FN Archimer Export Format PT J TI Abundant toxin-related genes in the genomes of beneficial symbionts from deep-sea hydrothermal vent mussels BT AF SAYAVEDRA, Lizbeth KLEINER, Manuel PONNUDURAI, Ruby WETZEL, Silke PELLETIER, Eric BARBE, Valerie SATOH, Nori SHOGUCHI, Eiichi FINK, Dennis BREUSING, Corinna REUSCH, Thorsten B. H. ROSENSTIEL, Philip SCHILHABEL, Markus B. BECHER, Doerte SCHWEDER, Thomas MARKERT, Stephanie DUBILIER, Nicole PETERSEN, Jillian M. AS 1:1;2:1;3:2;4:1;5:3,4,11;6:3;7:5;8:5;9:1;10:6;11:6;12:7;13:7;14:8,9;15:2,8;16:2,8;17:1,10;18:1; FF 1:;2:;3:;4:;5:;6:;7:;8:;9:;10:;11:;12:;13:;14:;15:;16:;17:;18:; C1 Max Planck Inst Marine Microbiol, Bremen, Germany. Ernst Moritz Arndt Univ Greifswald, Inst Pharm, Greifswald, Germany. Commissariat Energie Atom & Energies Alternat, Genoscope Ctr Natl Sequencage, Evry, France. Commissariat Energie Atom & Energies Alternat, Metab Genom Grp, Evry, France. Okinawa Inst Sci & Technol, Marine Genom Unit, Onna, Japan. GEOMAR Helmholtz Ctr Ocean Res Kiel, Evolutionary Ecol, Kiel, Germany. Inst Clin Mol Biol, Kiel, Germany. Inst Marine Biotechnol, Greifswald, Germany. Ernst Moritz Arndt Univ Greifswald, Inst Microbiol, Greifswald, Germany. Univ Bremen, D-28359 Bremen, Germany. Univ Evry Val dEssonne, Evry, France. C2 INST MAX PLANCK, GERMANY ERNST MORITZ ARNDT UNIV GREIFSWALD, GERMANY CEA, FRANCE CEA, FRANCE OKINAWA INST SCI TECH OIST, JAPAN GEOMAR, GERMANY INST CLIN MOL BIOL, GERMANY INST MARINE BIOTECHNOL, GERMANY ERNST MORITZ ARNDT UNIV GREIFSWALD, GERMANY UNIV BREMEN, GERMANY UNIV EVRY VAL DESSONNE, FRANCE IF 8.303 TC 41 UR https://archimer.ifremer.fr/doc/00382/49381/49802.pdf LA English DT Article CR BIOBAZ 2013 MOMARETO BO Pourquoi pas ? AB Bathymodiolus mussels live in symbiosis with intracellular sulfur-oxidizing (SOX) bacteria that provide them with nutrition. We sequenced the SOX symbiont genomes from two Bathymodiolus species. Comparison of these symbiont genomes with those of their closest relatives revealed that the symbionts have undergone genome rearrangements, and up to 35% of their genes may have been acquired by horizontal gene transfer. Many of the genes specific to the symbionts were homologs of virulence genes. We discovered an abundant and diverse array of genes similar to insecticidal toxins of nematode and aphid symbionts, and toxins of pathogens such as Yersinia and Vibrio. Transcriptomics and proteomics revealed that the SOX symbionts express the toxin-related genes (TRGs) in their hosts. We hypothesize that the symbionts use these TRGs in beneficial interactions with their host, including protection against parasites. This would explain why a mutualistic symbiont would contain such a remarkable 'arsenal' of TRGs. PY 2015 PD SEP SO Elife SN 2050-084X PU Elife Sciences Publications Ltd VL 4 IS e07966 UT 000373850100001 BP 1 EP 39 DI 10.7554/eLife.07966 ID 49381 ER EF