Seep-carbonate lamination controlled by cyclic particle flux

Tobias Himmler^{1,2,*}, Germain Bayon², David Wangner^{1,3}, Frieder Enzmann⁴, Jörn Peckmann^{5,6} &

Gerhard Bohrmann¹

¹MARUM – Center for Marine and Environmental Sciences and Department of Geosciences, University of Bremen, 28334 Bremen, Germany
 ²IFREMER, Marine Geosciences Research Unit, Centre Bretagne, 29280 Plouzané, France
 ³ Geological Survey of Denmark and Greenland, DK-1350 Copenhagen K, Denmark
 ⁴Institute of Geosciences, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
 ⁵Institute of Geology, University of Hamburg, 20146 Hamburg, Germany
 ⁶Department for Geodynamics and Sedimentology, University of Vienna, 1090 Vienna, Austria

*Corresponding author (thimmler[at]uni-bremen.de)

Content

I. <u>Supplementary figures</u>

II. Supplementary tables

III. <u>SEM-EDX spectrum</u>

I. <u>Supplementary figures</u>

Figure S1: Optical (a, b) and scanning electron microscope images of laminae surfaces (see Supplementary Fig. 3 for sample locations).

(a), Fibrous aragonite (Ara) cement partly covered with remains of a brownish biofilm; note connections between biofilm patches (arrows; reflected light; sample He-6-11). (b), Thinsection micrograph displaying biofilm remains (arrows) bridging resin impregnated (R) pore space between clotted and fibrous aragonite (Cfa) aggregates (plane-polarized light). (c), Biofilm with abundant coccoliths covering fibrous aragonite crystals (Ara; sample He-6-10); white rectangle corresponds to area shown in (f). (d), Laminae surface (sample He-11-3) with coccolith assemblage of *Umbilicosphaera sibogae* (U), *Gephyrocapsa oceanica* (G), and *Calcidiscus leptoporus* (C). (e), Planktonic formanifera (P) tests embedded in fibrous aragonite (Ara; sample He-11-6). (f), Magnification of laminae surface shown in (c), highlighting abundant coccoliths (*U. sibogae*, *G. oceanic*, *C. leptoporus*, and *Emiliania huxleyi* (E)). (g), Calcareous dinoflaggelate *Thoracosphaera heimii* (?) (T), coccoliths of *Florisphaera profunda* (F), and a quartz grain (Q; relatively high Si and O counts during energy dispersive X-ray analyses; see below; sample He-6-13). (h), Assemblage of *U. sibogae*, *G. oceanica*, and the holococcoliths *Syracosphaera pulchra* (S), and *Calyptrolithophora papillifera* (P; sample He-11-2).

Figure S2: Porosity measurements and computer tomography (CT).

(a), Line plot of CT-based porosity measurements overlying a 3D model of the build-up; pore space is developed best in the central portion and shown in purple; note, carbonate material is not displayed; yellow represent the inside surface and green the exterior surface. (b), 2D tomogram highlighting the fine carbonate laminae shown in orange and the pore space (black).

Supplementary Information Himmler et al.

Figure S3: Locations of U–Th and SEM samples.

White ovals indicate locations of subsamples (1 to 7) used for U–Th isochron age calculations; respective ages are shown in white boxes (see Table 1 for details); black rectangles highlight SEM samples shown in Supplementary Fig. S1; respective sample labels are shown in grey boxes (He-6-10, He-6-11, He-6-13, He-11-2, He-11-3, and He-11-6).

II. <u>Supplementary tables</u>

Table S1: Carbon and oxygen stable isotope compositions.

 δ^{13} C = [((¹³C/¹²C)_{sample}/(¹³C/¹²C)_{standard})-1]*1,000; δ^{18} O = [((¹⁸O/¹⁶O)_{sample}/(¹⁸O/¹⁶O)_{standard})-1] *1,000; for sample location see Fig. 2a in the main text; A.V. = average value; S.D. = standard deviation. The δ^{18} O_{fluid} is given in per mil vs. Standard Mean Ocean Water (SMOW) and was calculated after Han et al. (2004): δ^{18} O_{fluid} (SMOW) = δ^{18} O_{aragonite} (VPDB)-((19.7-T)/4.34)), with temperature T = 10.65 °C (measured bottom water temperature during sampling; see ref. 15).

