteristics 
of earthquakes generated by the large number of potential subduction zone 
and crustal sources in the Hawke’s Bay region.

Searches for long paleoearthquake records are motivated by the 
desire to better characterize earthquake recurrence. In the marine realm, 
which has yielded some of the longest and most complete Holocene pale-
oseismic records (Kulkarni et al., 2013), major earthquakes are thought to 
trigger large-volume turbidites in low-gradient, deep-sea basins, because 
their recurrence intervals also approximate a Poisson distribution (Clare 
et al., 2014). However, the ubiquitous occurrence of lakes in all active 
tectonic settings, and the sensitivity and fidelity of lake sediment records 
over millennial time scales, point to the potential lacustrine earthquake 
chronologies have for directly validating terrestrial seismic hazard analy-
sis results. Crucially, this is because, as we demonstrate, in addition to pro-
viding a record of the exceedance of a particular level of ground shaking, 
a lacustrine mass-movement event stratigraphy can also contain enough 
information about moderate earthquakes to exploit exactly the same meth-
odology used to analyze instrumental earthquake records and empirically 
represent the short-period hazard.
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