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2. Figures S1 to S9

S1. Residual analysis

As shown in previous studies the SOM-FFN product is capable of reconstructing the gridded

SOCATv2 observations with a negligible small global mean bias of 0.16 µatm and a root mean

squared error (RMSE) of about 15 µatm for the entire time period from 1982 through 2011.

This conclusion applies also to each 5-year sub period, during which the data availability differs

hugely (Figure S1). We find for each period and each ocean basin separately, that the bias

remains small ranging from a minimum of roughly -2 µatm in the Indian Ocean throughout our

analysis period to a maximum of about 4 µatm in the Atlantic Ocean from 1997 through 2001,

i.e., a period with fewer observations. In general though, we find only little indication that the

bias magnitude depends on the amount of available data. More importantly though, there is

no systematic trend in the bias, which gives us confidence in our trend estimates. In contrast,

the RMSE actually increases with increasing number of observations, which we interpret to

be caused by the progressively larger inclusion of data stemming from highly variable regions,

such as coastal margins and the high latitudes.

The SOCAT-based residual assessment is confirmed when the SOM-FFN pCO2 estimates are

compared with independent observations from the LDEOv2013 database, i.e., by comparing our

estimates to data from this database that are not included in SOCATv2 (Figure S2). Globally,

the bias for each 5-year period stays close to zero, with the exception of the first period when

data are very sparse. But this comparison also shows more substantial sub-basin differences,

with 5-year average biases exceeding ±10µatm in the Pacific Ocean from 1982 through 1986

and similar biases in the Indian Ocean from 2002 through 2006. We attribute these periods of
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large differences to low data availability. Encouragingly, there is still no significant trend in the

global pCO2 bias or any sub-basin bias, giving us confidence in our findings.

We further check for potential spatial biases in the residuals by plotting the temporal mean

bias for the periods 1982-1991, 1992-2011 and 2002-2011, again for the SOCATv2 dataset

(Figure S3) and for the data from the LDEOv2013 dataset that were not used to create our

product (Figure S4). We find that the largest neural network-observation mismatch occurs in

the high latitudes and equatorial Pacific, i.e. the high variability regions of the global ocean,

confirming our previous results. However, there is no indication of a systematic bias in the

spatial domain, i.e., no large ocean region is either continuously biased low or high.

Overall we conclude that our method is capable of reproducing the available observations

within a small error margin, based on the analysis of dependent as well as independent obser-

vations.

S2. Comparison with timeseries stations

As a second test to assess the ability of SOM-FFN to reconstruct decadal pCO2 variability

and trends, we compare our neural network derived surface ocean pCO2 estimates with the ob-

served pCO2 from two of the longest running timeseries stations, i.e., with data that are not

included in SOCATv2. We therefore extracted the combined record of the BATS - Bermuda At-

lantic Timeseries Station and Bermuda Hydrostation S located 31.66�N, 64.16�W in the Atlantic

Ocean (Figure S5) and the HOT- Hawaiian Ocean Timeseries station ALOHA located 22.75�N,

158.00�W in the Pacific Ocean (Figure S6). Both timeseries stations offer more than 20 years of

roughly monthly measured surface ocean carbon system parameters. For the analysis, we com-

pare the timeseries station data with the average of the four closest SOM-FFN pixels around the

timeseries location, weighted by their distance. The length of both timeseries allows us to in-
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vestigate several variability signals individually, namely the seasonal cycle, decadal trends and

interannual to decadal variability.

The comparison with the Bermuda record reveals that the SOM-FFN estimate captures the

observed pCO2 variations rather well, despite the fact that the SOM-FFN method was trained

on a rather limited data set in this region, i.e., covering mostly just the post 2006 period (see

blue dots) (Figure S5a). Also the mean seasonal cycle is well represented, even though there

is a tendency for the seasonal amplitude to be underestimated (Figure S5a). We suspect that

this is an consequence of our method relying on data covering an entire biogeochemical region

in order to create its final product, thus there is likely a tendency to underestimate the true

variability. Also the SOM-FFN based long-term pCO2 trend, calculated by removing the mean

seasonal cycle from the pCO2 timeseries, appears to be somewhat underestimated relative to

the observations (Figure S5c). This is particularly visible in the first decade, where the least

amount of data were available to train the neural network. Given that a key result of our global

SOM-FFN analysis is the stalling/reduction of the global carbon sink during the 1980s and

