

[Journal of Geophysical Research: Oceans]

Supporting Information for

[Influence of the phytoplankton community structure on the spring and annual primary production in the North-Western Mediterranean Sea]

[Nicolas Mayot¹, Fabrizio D'Ortenzio¹, Julia Uitz¹, Bernard Gentili¹, Joséphine Ras¹, Vincenzo Vellucci¹, Melek Golbol¹, David Antoine^{1,2} and Hervé Claustre¹]

[¹Sorbonne Universités, UPMC Univ Paris 06, INSU-CNRS, Laboratoire d'Océanographie de Villefranche (LOV), 181 Chemin du Lazaret, 06230 Villefranche-sur-mer, France.

²Remote Sensing and Satellite Research Group, Department of Physics and Astronomy, Curtin University, Perth, Western Australia 6845, Australia.]

Contents of this file

This supporting information document contains the description of the bio-optical primary production model used in this study, and two supplementary figures.

To estimate the phytoplankton carbon production, the bio-optical model of primary production of *Morel* [1991] is used. This model assesses primary production (P) integrated between the surface and the depth of the productive layer (D, 1.5 Z_{eu}), over the duration of the day (L) and within the spectral limits of the photosynthetic domain (λ_1 - λ_2 , 400 and 700 nm) following Eq. (1):

$$P = 12 \int_{0}^{D} \int_{\lambda_{1}}^{L} \int_{\lambda_{1}}^{\lambda_{2}} E(z, t, \lambda) [Chl - a](z, t) a^{*}(z, t, \lambda) \varphi_{c}(z, t, \lambda) dz dt d\lambda$$
(1)

with E (mol quanta m⁻² s⁻¹) the irradiance at a depth z, time t and wavelength λ , [Chl-a] (g m⁻³) the in-situ measured chlorophyll-*a* concentration, a^{*} (m⁻² [gChl]⁻¹) the chlorophyll-specific absorption coefficient of phytoplankton, ϕ_c (molC [mol quanta]⁻¹) the quantum yield of carbon fixation, and 12 a factor to convert moles of carbon into grams of carbon. Here the temporal dependency of [Chl-a], a^{*} and ϕ_c is not taken into account so these variables are considered constant over the entire day. The irradiance E is expressed as Photosynthetically Available Radiation (PAR, mol quanta m⁻² d⁻¹) and a daily average value at the ocean surface retrieved from satellite is used and propagated along the water column using a spectral attenuation coefficient of downwelling irradiance derived from the measured [Chl-a] profile as in [*Morel*, 1988].

By convention the photosynthesis rate (P) is normalized with respect to the phytoplankton biomass, P^B (here the [Chl-a] is used as a proxy of the biomass). Then, for a day and at a certain depth (z) the primary production can be obtained as

$$P(z) = [Chl - a](z) \times P^{B}(z)$$
(2a)
$$P^{B}(z) = 12 \int_{\lambda_{1}}^{\lambda_{2}} PAR(z,\lambda) a^{*}(z,\lambda) \phi_{c}(z,\lambda) d\lambda$$
(2b)

The spectral coefficient $a^*(\lambda)$ can be described using two parameters: its maximal value (a^*_{max}) and its spectral shape calculated as $a^*(\lambda)$ normalized to a^*_{max} (A^{*}(λ)). This allows to use the Photosynthetically Usable Radiation (PUR), rather than the PAR, defined as

$$PUR(z) = (a_{max}^{*}(z))^{-1} \int_{\lambda_{1}}^{\lambda_{2}} PAR(z,\lambda) a^{*}(z,\lambda)d\lambda = \int_{\lambda_{1}}^{\lambda_{2}} PAR(z,t,\lambda) A^{*}(z,\lambda)d\lambda$$
(3)

Therefore, from Eq. (3), P^B can be expressed as

$$P^{B}(z) = 12 PUR(z) a_{max}^{*}(z) \int_{\lambda 1}^{\lambda 2} \phi_{c}(z, \lambda) d\lambda \qquad (5)$$

The action spectrum of photosynthesis is also considered similar to the absorption spectrum [*Lewis et al.*, 1985]. Hence the wavelength dependency of ϕ_c is ignored, and its value is considered proportional to the amount of light usable by the phytoplankton (i.e. PUR). The ϕ_c is then determined according to its maximal value (ϕ_{cmax}) and a function f(x) defined in the interval [1; 0], $\phi_c = \phi_{cmax} f(x)$. This function should depend on the total usable radiation PUR and allows carbon fixation to reach a maximum as the light level x tends to 0, and to decrease towards 0 as x tends to infinity. The formulation of [*Platt et al.*, 1980] is selected, with x representing light in a dimensionless unit (i.e. normalized PUR)

$$x = \frac{PUR}{KPUR}$$
(6a)
$$f(x) = x^{-1}(1 - e^{-x})e^{-\beta x}$$
(6b)

with KPUR (mol quanta m⁻² s⁻¹) the light level at which the light-saturated production regime starts, derived from the photosynthesis versus irradiance curve (the so-called "P^B vs I" curve, **Fig. S1**), and β (gC [gChl]⁻¹ h⁻¹ [mol quanta m⁻² s⁻¹]⁻¹) a parameter describing the process of photoinhibition. Now, P^B can be expressed as

$$P^{B}(z) = 12 a^{*}_{max}(z) \phi_{cmax} \text{ KPUR } [x. f(x)] = \text{KPUR } \alpha^{B} [x. f(x)]$$
(7)

with [x.f(x)] representing the normalized "P^B vs I" curve (**Fig. S1**) and α^{B} (g C [g Chl-a]⁻¹ h⁻¹ [mol quanta m⁻² s⁻¹]⁻¹) the initial slope of this normalized "P^B vs I" curve. One of the key parameters of this curve is the maximum rate of carbon fixation (P^B_{max}),

$$P_{\text{max}}^{\text{B}} = \text{KPUR } a_{\text{max}}^* 12 \phi_{\text{cmax}} [x.f(x)]_{\text{max}}$$
(8)
with $[x.f(x)]_{\text{max}} = \beta^{\beta} (1+\beta)^{(-1+\beta)}$ for $x = \log((1+\beta)/\beta)$.

Here the Morel's model is applied at the level of phytoplankton groups using the groupspecific photophysiological parameters proposed by *Uitz et al.* [2008].

Figures

Figure S1. Idealized curve of the normalized photosynthetic rate versus the irradiance available ("P vs I" curve). The photosynthetic rate is normalized by the phytoplankton biomass (P^B) and the irradiance is represented as PUR (instead of PAR). KPUR, represents the light level at which the light-saturated regime starts. The parameter β allow the parametrization of the photoinhibition.

Figure S2. Climatological annual cycle of the [Fuco/(Fuco + Perid)] \times 100 pigment ratio, for the two studied trophic regimes: "Bloom" (a) and "High Bloom" (b).