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Abstract Deep convection occurs in oceanic regions submitted to strong atmospheric buoyancy losses
and results in the formation of deep water masses (DWF) of the ocean circulation. It shows a strong
interannual variability, and could drastically weaken under the influence of climate change. In this study, a
method is proposed to monitor quantitatively deep convection using multisensors altimetry and ocean
color satellite data. It is applied and evaluated for the well-observed Northwestern Mediterranean Sea
(NWMS) case study. For that, a coupled hydrodynamical-biogeochemical numerical simulation is used to
examine the signature of DWF on sea level anomaly (SLA) and surface chlorophyll concentration.
Statistically significant correlations between DWF annual indicators and the areas of low surface chlorophyll
concentration and low SLA in winter are obtained, and linear relationships between those indicators and
areas are established. These relationships are applied to areas of low SLA and low chlorophyll concentration
computed, respectively, from a 27 year altimetry data set and a 19 year ocean color data set. The first long
time series (covering the last 2 decades) of DWF indicators obtained for the NWMS from satellite
observations are produced. Model biases and smoothing effect induced by the low resolution of gridded
altimetry data are partly taken into account by using corrective methods. Comparison with winter
atmospheric heat flux and previous modeled and observed estimates of DWF indicators suggests that those
DWF indicators time series capture realistically DWF interannual variability in the NWMS. The advantages as
well as the weaknesses and uncertainties of the method are finally discussed.

1. Introduction

Open-ocean deep convection occurs in a few regions of the world ocean submitted to strong surface buoy-
ancy losses that induce an increase of sea surface water density, resulting in the vertical mixing of the water
column. It is at the origin of the formation of deep water masses of the ocean circulation [Marshall and
Schott, 1999]. It shows a strong interannual variability [Yashayaev, 2007; Herrmann et al., 2010]: yearly maxi-
mum of mixed layer depth (MLD) varies from very shallow to intermediate and even sea bottom values.
Both observational and modeling studies suggested that deep convection could drastically weaken under
the influence of climate change [Somot et al., 2006; de Lavergne et al., 2014].

Northwestern Mediterranean Sea (NWMS) is a region of dense water formation (DWF) that can be consid-
ered as a golden case study, due to its easier access compared to other convection regions (e.g., Labrador
and Greenland seas). DWF occurs there in winter under the influence of cold northerly winds and results in
the formation of Western Mediterranean Deep Water, one of the main water masses of the Mediterranean
thermohaline circulation. DWF in the NWMS does not only play an important role in the hydrodynamical
functioning of the Mediterranean sea, it also influences the ecosystems: the associated winter vertical mix-
ing is responsible for the nutrients enrichment of the surface layer, and therefore contributes to the follow-
ing spring bloom [Herrmann et al., 2013, 2014]. As a result, NWMS is one of the biologically most productive
areas of the Mediterranean sea [Bosc et al., 2004].

Understanding and monitoring the interannual variability and long-term evolution of DWF is essential for
studies of ocean circulation and ecosystems. Long-term in situ monitoring of deep convection is costly, we
therefore explore the possibility to monitor DWF using satellite data. First, as can be seen in altimetry data
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during the strong NWMS convection winter of 2005 (Figure 1), DWF is associated with a lowering of sea sur-
face due both to an increase of the water density (steric effect) and to an activation of the cyclonic circula-
tion (dynamic effect) [Herrmann et al., 2008]. This influence of DWF on sea surface level was the starting
point of studies that proposed methods to monitor DWF using altimetry satellite data [Herrmann et al.,
2009; Gelderloos et al., 2013]. For the NWMS, Herrmann et al. [2009] used a numerical oceanic simulation per-
formed over the Mediterranean Sea to establish a relationship between sea level and DWF, and applied this
relationship to along-track altimetry data. Second, DWF is also associated with strong vertical displacements
that induce the decrease of surface chlorophyll concentration [Herrmann et al., 2013]. Since phytoplankton
cannot stay stably in the surface euphotic layer where photosynthesis can occur, primary production indeed
stops (light limitation effect). Moreover, the chlorophyll stock initially present in the surface layer is vertically
diluted throughout the whole mixed column (dilution effect) [Auger et al., 2014]. DWF consequently has a
signature on surface chlorophyll concentration that can be observed on ocean color satellite data (see for
example the strong convection winter of 2005, Figure 1), suggesting that those data could be used to
detect and monitor DWF.

Several authors attempted to use the chlorophyll depleted area estimated from satellite data as an indicator
of deep convection intensity. These studies focused on individual cases or short time series of DWF. Herr-
mann et al. [2010] used it qualitatively to estimate the ability of their model to represent correctly the spatial
extension of convection for winter 2005. Somot et al. [2016] used this area as an indicator of DWF intensity
for winters 2007–2013. Some authors multiplied empirically this area by the bottom depth (�2200 m) to
provide estimates of the volume of dense water formed during respectively winter 2012 [Durrieu de Madron
et al., 2013] and winters 2007–2013 [Houpert et al., 2016]. These latter studies therefore assumed that when
convection occurs, it reaches the bottom. Their method is therefore only suitable for cases of either null or
bottom convection, but not of intermediate convection.

Here based on the results of a coupled hydrodynamical-biogeochemical ocean simulation, we propose a
method to monitor annual DWF intensity on the long term using both altimetry and ocean color satellite
observations. We apply and test this method for the NWMS. The numerical tool and satellite data sets as
well as the existing estimations of DWF rates are presented in section 2. We use the model to establish sig-
nificant linear relationships between the DWF intensity on one side and the sea level anomaly (SLA) and sur-
face chlorophyll concentration on the other side (section 3). We apply those linear equations to SLA and
surface chlorophyll concentration obtained from real satellite data. This allows us to produce long-term
time series of annual DWF intensity in terms of volume of mixed water, volume of newly formed dense
water and mixed layer depth (section 4). Advantages and weaknesses of our method and uncertainties
associated with those time series are discussed in section 5. Concluding remarks are given in section 6.

2. Methods and Tools

2.1. The Numerical Simulations
A 38 year hydrodynamical simulation was performed at 2.5 km resolution over the western Mediterranean
(08400W–118400E; 368250N–448250N, see Figure 2) for the period 1975–2013 with the 3-D primitive equations,
sigma-coordinate (40 levels), free surface ocean model SYMPHONIE [Marsaleix et al., 2009]. The explicit non-
linear free surface scheme described in Marsaleix et al. [2008] is used. The 2.5 km resolution enables to
reproduce realistically NWMS deep convection and associated mesoscale structures [Herrmann et al., 2008].
The model was initialized and forced at the lateral boundaries by the results of a Mediterranean basin scale
simulation performed with the NEMOMED8 model [Herrmann et al., 2010] and at the surface by the atmo-
spheric fluxes of the ARPERA data set [Herrmann and Somot, 2008].

