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S3.1 Statement of the problem

We consider the dimensionless system defined by Eqs 11-12 in the main text, which are here
repeated for clarity:

dp̂

dt̂
= (1− r̂)EM − (1 + p̂) r̂

p̂

K + p̂
,

dr̂

dt̂
= r̂

p̂

K + p̂
(α(t̂)− r̂).

(S3.1)

As stated in the section Biomass maximization as an optimal control problem in the main
text, the objective of this study is to maximize the growth rate on an interval [0, τ ] after a
nutrient upshift. With Eq. S1.8 in S1 Text, we have

µ̂ = r̂
p̂

K + p̂
.

In order to avoid boundary effects occurring over finite time intervals, notably the depletion of
precursors just before τ , we solve the optimal control problem over an infinite horizon (τ → ∞).
Consider the set of admissible controls

U = {α : R → [0, 1] | α(·) measurable}.

The optimization problem can then be stated as follows:

αopt = argmax
α∈U

J(α) ≡
∫ +∞

0

r̂(t̂)
p̂(t̂)

K + p̂(t̂)
dt̂, (S3.2)

where (p̂(t̂), r̂(t̂)) is the unique solution of Eq. S3.1 starting at a given point (p̂0, r̂0) ∈ Ω ≡
R

+
∗ × (0, 1) for a given control α ∈ U .

Given that the performance index J(α) diverges, we actually consider overtaking optimal-

ity [1]. Consider the performance index of the trajectory x(·) emanating from x0 and generated
by u(·) defined for any T ≥ 0 by

JT (x0, u(·)) =
∫ T

0

f0(x(t), u(t), t)dt.
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A trajectory x∗(·) emanating from x0 and generated by u∗(·) is said to be overtaking optimal
if for any other trajectory x(·) emanating from x0 and generated by u(·) the following holds

lim inf
T→∞

{JT (x0, u
∗(·))− JT (x0, u(·))} ≥ 0.

Roughly speaking, a trajectory is overtaking optimal if "the performance index catches up with
the performance index of any other trajectory" [1].

S3.2 Maximum Principle

Necessary conditions on optimal trajectories can be obtained by the Infinite Horizon Maximum
Principle [1]. Let H(p̂, r̂, λp, λr, λ0, α) be the Hamiltonian of the system, defined by

H(·) ≡ λp EM (1− r̂)− r̂
p̂

K + p̂
[λp(1 + p̂) + λr r̂ + λ0] + αλr r̂

p̂

K + p̂
.

Moreover, let α be an optimal control, and x̂(·) = (p̂(·), r̂(·)) the associated trajectory. Then,
there exists λ0 ≤ 0 and an absolutely continuous map λ = (λp, λr) : [0,+∞) → R

2 such that
(λ, λ0) 6= 0, and

λ̇p = −∂H

∂p̂
= r̂

K

(K + p̂)2
[λp (1 + p̂) + λr (r̂ − α) + λ0] + r̂

p̂

K + p̂
λp, (S3.3)

λ̇r = −∂H

∂r̂
= λp EM +

p̂

K + p̂
[λp (1 + p̂) + λr (2r̂ − α) + λ0] . (S3.4)

The maximization condition is given by:

α(t̂) ∈ arg maxv∈[0,1]H(x̂(t̂), λ(t̂), λ0, v),

almost everywhere on [0,+∞).
(S3.5)

An extremal trajectory is a quadruplet (x̂(·), λ(·), λ0, α(·)) satisfying Eqs S3.1-S3.5. The
extremal is said to be normal (resp. abnormal) if λ0 < 0 (resp. λ0 = 0). In the normal case,
we normalize the adjoint vector so that λ0 = −1.

From Eq. S3.5, it follows that the control strategy is given by the sign of the switching

function φ(·) ≡ λr r̂ p̂/(K + p̂), that is,

{

α = 1 ⇐⇒ φ(·) > 0,

α = 0 ⇐⇒ φ(·) < 0.

Finally, given that the system is autonomous, the Hamiltonian is conserved along any ex-
tremal trajectory.

S3.3 Characterization of singular arcs

Whenever φ is vanishing over a time interval, we say that the trajectory is singular. We will
now characterize such trajectories. If I = [t̂1, t̂2] is a singular arc, we have φ(t̂) = φ̇(t̂) = 0, for
all t̂ ∈ [t̂1, t̂2], that is, λr(t̂) = 0 and λ̇r(t̂) = 0.

For abnormal extremal trajectories, we get λp(t̂) = 0, in contradiction with the Maximum
Principle, so there is no singular arc. An abnormal extremal trajectory is therefore a concate-
nation of bang arcs.
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For normal extremal trajectories, using additionally that H is constant along an extremal
trajectory, we obtain that λp is constant along a singular arc. By combining λ̇p = 0 and λ̇r = 0,
we obtain p̂(t̂) =

√
EM K = p̂∗opt. Using dp̂/dt̂ = 0, we finally get r̂(t̂) = r̂∗opt. Thus, the

singular arc is the optimal steady state, corresponding to a singular control α(t̂) = α∗
opt, with

α∗
opt depending on EM (S1 Text).

