FN Archimer Export Format PT J TI Geostationary Image Simulation on Coastal Waters Using Hydrodynamic Biogeochemical and Sedimentary Coupled Models BT AF LEI, Manchun MINGHELLI, Audrey FRAYSSE, Marion PAIRAUD, Ivane VERNEY, Romaric PINAZO, Christel AS 1:1,2;2:1,2;3:3,4;4:5;5:6;6:3,4; FF 1:;2:;3:PDG-ODE-LITTORAL-LERPAC;4:PDG-ODE-LITTORAL-LERPAC;5:PDG-ODE-DYNECO-DHYSED;6:; C1 Aix Marseille Univ, CNRS, LSIS UMR 7296, ENSAM, F-13397 Marseille, France. Univ Toulon & Var, CNRS, LSIS UMR 7296, F-83957 La Garde, France. Aix Marseille Univ, CNRS INSU, IRD, MIO,UM 110, F-13288 Marseille, France. Univ Toulon & Var, CNRS INSU, IRD, MIO,UM 110, L-83957 La Garde, France. IFREMER, LER PAC, F-83507 La Seyne Sur Mer, France. IFREMER, DYNECO PHYSED, F-29280 Plouzane, France. C2 UNIV AIX MARSEILLE, FRANCE UNIV TOULON & VAR, FRANCE UNIV AIX MARSEILLE, FRANCE UNIV TOULON & VAR, FRANCE IFREMER, FRANCE IFREMER, FRANCE SI TOULON BREST SE PDG-ODE-LITTORAL-LERPAC PDG-ODE-DYNECO-DHYSED IN WOS Ifremer jusqu'en 2018 copubli-france copubli-univ-france IF 2.913 TC 2 UR https://archimer.ifremer.fr/doc/00363/47462/50154.pdf LA English DT Article CR MEDIPROD VI BO Jean Charcot DE ;Geostationary ocean color advanced permanent imager (GeoOCAPI);geostationary orbit;image simulation;ocean color AB This study proposes a method to simulate the images of the future European geostationary sensor dedicated to ocean color sensor: the geostationary ocean color advanced permanent imager (GeoOCAPI), and it demonstrates the sensor capabilities to monitor the water composition throughout the day. The temporal variation of the coastal seascape is obtained from biogeochemical and hydrosedimentary models, the ocean-atmosphere radiance is obtained from the water and atmosphere radiative transfer model. The GeoOCAPI images are simulated with 400-m resolution, 18 spectral bands with associated signal-to-noise ratio (SNR) and with 1-h acquisition frequency, on the Gulf of Lion (Marseille, France) during a pollution event caused by the urban outfall of Cortiou in Marseille. These images describe the water color dynamic in the Gulf of Lion due to the river transport and the urban outfall. The validation with real medium resolution imaging spectrometer (MERIS) images showed that the image simulator was reliable with an average relative error (RE) at 4.76% for visible bands and at 16.51% for near infrared bands. The quasi-analytical algorithm (QAA) inversion method was tested. The suspended particulate matter (SPM) and the colored dissolved organic matter (CDOM) can be retrieved with good accuracy; the error is, respectively, 7.69% and 12.21%. The chlorophyll concentration (chl) is misestimated (58.10%) due to the low concentration in this area (< 1 mg . m(-3)) compared to SPM (> 1g . m(-3)). The study showed that the future geostationary sensor GeoOCAPI will be able to monitor the water composition in coastal areas through the day and detect and monitor an urban outfall discharge. PY 2016 PD NOV SO Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing SN 1939-1404 PU Ieee-inst Electrical Electronics Engineers Inc VL 9 IS 11 UT 000388871500032 BP 5209 EP 5222 DI 10.1109/JSTARS.2016.2533662 ID 47462 ER EF