A twin tridimensional biogeochemical 38 year simulation was performed for the same period with the bio-
geochemical model Eco3M-S forced by the results of the hydrodynamical SYMPHONIE simulation. This bio-
geochemical simulation is described in details in Auger et al. [2014] and the hydrodynamical and
biogeochemical simulations were examined and validated by Auger et al. [2014] and Ulses et al. [2016]. This
coupled hydrodynamical-biogeochemical tool was also used to study the impact of interannual variability
and long-term evolution of atmospheric and oceanic conditions, in particular deep convection, on the
NWMS pelagic planktonic ecosystem and associated carbon cycle [Herrmann et al., 2013, 2014; Ulses et al.,
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Figure 1. (left) Sea surface chlorophyll concentration (mgChl m23) and (right) sea level anomaly (cm) for winter 2005 in satellite ocean color data and altimetry. From top to bottom:
averages for December 2004; averages between 25 January and 21 March 2005 for chlorophyll concentration and between 15 February and 15 March 2005 for SLA; averages for April
2005. White line corresponds to the 0.35 mgChl m23 isoline for surface chlorophyll concentration. White and gray lines correspond, respectively, to the 214.0 and 25.5 cm isolines for
SLA. Black line corresponds to the limits of the RDC region where AlowChl (defined in equation (5)) and AlowSLA (defined in equation (6)) are computed.
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2016]. Those studies showed that our coupled model represents realistically NWMS ocean dynamics, in par-
ticular deep convection, as well as the interactions between dynamics and biogeochemistry.

Due to the Boussinesq approximation, SYMPHONIE is not able to reproduce the temporal variability of
sea level associated with the steric effect. Greatbatch [1994] showed that sea level calculated by models
making the Boussinesq approximation can be corrected for this problem by adding to the modeled
sea level field a spatially uniform but time-dependent constant that accounts for any net expan-
sion=contraction of the global ocean. To compute this temporally varying constant, we use the same
method as Lombard et al. [2005] and Bouffard et al. [2008], using the monthly temperature and salinity
fields from the NEMOMED8 simulation over the region between 2.58E and 98E, north of 39.58E. We finally
remove the long-term linear trend of the modeled sea level over the 1975–2013 period to remove the
large scale sea level trend signal.

We define three indicators to quantify the intensity of DWF in the NWMS. First, the maximum depth
reached by the mixed layer during winter is an indicator that has been widely used in previous modeling
and observations studies. We define the annual maximum of the MLD averaged over the convection area,
MLDmean, as:

MLDmean5maxt2DJFM

ð ð

ðx;yÞ2NWMS=MLDðx;y;tÞ>500

MLDðx; y; tÞ dx dy

ð ð

ðx;yÞ2NWMS=MLDðx;y;tÞ>500

dx dy

0
BBBBB@

1
CCCCCA

(1)

where DJFM stands for the December to March winter period and NWMS is defined as the region between
2.58E and 98E and north of 39.58N (see Figure 2). We consider values of MLD larger than 500 m to ensure
that we are in the convection area. In the model, the MLD is defined using a threshold value of 4 cm2 s21

for the vertical diffusion coefficient [Herrmann et al., 2008].

Second, the volume of water affected each year by DWF is also an indicator of its intensity. It is a key val-
ue for studying the formation and fate of water masses involved in the thermohaline circulation. Follow-
ing previous studies (see section 2.3), we consider two kinds of yearly volumic DWF indicators, as
defined in Herrmann et al. [2008]: the maximum volume of mixed water, VMLD, and the rate of dense
water formed annually, s29:11. VMLD is the winter maximum of the spatial integral of the MLD over the
convection area:

Figure 2. Bathymetry of the modeled domain (m). Black dotted line corresponds to the limits of the NWMS region, and black full line cor-
responds to the limits of the RDC region.
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VMLD5maxt2DJFM

ð ð

ðx;yÞ2NWMS=MLDðx;y;tÞ>500

MLDðx; y; tÞ dx dy

0
B@

1
CA (2)

In our 38 year simulation, the densest water masses formed in winter have densities exceeding 29.11 kg
m23, in agreement with values from previous modeling studies and observations (reported for example in
Herrmann et al. [2010]) and with values observed for 2012–2013 (see section 2.3). This value is therefore tak-
en as the criterion to define the volume of dense water formed V29:11, computed as the volume of water of
density higher than 29.11 kg m23:

V29:11ðtÞ5
ððð

ðx;y;zÞ2NWMS=qðx;y;z;tÞ�29:11

dx dy dz (3)

s29:11 is then defined as the annual rate of dense water formed. It is computed as the difference between
the winter maximum and minimum of V29:11:

s29:115maxt2DJFMðV29:11Þ2mint2DJFMðV29:11Þ (4)

Both volumic DWF indicators VMLD and s29:11 are quantified in Sv by dividing the cubic meters volumes by
the number of seconds in one year. In the following, we therefore focus on three DWF indicators over the
NWMS: MLDmean (m), VMLD (Sv), and s29:11 (Sv). The time series of these three annual indicators computed
from the model results are presented in Figure 3 (gray curves).

2.2. Satellite Data
2.2.1. Altimetry Data
We use the L4 daily multimissions satellite SLA data set generated at 1/48 resolution by the SSALTO/DUACS
Delayed Time (DT) processing system for the period 1993–2015 and by the Near Real Time (NRT) processing
system for 2016. The multisatellite component of SSALTO/DUACS system is responsible for the processing
of HY-2A, Saral/AltiKa, Cryosat-2, Jason-1, Jason-2, Topex/Poseidon, Envisat, GFO, ERS1/2, and Geosat data in
order to provide a homogeneous, intercalibrated and highly accurate long time series of gridded SLA altim-
eter data. The processing system uses a mapping procedure based on optimal interpolation with realistic
correlation functions to produce gridded SLA at a given date. These altimeter products cover the period
1993–2016 and are now distributed by the Copernicus Marine and Environment Monitoring Service
(CMEMS, http://marine.copernicu.eu). As done for the model, we remove from those data their linear long-
term trend. We also remove from both modeled and observed SLA their temporal average over the period
1993–2016 in order to use the same reference for model results and satellite data.
2.2.2. Ocean Color Data
We use the standard L3 near-surface chlorophyll-a concentrations data at 9 km resolution computed daily
for the global ocean from SeaWIFS (1998–2010) and MODIS (2003–2016) satellite observations using the OC
algorithm [O’Reilly and et al., 2000]. Those data are available on http://oceandata.sci.gsfc.nasa.gov.