A necessary condition of optimality for a singular arc is given by the Kelley condition [2].
We must differentiate φ with respect to t̂ until α appears in the derivative. Along a singular
arc, we obtain for q = 2:

(−1)q
∂

∂α

d2q

dt̂2q
φ(t̂) < 0,

satisfying the Kelley condition necessary for optimality. Given that the singular arc is of second
order, an optimal trajectory can enter into the singular arc only by a chattering arc (also called
the Fuller’s phenomenon, i.e., an arc with an infinite number of switches [2, 3]).

S3.4 Analysis of the adjoint system

Recalling that a switch corresponds to a change of sign of λr, the analysis of the adjoint system
(Eqs S3.3-S3.4) may be useful to characterize the switches of extremal trajectories.

First, for the abnormal case, we can easily determine in the phase-plane the possible tran-
sitions between the four regions defined by the axes (see Fig. S3.1). A trajectory can cross at
most twice the λp-axis, so we conclude that an abnormal extremal cannot have more than two
switches. Thus, an abnormal extremal is a concatenation of at most three bang arcs (α(t) = 0
or α(t) = 1). When α(t) = 0 or α(t) = 1 for a long time, the growth rate tends to zero. We
therefore conclude that abnormal extremal trajectories are not optimal.

Secondly, for the normal case, after the first switch, a trajectory with two consecutive
switches in the regions {(p̂, r̂) ∈ Ω | p̂ < p̂∗opt} or {(p̂, r̂) ∈ Ω | p̂ > p̂∗opt} is not possible, as
shown in Fig. S3.1. Therefore, such a trajectory is not optimal given that it does not fulfill the
conditions given by the Maximum Principle. We conclude that if the optimal trajectory has a
concatenation of bang arcs, the switches must alternatingly occur in the regions {(p̂, r̂) ∈ Ω |
p̂ < p̂∗opt} and {(p̂, r̂) ∈ Ω | p̂ > p̂∗opt}.

λp

λr

λs
p

0

α = 1

α = 0

if p< p∗opt if p> p∗opt

Figure S3.1: Transitions between regions in the phase-plane for the adjoint system.
A switch occurs when a trajectory crosses the λp-axis. Left: abnormal case. An extremal
trajectory cannot have more than two switches. Right: normal case. (λs

p, 0) corresponds to
the singular arc. After the first switch, an extremal trajectory cannot have two consecutive
switches if it stays in the region {(p̂, r̂) ∈ Ω | p̂ < p̂∗opt} or {(p̂, r̂) ∈ Ω | p̂ > p̂∗opt}.
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S3.5 Optimal trajectories

From the Maximum Principle, we have shown that the optimal trajectory is a concatenation
of bang arcs (α(t) = 0 or α(t) = 1) and possibly a singular arc corresponding to the optimal
steady state (p̂(t̂), r̂(t̂)) = (p̂∗opt, r̂

∗
opt). Moreover, if the optimal trajectory has a singular arc, it

must enter it through a chattering arc (i.e., with an infinite number of switches between α = 0
and α = 1).

These elements motivate the supposition that optimal solutions consist in a transient (chat-
tering arc) towards the optimal steady state, after which they remain there (until the next
change of environment). The chattering arc can be characterized by a switching curve p̂ 7→ ϕ(p̂)
which passes through the optimal steady state. Defining A0 and A1 the regions above and be-
low ϕ in the (p̂, r̂)-plane, respectively, we conjecture that the following feedback control law is
optimal:











α(t̂) = 0 if (p̂(t̂), r̂(t̂)) ∈ A0,

α(t̂) = 1 if (p̂(t̂), r̂(t̂)) ∈ A1,

α(t̂) = αopt if (p̂(t̂), r̂(t̂)) = (p̂∗opt, r̂
∗
opt).

(S3.6)

Loosely speaking, the chattering arc corresponds to a spiral composed of bang arcs wrapping
around the optimal steady state, where the switches alternatingly occur in the regions {(p̂, r̂) ∈
Ω | p̂ < p̂∗opt} and {(p̂, r̂) ∈ Ω | p̂ > p̂∗opt}, in line with the analysis of the adjoint system. This
is a first hint that the proposed control strategy is optimal. Moreover, our conjecture is also
in line with the turnpike property : Trélat and Zuazua [4] have shown that, for quite a generic
class of systems, the optimal strategy consists in staying at the optimal steady state (after a
short transient).

As explained in the Methods section of the main text, we numerically solved the optimal
control problem by the direct method using the bocop software [5]. It is important to stress
that the optimization process was performed without any preliminary assumptions on the
characteristics of the optimal trajectory. The fact that the numerical solution verifies the
Maximum Principle (i.e., the singular arc corresponds to the optimal steady state) and the
Kelley condition (i.e., the presence of a chattering arc) tends to confirm that the control strategy
of Eq. S3.6 is optimal. As an aside, we note that due to the fact that numerical optimization was
performed for a finite horizon, we actually obtained a second chattering arc escaping from the
singular arc at the end of the simulation. This is a classical property of the turnpike strategy:
the optimal trajectory leaves the optimal steady state just before the end of the time interval
of interest, in our case consuming almost all precursors. This arc was removed from the plot in
Fig. 4, because it does not occur with an infinite horizon and is therefore a numerical artifact
for this study.
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