1990, the fact that the SOM-FFN method underestimates the pCO2 increase in the first decades

implies that if anything, our method underestimates the carbon sink reduction over this period,

at least in the biogeochemical region of the subtropical North Atlantic. A similar tendendy

for underestimation of the variability is also seen on interannual timescales, where the pCO2

variability from the SOM-FFN method calculated by removing the slope of the linear trend

shows much smaller amplitude than the observations. This is particularly the case for the first

20 years (see Figure S5d). In addition, the timing of the reconstructed interannual variability

signal does not agree well with the observations, but the difference is not significant given the
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substantial amount of high frequency noise in the observations, likely stemming from eddies

and local weather events, which are not considered in the SOM-FFN method.

Figure S6a-d shows the same analysis for the HOT station ALOHA. Similar to BATS, the

neural network based seasonal cycle underestimates the seasonal cycle at HOT, whereas we find

better agreement regarding the timing of minimum and maximum pCO2. Again, the HOT data

reveal a steeper pCO2 trend indicating that the neural network underestimates the carbon sink

reduction in the first 20 years of the analysis period in the subtropics of the northern hemisphere.

Figure S6d further suggests a larger, ENSO related, variability signal around the year 2000,

indicating that the neural network based pCO2 estimates might locally underestimate natural

climate variability signals.

Overall, the evaluation of our SOM-FFN estimates with independent data from the subtropical

timeseries stations reveals a remarkably good agreement, but with the SOM-FFN estimates

having the tendency to understimate the surface ocean pCO2 variability in the subtropics. This

further highlights the importance of long running and continuous timeseries data. .

S3. Drivers of air-sea CO2 flux variability

In order to determine the relative contribution of the two major terms in equation (1) to the

reconstructed air-sea CO2 flux variability and trends, we re-calculated the global and basin-wide

integrated carbon fluxes assuming either constant �pCO2 = pCO2 � pCOatm
2 or constant gas

transfer/sea-ice fraction (kw · S · (1 � fice) - global average) over time. In both cases, we used

the global mean values over the entire period as the constant value. Figure S7 reveals that the

identified trends almost entirely stem from the variability in �pCO2 and only to a lesser degree

from changes in wind and the gas transfer, which is in agreement with previous studies. With

longer term variations in �pCO2 almost entirely being driven by sea surface pCO2 (with the
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X - 6 LANDSCHÜTZER ET AL.: SUPPLEMENTARY MATERIAL

important exception of the long-term trend), this suggests that most of the air-sea flux variations

must be caused by oceanic processes affecting temperature, DIC, and Alk.

S4. EOF analyses of the air-sea flux of CO2

We further tested for potential influences of the gas transfer coefficient on our � EOF analysis

by repeating the global EOF analysis for the detrended air-sea flux density fields. Figure S8

illustrates the spatial amplitude of the first and second EOF. The pattern of Figure S8 are almost

identical to Figure 4b-c in the main text, confirming our previous finding that the air-sea CO2

flux variations are primarily a consequence of changes in oceanic pCO2. Somewhat larger

differences emerge for EOF2, where the dominance of the tropical Pacific signal in the EOF2

of �pCO2 is muted in EOF2 of the air-sea flux. In particular, a stronger EOF2 related signal

emerges in the Southern Ocean, owing to the substantial differences in the mean windspeed

between the two regions.

S5. Sensitivity of the integrated flux to data availability and drivers

As a first point of reference, we compare the annual mean integrated flux from this study to

the results published in, who reported and discussed the globally integrated ocean carbon sink

from 1998 through 2011 (Figure S9). Both reconstructions differ little and agree within their

respective uncertainties, even though there were considerably differences in the way the driver

data were used (see main text for details). In particular, both reconstructions suggest a rapid

strengthening of the ocean carbon sink within the most recent decade.

Next, we tested whether the substantial amount of additional data from the SOCATv3

database impact the decadal variability signal. This is particularly relevant as this newest ver-

sion adds much new data in the latest part of the record and also closes some earlier gaps (see

Figure S9b for the change in temporal coverage). It turns out that the SOCATv3 based recon-
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structions agree very well with those based on SOCATv2, with the exception, perhaps, of the

years 2010 and 2011, when the SOCATv3-based reconstruction suggest a somewhat smaller

ocean carbon sink. We interpret this to be a consequence of the data availability post 2011 in

the SOCATv3 case, which helps to constrain the trend in the last part of the record, i.e., a period

that the SOM-FFN method is sensitive to (see also below).