2.3. In Situ Data and Existing Estimations of Deep Water Formation Rate
Between summer 2012 and summer 2013, four oceanographic cruises were conducted in the NWMS in the
framework of the MERMEX (Marine Ecosystems Response to climatic and anthropogenic forcings in the
Mediterranean), HYMEX (Hydrological Cycle of the Mediterranean Experiment), DEWEX (Impacts of Deep
water formation on the Mediterranean pelagic ecosystems), and MOOSE (Mediterranean Ocean Observing
System Experiment) programs: July–August 2012, February 2013, April 2013, and June 2013. They are pre-
sented in details in Testor [2013] and Conan [2013]. A large set of CTD profiles (in average 70 per cruise) was
collected during these cruises. One of the main goals of those cruises was to estimate the seasonal and
annual variations of dense water volume in the NWMS. Several estimations of the DWF rate based on those
in situ CTD profiles were computed for winter 2012–2013. Performing optimal interpolation of those profiles
and using a numerical model to assess the uncertainty associated with their DWF rate estimates, Waldman
et al. [2016] obtained a DWF rate of 2.3 6 0.5 Sv for s29:11. Bosse [2015] performed an objective analysis of in
situ data provided by those profiles, gliders surveys, ARGO floats and moorings, obtaining a 2 Sv DFW rate
for s29:11. Several studies attempted to estimate the DWF rate for winter 2012–2013 using other sources, i.e.,
numerical model results or satellite data. Estournel et al. [2016] used the SYMPHONIE model at 1 km
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resolution to perform a realistic numer-
ical simulation that closely reproduces
the observed characteristics of the
water column during 2012–13. They
obtained a 1.6 Sv rate for s29:1125. Using
the oceanic model NEMO at 1/368 res-
olution, L�eger et al. [2016] ran three
sensitivity experiments with different
initial ocean states. They obtained
DWF rates varying between 0.6 Sv and
2.6 Sv for s29:11.

Previous observations and modeling
studies identified other winters during
which DWF was stronger than the
average: 1999 [B�ethoux et al., 2002,
from in situ observations], 2005 [Herr-
mann et al., 2010, gave an estimate of
1.2 Sv from model results and sug-
gested that winter 2005 was the most
convective over the period 1960–2006
due to considerable atmospheric heat
loss], 2006 [Schroeder et al., 2008, gave
an estimate of 2.4 Sv for winters 2005
and 2006 from in situ observations],
2012 [Durrieu de Madron et al., 2013,
gave an estimate of 1.1 Sv from satel-
lite color data using the same method
as Houpert et al. [2016] with a thresh-
old criteria of 0.1 mgChl.m23]. Houpert
et al. [2016] used L3 MODIS Aqua sur-
face chlorophyll concentration satellite
data to estimate DWF rates for the
period 2007–2013: they took the maxi-
mum extension of the low concentra-
tion area (defined with a threshold
criteria of 0.15 mgChl m23) and
assumed that the mean MLD below
this area was 2200 m. They obtained
the following yearly values for the peri-
od 2007–2013: 0 Sv, 0 Sv, 1.14 Sv, 0.91
Sv, 1.10 Sv, 1.25 Sv, and 1.65 Sv. Somot

et al. [2016] performed a simulation over the Mediterranean Sea for the 1980–2013 period using a coupled
ocean-atmosphere model (ALADIN-Climate—NEMOMED8) to investigate the factors responsible for the
interannual variability of deep convection in the NWMS. In their paper, they produced a time series of DWF
rate (their Figure 6), identifying winter 2005 as the most convective of the period.

3. Signature of Deep Convection on Sea Surface Chlorophyll Concentration and
Sea Level Anomaly in the Coupled Simulation

To assess DWF annual intensity using ocean color and altimetry satellite data, we first need to establish rela-
tionships between the sea surface characteristics and the intensity of deep convection. We use the 38 year
hydrodynamical-biogeochemical simulation to establish relationships between the surface chlorophyll con-
centration and SLA on one side and the DWF indicators on the other side.

Figure 3. Annual time series of atmospheric and DWF indicators between 1975
and 2016. (top) Winter heat loss over the NWMS, HLDJF, computed from NCEP
reanalysis [Kalnay et al., 1996]. (middle) DWF indicators VMLD, s29:11, and MLDmean

computed directly in the model (gray), and predicted by applying the relation-
ships established in section 3.1 to AlowCHL computed in the model (black) and to
AlowCHL obtained from merged SeaWIFS and MODIS satellite data (red). (bottom)
DWF indicators computed directly in the model (gray) and predicted by applying
the relationships established in section 3.2 to AlowSLA computed in the model
(black) and to AlowSLA obtained from SSALTO/DUACS DT satellite data (red). When
applying the equations to real satellite data, adjustment methods explained in
sections 4.1 and 4.2 were used.
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3.1. From Sea Surface Chlorophyll Concentration to Dense Water Formation
As explained above, very low chlorophyll concentration values are observed during the period and over the
surface of DWF (see the example of winter 2005 in Figures 1 and 4, the most convective year over the simu-
lated period, Figure 3). We therefore look for relationships between the size of the chlorophyll depleted
area, AlowCHL, and the three indicators of DWF intensity defined in section 2.1. For a given period T and a giv-
en threshold Chlcrit, AlowCHL is defined as the surface where the chlorophyll concentration averaged over the
period T is lower than Chlcrit:

AlowCHL5

ð ð

ðx;yÞ2RDC=ð

ð

t2T C

hlðx; y; tÞdtÞ � ChlcritÞ
dx dy:

(5)

where RDC (Region of Deep Convection) is the region of the NWMS where DWF occurs in the model and
where low chlorophyll concentrations are observed in the model and in satellite data. It corresponds to the
region between 2.58E and 98E in the east-west direction, and north of 408N and of a line going from
[408N;4.58E] to [428N;98E] in the south-north direction. Since we study open ocean convection and not shelf

Figure 4. Sea surface characteristics for winter 2005 in the model. (a) Surface density (kg m23) on the day when V29:11 (defined in equation (4)) is maximum (12 March 2005). Dark grey
line corresponds to the 29.11 kg m23 isoline. (b) MLD (m) on the day when VMLD (defined in equation (2)) is maximum (8 March 2005). (c) Surface chlorophyll concentration (mgChl m23)
averaged between 25 January and 21 March. White line corresponds to the 0.35 mgChl m23 isoline. (d) SLA (cm) averaged between 15 February and 15 March. White and gray lines cor-
respond, respectively, to the 214.0 and 25.5 isolines. Black line corresponds to the limits of the region RDC where AlowChl (defined in equation (5)) is computed.
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dense water formation, we consider only the region where the bathymetry exceeds 1000 m. The select-
ed RDC (see black line in Figures 1, 2, and 4) is consistent with the ‘‘blooming’’ bioregion defined by
D’Ortenzio and Ribera d’Alcal�a [2009], who applied a K-means cluster analysis on time series of
chlorophyll concentration computed from SeaWIFS satellite data to characterize the biogeography of
the Mediterranean Sea.

To compute annual time series of AlowCHL, we then need to define the period of averaging, T, and the sur-
face chlorophyll concentration criteria, Chlcrit. For that, we use a simple optimization procedure. We vary T
inside the January-March period (during which DWF occurs) and vary the value of Chlcrit in the range
[0.00–1.00] mgChl m23. We compute the corresponding correlations between the annual time series of
each DWF intensity indicators and AlowCHL. For each indicator, we finally select the period and chlorophyll
concentration criteria for which we obtain the highest correlation. For VMLD and s29:11, we obtain the 56
day period 25 January –to 21 March and Chlcrit 5 0.35 mgChl m23, with statistically significant correlations
(significant level SL> 0.9999) of, respectively, 0.88 and 0.89 (Figure 5). For MLDmean, we obtain the 48 day
period 25 January to 31 March and Chlcrit 5 0.50 mgChl m23, with a statistically significant correlation
(SL> 0.9999) of 0.64 (Figure 5). Given these high correlation levels, we then perform linear regression anal-
ysis under the form y5ax1b where y is the value of the DWF indicator and x is the value of AlowCHL: the val-
ues of a and b are given for each DWF indicator in Figure 5. When quantifying the DWF indicators in m3

instead of Sv, the values of a are equal to 751 and 1057 m for VMLD and s29:11, respectively, much smaller
than the 2200 m value used by Durrieu de Madron et al. [2013] and Houpert et al. [2016]. We apply those lin-
ear relationships to the values of AlowCHL given by the model, obtaining time series of VMLD, s29:11, and
MLDmean predicted from those relationships (Figure 3, black curves). The normalized root-mean-square
error (NRMSE) between the DWF indicators time series computed directly from the hydrodynamical simula-
tion and the predicted time series are of 10.4%, 11.0%, and 14.9% for VMLD, s29:11 and MLDmean,
respectively.