Sample	$\delta^{13}C_{carbonate}$ (VPDB)	$\delta^{18}O_{carbonate}$ (VPDB)	$\delta^{18}O_{fluid}$ (SMOW)
1	-41.3	1.8	-0.30
2	-50.4	2.2	0.14
3	-51.6	2.2	0.10
4	-55.1	2.4	0.31
5	-46.1	1.9	-0.16
6	-52.0	2.1	0.04
7	-51.7	2.4	0.31
8	-54.8	2.3	0.18
9	-49.3	2.3	0.17
10	-54.6	2.2	0.08
A.V. \pm S.D.	-50.7 ± 4.1	2.2 ± 0.2	0.09 ± 0.18

Table S2: Major and trace element contents $(\mu g/g)$ measured with LA-ICP-MS. See Fig. 2 for sample location ; Cfa = clotted and fibrous aragonite; n.d. = not detected; n.c. = not calculated.

Spot number	Lithology	Si	Al	Mg	Sr	Ti	Zr	Y/Ho
1	Cfa	55.7	1.09	235	6,890	0.141	0.020	n.c.
2	Cfa	68.0	0.595	247	6,214	0.188	0.012	n.c.
3	Cfa	227	34.36	255	5,894	1.63	0.026	64
4	Cfa +biofilm	5,238	1,659	1,271	6,953	59.4	1.54	14
5	Cfa	66.9	0.632	203	7,046	0.196	0.013	121
6	Cfa +biofilm	941	438	419	5,844	15.3	0.719	23
7	Cfa	63.5	0.251	237	5,912	0.184	0.008	n.c.
8	Cfa	193	16.1	572	6,713	0.571	0.039	161
9	Cfa	65.5	2.13	257	6,848	0.254	0.015	49
10	Cfa +biofilm	10,369	3,656	1,544	6,542	268	3.74	27
11	Cfa	73.1	5.15	273	6,005	0.457	0.020	60
12	Cfa +biofilm	2,828	1,200	1,153	7,069	50.3	0.960	18
13	Cfa	96.2	10.2	256	6,506	0.333	0.012	n.c.
14	Cfa	67.8	n.d.	267	5,954	0.048	0.006	n.c.
15	Cfa +biofilm	11,034	4,767	3,288	6,995	207	5.17	26
16	Cfa	75.1	1.12	387	5,583	0.288	0.012	217

Table S3: Average element contents of standard replicates (BCR2G, BHVO2G) measuredduring LA-ICP-MS analyses. Respective reference data from GeoRem data base (MPI Mainz, http://georem.mpch-mainz.gwdg.de, accessed March 2016).

Element	BC	R2G (n=2)	BHVO2G (n=2)		
	This study ($\mu g/g$)	GeoReM ($\mu g/g \pm 2\sigma$)	This study (µg/g)	GeoReM ($\mu g/g \pm 2\sigma$)	
Mg	19,179 ± 1,300	$21,467 \pm 543$	$40,888 \pm 2,434$	$42,994 \pm 121$	
Al	$72,300 \pm 8,664$	$70,926 \pm 2,117$	$76,068 \pm 7,921$	$71,985 \pm 529$	
Si	$246,872 \pm 7,088$	$253,867 \pm 55,241$	$237,902 \pm 7,498$	$230,428 \pm 467$	
Ti	$12,360 \pm 598$	$14,100 \pm 1,000$	$15,763 \pm 808$	$16,300 \pm 900$	
Sr	326 ± 11	342 ± 4	396 ±10	396 ± 1	
Zr	170 ± 2	184 ± 15	161 ± 2	170 ± 7	
Y	32 ± 1	35 ± 3	24 ± 0.1	26 ± 2	
Но	1.23 ± 0.17	1.72 ± 0.08	0.91 ± 0.12	0.98 ± 0.04	

Parameter	Unit			
Medium	Methane			
Phase	Gas			
Fluid pressure	77 bar			
Temperature	4 °C			
Density	64.360308 [kg/m ³]			
Dynamic viscosity	12.6558 [10 ⁻⁶ Pa s]			

Table S4: Parameters	used for	the fluid fl	low simulation	with	GeoDict.
----------------------	----------	--------------	----------------	------	----------

III. <u>SEM-EDX spectrum (sample He-6-13)</u>

Reference

Han, X., Suess, E., Sahling, H. & Wallmann, K. Fluid venting activity on the Costa Rica margin: new results from authigenic carbonates. *Int. J. Earth Sci.* **93**, 595–611 (2004).