Corrigenda of ’Explicit wave-averaged primitive equations using a Generalized Lagrangian Mean’
Type | Article | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Date | 2017-05 | ||||||||||||
Language | English | ||||||||||||
Author(s) | Ardhuin Fabrice![]() ![]() |
||||||||||||
Affiliation(s) | 1 : Univ Brest, CNRS, Lab Oceanog Phys & Spatiale, IFREMER,IRD, F-29200 Plouzane, France. 2 : Natl Tech Univ Athens, Sch Naval Architecture & Marine Engn, Athens, Greece. |
||||||||||||
Source | Ocean Modelling (1463-5003) (Elsevier Sci Ltd), 2017-05 , Vol. 113 , P. 185-186 | ||||||||||||
DOI | 10.1016/j.ocemod.2017.03.017 | ||||||||||||
WOS© Times Cited | 1 | ||||||||||||
Note | Refers To Fabrice Ardhuin, Nicolas Rascle, K.A. Belibassakis Explicit wave-averaged primitive equations using a generalized Lagrangian mean Ocean Modelling, Volume 20, Issue 1, 2008, Pages 35-60 | ||||||||||||
Keyword(s) | Wave-current, GLM, Air-sea | ||||||||||||
Abstract | Ardhuin et al. (2008) gave a second-order approximation in the wave slope of the exact Generalized Lagrangian Mean (GLM) equations derived by Andrews and McIntyre (1978), and also performed a coordinate transformation, going from a from GLM to a ’GLMz’ set of equations. That latter step removed the wandering of the GLM mean sea level away from the Eulerian-mean sea level, making the GLMz flow non-divergent. That step contained some inaccuarate statements about the coordinate transformation, while the rest of the paper contained an error on the surface dynamic boundary condition for viscous stresses. I am thankful to Mathias Delpey and Hidenori Aiki for pointing out these errors, which are corrected below. |
||||||||||||
Full Text |
|