The strong correlation obtained in the model between the volume of water affected by convection and the
chlorophyll depleted area can be mainly explained by the vertical dilution effect of convection. Before win-
ter, the water column is still stratified, chlorophyll is mainly present in the surface euphotic layer and the
total chlorophyll content of the water column is very similar for every year (Figure 6, left). When convection
occurs, this initial chlorophyll content is diluted over the mixed column. The resulting surface chlorophyll
concentration should be approximately inversely proportional to the MLD. This inversely proportional pat-
tern can be observed in the model on the scatterplot of daily values of MLD versus surface chlorophyll con-
centration at the center of the convection area during the January to February period (Figure 6, right). This
suggests that the dilution effect is indeed the main factor responsible for the chlorophyll depletion of the
surface water. Moreover, most of MLD values greater than �500 m are associated with chlorophyll surface
concentration values lower than �0.35 mgChl m23 (Figure 6, right). The 0.35 mgChl m23 threshold
obtained for VMLD and s29:11 therefore approximately corresponds to the value below which the surface
chlorophyll concentration falls when the mixed layer reaches significant depths (MLD > �500 m). During
winter 2005, for example, the area of deep convection (where MLD> 500 m) is indeed approximately the
same as the area inside the 0.35 mgChl m23 isoline for the surface chlorophyll concentration (Figure 4). The
dilution effect therefore enables us to physically justify the strong correlations found above but also the
0.35 mgChl m23 threshold.

3.2. From Sea Surface Height to Dense Water Formation
Herrmann et al. [2009] used a 9 year simulation at 1/168 (�5 km resolution) together with along track altime-
try data. Our goal is to strengthen the robustness of the relationships that they obtained between sea level
and deep convection. For that we use a longer (38 year) simulation with a higher resolution (2.5 km), hence
a simulation who represents more realistically ocean dynamics in the deep convection region [Herrmann
et al., 2008]. Moreover, we use gridded altimetry data, where submesoscale structures, which are highly
active during convection [Herrmann et al., 2008], should be filtered out compared to alongtrack data. To
establish relationships between SLA and DWF indicators, we proceed the same way as for the surface chlo-
rophyll: we look for relationships between those indicators and the surface of low SLA, AlowSLA. For a given
period T and a given threshold SLAcrit, AlowSLA is defined as the surface where the SLA averaged over the
period T is lower than SLAcrit:
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Figure 5. Relationships established in sections 3.1 and 3.2 between the modeled annual DWF intensity indicators (top) VMLD, (middle) s29:11, (bottom) MLDmean, and the (left) modeled
low surface chlorophyll concentration area AlowCHL and (right) low SLA area AlowSLA. For each DWF indicator, bilinear regression analysis coefficients established in section 3.3 and correla-
tion coefficients and NRMSE between corresponding predicted time series and direct modeled time series are indicated in blue.
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AlowSLA5

ð ð

ðx;yÞ2RDC=ð

ð

t2T S

LAðx; y; tÞdtÞ � SLAcritÞ
dx dy:

(6)

We consider the same RDC region as for the surface chlorophyll (black line in Figure 4). We then vary the
period T and the criteria SLAcrit, and choose the values that maximize the correlations between the DWF
indicators and AlowSLA. The optimal averaging period is 15 February to 15 March, with SLAcrit of 214.0,
214.0, and 25.5 cm for VMLD, s29:11, and MLDmean, respectively. We obtain statistically significant correlations
(SL> 0.9999) between these indicators and AlowSLA of 0.83, 0.77, and 0.75, respectively (Figure 5). We per-
form linear regression analysis under the form y5ax1b where y is the value of the DWF indicator and x is
the value of AlowSLA. Values of a and b obtained for each DWF indicator are given in Figure 5. We apply these
relationships to the modeled AlowSLA to obtain predicted DWF indicators time series. The NRMSE between
the DWF indicators time series computed directly from the simulation and the predicted time series are
13.5%, 15.1%, and 12.8% for VMLD, s29:11, and MLDmean, respectively (Figure 5).

3.3. Using Together Sea Surface Height and Chlorophyll Concentration
To combine the information provided both by altimetry and ocean color data, we also establish bilinear
relationships under the form y5a1x11a2x21b where y is the value of the DWF indicator, x1 is the value of
AlowCHL, and x2 is the value of AlowSLA. The values of a1, a2, and b are indicated in blue in Figure 5, as well as
the correlation coefficients and NRMSE between the time series of DWF indicators given directly by the
model and the time series predicted by applying the bilinear relationships to the modeled AlowCHL and Alow-

SLA. For VMLD, s29:11, and MLDmean, those correlation coefficients are equal to 0.879, 0.890, 0.754 (SL> 0.999)
and the NRMSE to 10.3%, 11.0%, and 12.7%, respectively, only marginally higher than the best coefficients
obtained for each indicator: 0.877 (NRMSE 10.4%), 0.886 (NRMSE 11.0%), and 0.748 (NRMSE 12.8%) obtained
with AlowCHL, AlowCHL, and AlowSLA, respectively. This is due to the fact that performing this multivariate regres-
sion analysis is actually equivalent to applying a weighted average to the linear relationships y5ax1b
established in sections 3.1 and 3.2. The strongest weight is given to the relationship associated with the
highest predicted versus direct modeled time series correlation. This can be seen when comparing the y5

a1x11a2x21b equation with both y5ax1b equations (Figure 5). In the model, for a given DWF indicator,
multivariate DWF indicator time series, showed in black in Figure 7, is therefore close from the univariate
time series associated with the strongest weight (Figure 3).

4. From Satellite Data to DWF Intensity

In this section, we apply the y5ax1b and y5a1x11a2x21b relationships established for the model in sec-
tion 3 to the areas of low SLA and low surface chlorophyll concentration computed from real satellite

Figure 6. Relationship between MLD and chlorophyll concentration in the model. (left) Annual evolution of the column-integrated chlorophyll
content over the water column at [428N 58E] for the 38 years of the simulation. (right) Scatterplot of the daily values of MLD versus surface chlo-
rophyll concentration at the center of the convection area, [428N 58E], between January and March for the 38 years of the simulation.
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observations data sets, in order to pro-
duce DWF indicators time series from
those data sets. For that we first compare
the modeled and observed values of SLA
and surface chlorophyll concentration to
determine how these relationships can be
applied to real data sets.

4.1. Adjustment of Chlcrit for Ocean
Color Data
Time series of the mean surface chlorophyll
concentration and chlorophyll depleted area
over RDC computed from the model and
from ocean color data are presented in Fig-
ure 8. The length of the common period
between ocean color data sets and the
numerical simulation is 12 years for SeaWIFS
(no data in 2008) and 11 years for MODIS.
The correlation factors between time series
of the mean surface concentration comput-
ed in the model and in SeaWIFS and MODIS
data sets are, respectively, equal to 0.59 (SL
5 0.96) and 0.76 (SL 5 0.99) for the period

25 January to 21 March, and to 0.75 (SL 5 0.99) and 0.83 (SL> 0.999) for the period 25 January to 13 March . The
model overestimates this mean surface chlorophyll concentration: 10.17 mgChl m23 compared with SeaWIFS for
the 1998–2010 period; 10.06 mgChl m23 compared with MODIS for the 2003–2013 period.

Both satellite data sets are extremely close, showing the same variability and very similar values. We there-
fore merge those data sets to produce a 19 year time series for the period 1998–2016. We will apply the
relationships established from the model in section 3 to this merged data set. To account for the model
overestimation, we adjust the chlorophyll concentration criteria Chlcrit used to compute AlowCHL. For the
model, Chlcrit is, respectively, equal to 0.35 and 0.50 mgChl m23 for the periods 25 January to 21 March and
25 January to 13 March (established in section 3.1). For the merged satellite data set, we vary Chlcrit and use
the value that maximizes the temporal correlation and minimizes the NRMSE between AlowCHL computed
from the merged data set and AlowCHL computed from the model. This results in criteria Chlcrit equal to 0.35
mgChl m23, both for the periods 25 January to 21 March and 25 January to 13 March. Correlations between
time series of AlowCHL obtained from the model and from the merged data set are, respectively, equal to
0.85 and 0.79 for the periods 25 January –to 21 March and 25 January –to 13 March, with level of signifi-
cance SL> 0.999 and RMSE � 20% for both periods (Figure 8).

4.2. Adjustment for Altimetry Data
Time series of the mean SLA over RDC and over the period 15 February to 15 March computed from the
model and from altimetry are presented in Figure 9. Over the 1993–2013 period, the correlation between
observed and modeled time series is equal to 0.41 (SL> 0.94) with a mean bias of 20.4 cm and an NRMSE
of 28.0% (Figure 9). The model reproduces correctly the range of observed sea level values, but its represen-
tation of their interannual chronology is not very good. There are two main reasons for that. First, the model
only represents the monthly variations of the steric effect (see section 2.1) and can therefore miss its high
frequency variations. Second, the spatial and temporal resolution of the SLA tracks used to produce the SLA
gridded data set is not very high (�10 days, O(100 km)), much coarser than in the model, also preventing
altimetry to capture correctly the high frequency of the SLA spatial and temporal variability. As a result, SLA
patterns are strongly smoothed in altimetry data, with spatial extrema less peaked than in reality than in
the model, as can be seen in Figures 1 and 6: regions of extrema are of larger extension but of smaller extre-
ma values than in the model. This smoothing effect therefore results in an overestimation of AlowSLA. We
need to account for this spatial smoothing effect when applying to the data the linear relationship estab-
lished in the model. For that, we apply a corrective multiplying factor C on AlowSLA, computed by taking the

Figure 7. Annual time series of DWF indicators between 1975 and 2016:
VMLD, s29:11, and MLDmean indicators computed directly in the model (gray),
and predicted by applying the multivariate relationships established in sec-
tion 3.3 to AlowCHL and AlowSLA computed in the model (black) and to AlowCHL

and AlowSLA obtained from merged SeaWIFS and MODIS satellite data and
from SSALTO/DUACS DT satellite data (red). When applying the equations to
real satellite data, adjustment methods explained in sections 4.1 and 4.2
were used.
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ratio between the modeled AlowSLA and the observed AlowSLA, both averaged over the common period
1993–2013:

Aaltimetry;corrected
lowSLA ðyÞ5C3Aaltimetry

lowSLA ðyÞ

with

C5
Amodel

lowSLA

Aaltimetry
lowSLA

(7)

where Amodel
lowSLA and Aaltimetry

lowSLA are the values of the area computed, respectively, from the model and the altime-
try, Aaltimetry;corrected

lowSLA is the value obtained from the altimetry after applying the corrective factors, and the
overbar denotes the average over the 1993–2013 period. For values of SLAcrit of, respectively, 214.0 and
25.5 cm established in section 3.2, we obtain corrective factors C of 5.629 and 0.888. The resulting time
series of Aaltimetry;corrected

lowSLA are shown in Figure 9 (red curve).

4.3. Time Series of DWF Indicators Produced From Real Ocean Color and Altimetry Data Sets
We finally apply the linear relationships established from the model in sections 3.1 and 3.2 to the time series
of AlowCHL and AlowSLA computed from real data sets. Time series obtained for VMLD, s29:11, and MLDmean are

Figure 8. Comparison of surface chlorophyll concentration in the model and in ocean color data. Annual time series (left) of the surface chlorophyll concentration averaged over the
region RDC (mgChl m23) and (right) of the chlorophyll depleted area AlowCHL (m2) for the periods 25 January to 21 March (top) and 25 January to 14 March (bottom), computed in the
model (black), obtained from SeaWIFS (green), and MODIS (blue) satellite data and from merged SeaWIFS and MODIS data (red). When computing AlowChl from real satellite data, criteria
adjustment explained in section 4.1 is used.
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shown in Figure 3 and given in
Table 1. DWF stronger than the
average is observed by ocean
color data during winters 2004,
2005, 2006, 2010, 2013, 2015, and
by altimetry during winters 2003,
2005, 2012 and to a lesser extent
2009, 2011, 2014, 2015. Previous
observations and modeling stud-
ies (section 2.3) provide a list of
known strong DWF winters: 1999,
2005, 2006, 2012, and 2013. Both
types of data miss several strong
DWF winters (2012 for color data,
2006, 2010, and 2013 for altime-
try). This is discussed in the fol-
lowing section 5. Ocean color
data give 2005 as the most con-
vective winter, as suggested in
the literature as well [Schroeder
et al., 2008; Herrmann et al., 2010;
Somot et al., 2016]. Altimetry

ranks it as the second most convective winter, ranking 2012 as the most convective winter. To our knowledge,
winter 2012–2013 was the only winter for which the in situ measurements coverage allowed to produce a robust
rate of DWF (respectively, 1.8 and 2.3 6 0.5 Sv for s29:11 in Bosse [2015] and Waldman et al. [2016]). Our color data
time series falls in this range, whereas altimetry data misses this convective winter (Figure 3).

Herrmann et al. [2010] showed that the intensity of DWF was significantly correlated to atmospheric conditions
during the DWF period, in particular to the average winter (December to February) heat loss over the NWMS,
HLDJF. Examining jointly HLDJF time series with the DWF indicators time series obtained here therefore provides
an indication about the DWF interannual variability and about the ability of the satellite data to reproduce cor-
rectly this variability. We compute HLDJF for the period 1976–2016 using NCEP reanalysis outputs [Kalnay et al.,
1996, Figure 3]. We then compute the correlation between HLDJF time series and DWF indicators time series
obtained from various methods (direct model, model SLA, satellite altimetry, model chlorophyll concentration,
satellite ocean color, combined altimetry, and ocean color, Table 2). The correlation between DWF indicators
obtained directly from the 38 year simulation and HLDJF is equal to, respectively, 0.68, 0.75, and 0.71 (SL> 0.999)
for VMLD, s29:11, and MLDmean over the 1976–2013 period. This confirms that the model reproduces realistically
the interannual variability of DWF in the NWMS. The correlation between DWF volumic indicators VMLD and s29:11

predicted from altimetry data and HLDJF is statistically significant, equal to 0.60 (SL> 0.99) over the 1993–2016 24
year period. However, the correlation is weaker and less significant for MLDmean (0.24, SL 5 0.74). This will be dis-
cussed in section 5. The time series produced from ocean color merged data set also shows a statistically signifi-
cant correlation with HLDJF (0.67 (SL> 0.99), 0.58 (SL> 0.99), 0.57 (SL> 0.98) for VMLD, s29:11, and MLDmean over
the 1998–2016 19 year period). These results suggest that the method built here, using gridded altimetry data
and standard ocean color data, allows to produce time series that correctly capture the interannual variability of
DWF in the NWMS. Somot et al. [2016] confirmed that winter heat loss plays a key role in DWF, but also that the
initial stratification of the water column influences the convection, explaining that some years with strong buoy-
ancy loss show convection weaker than expected. For example in their simulation s29:11 was 1/2 smaller for 2012
than for 2013 although the winter buoyancy loss was stronger. Though it provides an indication about the ability
of satellite data to reproduce realistically DWF indicators time series, it should therefore be underlined that the
correlation between our DWF time series and NCEP HLDJF time series must only be considered as an indication of
the realism of DWF time series in terms of interannual variability, and not as an exact metric of this realism.

DWF time series obtained by applying the bilinear relationships established in section 3.3 to altimetry and
ocean color data sets are shown in Figure 7 and given in Table 1. The correlation coefficients between those
time series and HLDJF are given in Table 2. As explained in section 3.3, those bilinear relationships give the

Figure 9. Comparison of SLA in the model and in altimetry data. Annual time series of the
average over 15 February to 15 March of the mean SLA over RDC (top) and of the low
SLA area AlowSLA computed in the model (black) and in the altimetry data (red) for SLAcrit5

214:0 cm (middle) and 25.5 cm (bottom). When computing AlowSLA from altimetry, adjust-
ment method explained in section 4.2 is used.
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strongest weight to the area AlowCHL or AlowSLA for which the correlation between predicted and direct modeled
DWF indicators time series is the strongest. As a result, for each indicator, the time series computed from com-
bined altimetry and ocean color data is very similar to the time series obtained from the data set associated
with this strongest weight (ocean color for VMLD and s29:11, altimetry for MLDmean) and the correlation with HLDJF

is weakly improved. For MLDmean, the difference of coefficient for combined data set (0.43) versus altimetry
(0.24) is only due to the fact that the period considered differs. For VMLD, the correlation improvement is mainly
due to the fact that altimetry overestimates DWF for 2012, correcting the fact that ocean color misses it.

5. Discussion

The strength of the method developed here compared to empirically deduced relationships is the fact that
it is based on the physical links, reproduced by the numerical model, between DWF, SLA, and chlorophyll

Table 1. Annual Time Series of DWF Indicators Between 1993 and 2016: MLDmean (m), VMLD (Sv), and s29:11 (Sv) Indicators Predicted by
Applying the Relationships Established in Sections 3.1–3.3 to AlowCHL and AlowSLA Computed From Merged Satellite Ocean Color Data
From SeaWIFS and MODIS and From the SSALTO/DUACS DT Altimetry Satellite Dataa

Altimetry Ocean Color
Combined Altimetry 1 Ocean

Color

Year MLDmean VMLD s29:11 MLDmean VMLD s29:11 MLDmean VMLD s29:11

1993 980 0,00 0,00
1994 1126 0,00 0,00
1995 1116 0,00 0,00
1996 1145 0,00 0,00
1997 1198 0,00 0,00
1998 157 0,00 0,00 1040 0,52 0,55 1037 0,47 0,53
1999 1160 0,00 0,00 1351 0,46 0,46 1183 0,41 0,44
2000 822 0,00 0,00 1104 0,35 0,31 847 0,32 0,30
2001 715 0,00 0,00 891 0,15 0,02 716 0,15 0,02
2002 929 0,00 0,00 883 0,19 0,08 898 0,18 0,08
2003 1346 0,96 1,14 945 0,19 0,09 1267 0,33 0,13
2004 738 0,00 0,00 1227 0,78 0,91 798 0,69 0,88
2005 1289 1,15 1,39 1908 2,05 2,69 1397 1,96 2,67
2006 1207 0,00 0,00 1481 1,79 2,33 1248 1,56 2,26
2007 839 0,00 0,00 874 0,00 0,00 819 0,00 0,00
2008 1395 0,00 0,00 880 0,16 0,03 1297 0,15 0,03
2009 1311 0,31 0,25 1119 0,39 0,36 1269 0,38 0,36
2010 679 0,00 0,00 1264 0,97 1,18 754 0,86 1,15
2011 1254 0,45 0,44 934 0,24 0,15 1186 0,28 0,17
2012 1402 2,90 3,76 1179 0,34 0,30 1359 0,80 0,44
2013 1234 0,00 0,00 1450 1,45 1,86 1264 1,27 1,80
2014 1290 0,45 0,45 873 0,00 0,00 1205 0,19 0,03
2015 1377 0,64 0,69 1028 0,50 0,52 1309 0,53 0,53
2016 1173 0,00 0,00 909 0,19 0,08 1111 0,18 0,08

aWhen applying the equations to real satellite data, adjustment methods explained in sections 4.1 and 4.2 were used.

Table 2. Correlation Factors (With Significant Levels SL) Between Time Series of HLDJF Computed From NCEP Reanalysis [Kalnay et al.,
1996] and Time Series of DWF Indicators Given Directly by the Model, Predicted by Model Chlorophyll Concentration and Ocean Color
Data Applying the Linear Equations Established in Section 3.1, Predicted by Model SLA and Altimetry Data Applying the Linear Equa-
tions Established in Section 3.2, and Predicted by Combined Model SLA and Chlorophyll Concentration and Combined Altimetry and
Ocean Color Data Applying the Bilinear Equations Established in Section 3.3a

Predicted From MLDmean VMLD s29:11 Period
Length
(years)

Direct model results 0.681 (>0.999) 0.746 (>0.999) 0.707 (>0.999) 1976–2013 38
Modeled (chlorophyll) 0.777 (>0.999) 0.669 (>0.999) 0.644 (>0.999) 1976–2013 38
Ocean color data 0.667 (0.998) 0.583 (0.991) 0.568 (0.989) 1998–2016 19
Modeled SLA 0.683 (>0.999) 0.685 (>0.999) 0.667 (>0.999) 1976–2013 38
SLA from altimetry 0.241 (0.744) 0.602 (0.998) 0.596 (0.998) 1993–2016 24
Modeled SLA 1 CHL 0.725 (>0.999) 0.682 (>0.999) 0.647 (>0.999) 1976–2013 38
Altimetry 1 ocean color 0.434 (0.937) 0.687 (>0.999) 0.594(0.993) 1998–2016 19

aWhen applying the equations to real satellite data, adjustment methods explained in sections 4.1 and 4.2 were used.
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concentration. Durrieu de Madron et al. [2013] and Houpert et al. [2016] used chlorophyll satellite data to
propose DWF rate estimates (see section 2.3). Their method assumes that when convection occurs it
reaches the bottom hence overestimates intermediate convection cases (see section 1). Indeed, for years
2009–2013, the range of DWF rate proposed by Somot et al. [2016] (0.2–1.7 Sv for s29:11) was larger than
the one proposed by Houpert et al. [2016] (0.9–1.7 Sv), with same maximum value but lower weak and
intermediate values. Moreover, the day of maximum extension used by Durrieu de Madron et al. [2013]
and Houpert et al. [2016] can be missed since the temporal coverage of the daily data is not perfect (we
computed a temporal coverage of 20–35% for the daily data set proposed by SeaWIFS and MODIS). Our
method allows to reduce the temporal coverage issue since we compute the depleted area using values
averaged over �2 months (see section 3.1). Using those averaged values instead of instantaneous values
also enables to consider the full range of convection cases. Averaging the surface chlorophyll concentra-
tion indeed allows to integrate both spatial and temporal information about the intensity of the convec-
tion: deeper convection cases are associated with longer durations and to chlorophyll depleted areas of
larger extension (and inversely). Finally, our method also allows to cope with the intermediate convection
issue because it is based on a linear relationship determined from all the convection cases obtained in
the model over a 38 year period. We consequently determined values of the relationship coefficient by
which we multiply the chlorophyll depleted area of 751 and 1057 m for, respectively, VMLD and s29:11 (see
section 3.1), i.e., not implying that convection obligatorily reaches the bottom under the chlorophyll
depleted area.

The method proposed in this studies has, however, some weaknesses.

First, as seen above, comparison with atmospheric heat loss and previous observations and modeling stud-
ies suggests that time series of DWF indicators obtained from satellite data underestimate or overestimate
DWF in some cases.

Time series from satellite chlorophyll concentration seems to overestimate DWF for 2006 and 2013 and to
underestimate it for 2012 (Figure 3). This is due to the particular chronology of those convection events. Fig-
ure 10 shows the daily evolution of the mixed volume and average SLA and SST over the NWMS for winters
during which HLDJF is stronger than the average (2005, 2006, 2010, 2012, 2013). In 2012, the second most
convective winter in the simulation in terms of volumes (Figure 3), the convection event is very short com-
pared to other years, leading to an underestimation of AlowCHL hence of DWF, both in model and in data.
2006 and 2013 are not the most convective years in terms of volumes, however in 2006, the convection
begins very early, and for both years it lasts throughout the winter with several peaks. The surface is there-
fore depleted in chlorophyll during a long time, and the resulting AlowCHL is high for satellite observations.
The model does not reproduce this. This is due to an overestimation of the modeled chlorophyll concentra-
tion during the periods and in the regions of weak convection, that results in an underestimation of AlowCHL.
Using in situ and satellite observations, Auger et al. [2014] indeed showed that the model tends to overesti-
mate the winter chlorophyll concentration (February to mid-March, their Figures 3 and 8). This overestima-
tion of chlorophyll concentration in the model, also discussed in section 4.1, can be seen on time series and
maps of winter average chlorophyll concentration: the mean chlorophyll concentration during the period
25 January to 21 March is overestimated by, respectively, 70% and 20% for 2006 and 2013, and is generally
overestimated for years of weak convection (Figure 8); the regions outside the depleted area show a posi-
tive chlorophyll concentration bias in the model (Figures 1 and 4).

Time series from altimetry SLA seems to underestimate DWF for 2006, 2010, and 2013 and to overestimate
it for 2012 (Figure 3). This is not the case for time series obtained from modeled SLA. Discrepancies between
the modeled and satellite SLA are due partly to the representation of the steric effect in the model, which is
computed from monthly fields (section 2.1). High frequency variations of the steric effect that can, for exam-
ple, be induced by a sudden surface cooling/warming are therefore not included in the model. In average,
since we consider the average SLA over the period 15 February to 15 March, the impact is limited, but for
some particular cases it can impact the computation of AlowSLA. Though 2012 is not the strongest convective
year, the surface is very cold between 15 February and 15 March (see Figure 10). This cooling seems to be
captured by the altimetry data that contains the real steric effect, contrary to the model. In 2006, 2010, and
2013, on the contrary, there are several warm events between 15 February and 15 March. As a result, the
altimetry SLA is not very low and AlowSLA is not very high, resulting in an underestimation of the DWF indica-
tors by altimetry that is not observed in the model.
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Second, the relationships between
DWF, SLA, and chlorophyll concen-
tration were established from the
model results. As seen above, this
model shows some weaknesses in
the representation of physical and
biogeochemical processes and of
their interactions. The established
relationships are therefore not
completely adapted for real altime-
try and chlorophyll concentration
data. Using corrective methods
detailed in section 4.1 and 4.2 when
applying the linear relationships
found in the model to the real data
set partly corrected those weak-
nesses. However, increasing the
realism of the coupled model is
essential to increase the ability of
the linear relationships established
in the model to represent the real
physical interactions between DWF,
SLA, and chlorophyll concentration.
The performance of the coupled
model should be improved in par-
ticular by recalibrating biogeo-
chemical model parameters on the
2012–2013 well documented peri-
od, and by providing daily variable
lateral boundary conditions to the
physical model in order to better
represent high frequency of steric
effect.

Third, results from the numerical
model have by definition a com-
plete and high resolution spatial
and temporal coverage. On the con-
trary, the coverage of satellite data
is not perfect, due to the spatial and
temporal resolution of the measure-
ments and to external factors which
hinder the measurements. Altimetry
tracks are indeed spaced by several
days and hundreds of kilometers in
the NWMS. Ocean color data, though
made daily at a high spatial resolu-
tion, are strongly impacted by cloud
cover, showing an average coverage
of 20–35%. These weaknesses of sat-
ellite data coverage can impact their
ability to capture correctly the high

frequency variations of SLA and chlorophyll concentration, which can be a reason for the misrepresentation of
some DWF cases. The precision and accuracy of the satellite measurements and of the algorithms used to pro-
duce the data are an additional source of uncertainty in our time series.

Figure 10. Evolution between 1 December and 30 April of the modeled daily mean
of the (top) mixed volume, (middle) SLA, and (bottom) SST averaged over the NWMS
for winters 2004–2005, 2005–2006, 2009–2010, 2011–2012, and 2012–2013.
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Fourth, this study is based on the hypothesis that there is a strong linear relationship between DWF, SLA,
and chlorophyll concentration. The reality is of course more complex, and SLA and chlorophyll concentra-
tion are impacted by other factors. The source of uncertainty linked to the linear regression analysis was
estimated by giving the values of NRMSE and correlation between time series computed directly from the
model results, and computed by applying the relationships to the model SLA and chlorophyll outputs:
NRMSE varies between 10% and 15%, and correlation factors between 0.64 and 0.89 (SL> 0.99). In particular
MLDmean is by construction a less integrated indicator than s29:11 and VMLD, which take into account both
the depth and the area impacted by deep convection. The physical link between MLDmean and the SLA and
chlorophyll concentration is therefore less direct than for the volumic indicators. This explains that the cor-
relation between MLDmean and AlowCHL and AlowSLA (respectively, 0.64 and 0.75 versus 0.88 and 0.83 for VMLD

and 0.89 and 0.77 for s29:11, Figure 5), though still significant at more than 0.999, is weaker than for the other
indicators. This explains the weaker correlation between VMLD time series obtained from altimetry data and
HLDJF (0.24, SL 5 0.74 versus 0.60, SL> 0.99 for VMLD and s29:11, Table 2 and Figure 3). For the time series
obtained from ocean color data on the contrary, MLDmean shows the highest correlation with HLDJF (0.67 ver-
sus 0.58 and 0.57 for VMLD and s29:11, Table 2), though the correlation between AlowCHL and MLDmean is the
weakest of all (0.64 versus 0.88 and 0.89 for VMLD and s29:11, Figure 5). The link between the atmospheric
heat flux and the primary production is actually not only due to the effect of vertical mixing induced by
cold atmospheric events on chlorophyll concentration, but also to the influence of the surface layer temper-
ature, that largely depends on atmospheric heat flux, on primary production [Herrmann et al., 2014]. This
high correlation between the time series of MLDmean obtained from ocean color data and atmospheric heat
loss therefore rather reflects this link between surface temperature and chlorophyll concentration than the
ability of ocean color data to capture MLDmean interannual variability.

In this method, we use altimetry and ocean color data as proxies of DWF. Since DWF results from surface
buoyancy loss, that is mostly associated with cooling in the NWMS [Herrmann et al., 2010], one could con-
sider using sea surface temperature (SST) as a proxy of DWF, similarly as what we did for SLA and chloro-
phyll concentration. However, the correlation between the winter SST and DWF indicators is much lower
(<0.50) and less significant in our simulation than the correlations between winter SLA and chlorophyll con-
centration and DWF indicators. This is due to several reasons. First, the temperature does not decrease regu-
larly with depth in the NWMS, due to the presence of the warm Levantine Intermediate Water (LIW)
between the colder surface Modified Atlantic Water (MAW) and Western Mediterranean Deep Water. When
the mixed layer deepens, the temperature consequently first increases when it reaches the LIW, then
decreases. Second, atmospheric events but also advection of cold and fresh (due to the Rhone river input)
thus light water produced on the Gulf of Lions shelf toward the open sea can induce strong but brief cool-
ing events of surface water in the convection area, not necessarily associated with DWF. Those elements
suggest that determining an SST criteria and building a DWF indicator from SST satellite data would not be
possible.

6. Conclusion

Estimating the volume of dense water produced by deep convection and its interannual and long-term vari-
ability is of primary importance for the study of ocean circulation and ecosystems. Our objective in this
paper was to propose a method allowing to assess the interannual variability of DWF using multisensors
gridded altimetry and ocean color satellite data. For that we took the case of the NWMS which can be con-
sidered as a golden case study of DWF. We used the results of a 38 year simulation performed over the
NWMS with the hydrodynamical-biogeochemical coupled high resolution model SYMPHONIE-Eco3M-S. Sta-
tistically significant correlations were computed in the model between the areas of low SLA and low surface
chlorophyll concentration in winter on one side, and the DWF intensity estimated in terms of depth and vol-
umes of affected water (mean MLD, mixed volume, and volume of newly formed dense water) on the other
side. This allowed us to establish linear relationships between sea surface height and chlorophyll concentra-
tion and DWF. These relationships are not empirical but are obtained from a model that reproduces realisti-
cally the physical links between the ocean dynamics and the biogeochemistry. Using a 4 times longer
simulation at a twice higher resolution than Herrmann et al. [2009], including in particular the period 2005–
2013 with several convective years (see Figure 3), we increased the robustness of those relationships. We
then applied those relationships to time series of areas of low SLA and low surface chlorophyll
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concentration computed, respectively, from SSALTO-DUACS altimetry 24 year data set and SeaWIFS and
MODIS ocean color data, merged to produce a 19 year data set. The chlorophyll concentration bias between
the model results and the data was taken into account by adapting the threshold used to compute the
depleted area. The smoothing effect of the gridded altimetry data was taken into account by applying a
multiplying corrective factor to the low SLA area observed from altimetry. This allowed us to produce for
the NWMS the first long time series of DWF indicators obtained from observations covering the last 2 deca-
des. By comparison with existing estimations of DWF indicators and with the atmospheric heat loss over
the region, we showed that the DWF indicators time series obtained from SSALTO-DUACS and merged stan-
dard ocean color data sets reproduce well the interannual variability and range of DWF intensity. We dis-
cussed the advantages and strengths but also the weaknesses and uncertainties of our method
(misrepresentation of several DWF cases; realism of the linear relationships; ability of the numerical model
to represent realistically the physical and biogeochemical processes, their interactions and their variability;
spatiotemporal coverage, accuracy and precision of satellite data sets).

Using a combination of altimetry and ocean color data through bilinear relationships does not significantly
modify the resulting DWF indicators time series. This is due to the fact that in the model correlations between
the predicted and direct time series for a given DWF indicator are significantly different for AlowSLA and AlowCHL.
Using bilinear relationships could be more efficient if those correlations were higher and more similar, which
could be obtained when correcting the model weaknesses in the representation of those variables.

Smoothing effect of gridded altimetry data should disappear in the SWOT wide-swath satellite altimetry
mission (Surface Water and Ocean Topography, from 2020), that will provide sea level data with a complete
spatial coverage at a much higher resolution. This should allow to increase significantly the quality of the
DWF indicators time series obtained from altimetry data set.

Our method is not proposed as a replacement of in situ measurement. In situ measurements methods dedi-
cated to the observation of water masses in DWF sites are necessary to estimate the volume of those water
masses and to evaluate and correct the models used to study and forecast DWF, hence to build our method.
However, satellite data are highly complementary to in situ measurements given the length and quality of
their spatial and temporal coverage. Such a coverage would be too expensive to be reached through in situ
measurements and allows to monitor the interannual and long-term evolution of processes implied in
ocean circulation like DWF.

The feasibility of our method was examined for the NWMS convection region, but deep convection occurs
in other regions of the world ocean, in particular the Greenland and Labrador seas. Deep water masses
formed in those regions play a key role in the Atlantic and global ocean circulation. Numerical simulations
suggested a weakening of global overturning circulation due to a decrease of dense water formation under
the influence of climate change. Long-term quantitative monitoring of DWF in deep convection regions of
the world ocean and of its long-term trend is therefore of great importance. Our method applied to those
regions could contribute to this monitoring.
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