In order to further test the sensitivity of the method to data availability, we run a number of

validation cases, where data only from alternating 5-year intervals are used for training. Thus

in run ”Validation5-9”, only data from 1985 though 1989, 1995 through 1999, and 2005 though

2009 are used for training. Analogously, in run ”Validation0-4” only data from 1980 through

1984, 1990 through 1994, 2000 through 2004, and 2010 through 2014 are selected. These 5-

year periods are highlighted in Figure S9 as shaded areas in the background. For this sensitivity

runs, we employed data from SOCATv3.

These sensitivity experiments reveals no significant effect to this strong data thinning. An

exception is run ”Validation5-9” in the early 1980s, where the reconstructed flux is outside the

uncertainty interval of the results presented in this manuscript. As discussed in the main text,

this is a result of the SOM-FFN method having problems to extrapolate in time, owing to its

having to rely on atmospheric CO2 to reconstruct a trend. Thus, if no training data exist for

an entire period, the influence function associated with atmospheric CO2 is ill constrained. If

this period happens to be either at the beginning or the end, this lack of constraints can lead

to rather wrong trends in surface ocean pCO2, i.e., wrong trends in the air-sea CO2 flux. This

problem is worse in the 1980s, when the data constraints are overall weak anyway. Despite this

sensitivity to data availability in the 1980s, the reconstructed reduction of the sink in the 1990s
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and the following strengthening of the carbon sink are robust against the data density from 1990

onward.

Finally, we tested if our results are sensitive to our switching from fully varying driver data

for the post 1998 period to only climatologically varying driver data for the first period (1982

to 1997) (the affected driver data are only chlorophyll and mixed layer depth). To this end, we

ran a sensitivity case, where we reconstructed pCO2 without chlorophyll and mixed layer depth

as drivers, i.e., with only SST, sea-surface salinity and atmospheric CO2 as drivers. We find

that while the observational mismatch suffers from removing the climatologies, the integrated

flux does not change significantly (not shown). This is arguably an extreme sensitivity case, but

it bounds the magnitude of the potential impact of our using climatologies for chlorophyll and

mixed layer depth rather than their actual timeseries.

In conclusion, these analyses and tests demonstrate that the SOM-FFN based pCO2 estimates

are quite robust against changes in data density and driver availability, giving us good confidence

that the reconstructed variations are not caused by an artefact of the method or of the data.
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Figure S1. Residuals between the SOM-FFN pCO2 estimates and the SOCATv2 gridded observations

for the global ocean and the 4 major ocean basins (seperated at 44�S). Panel (a) shows the bias and

(b) the root-mean-squared error (RMSE) of the residuals divided into 5-year periods. The number of

gridded observations is illustrated in panel (c)

Figure S2. As Figure S1 but for residuals calculated between the neural network output and

LDEOv2013 gridded observations that are not included in SOCATv2. Note the difference in the y-

axis between Figures S1 and S2.

Figure S3. Spatial distribution of the residuals between the neural network estimates and the SO-

CATv2 gridded observations for 3 different timeperiods, namely 1982 through 1991, 1992 through

2001 and 2002 through 2011.

Figure S4. As Figure S3 but for residuals calculated between the neural network output and

LDEOv2013 gridded observations that are not included in SOCATv2.

Figure S5. Comparison between the neural network estimates (black) and the combined Bermuda

Atlantic Timeseries Station and Hydrostation S records (red). (a) shows the monthly timeseries, (b) the

mean seasonal cycle, (c) the linear trend and (d) the interannual variability.

Figure S6. As Figure S5 but for the comparison between the neural network estimates (black) and the

Hawaiian Ocean Timeseries Station (red)

Figure S7. Annual mean integrated air-sea CO2 flux from 1982 through 2011 based on the ETH30yr

output and the contributions of each basin (separated at 44�S) for case (a) with constant �pCO2 and

case (b) with constant gas exchange rate for comparison to Figure 1 in the main text.

Figure S8. Map of the spatial amplitude of the deseasonalized first and second global EOF of the

air-sea flux density.
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Figure S9. (a) SOM-FFN method sensitivity runs in comparison. The black line with uncertainty

shading illustrates the annual mean integrated carbon sink from this study. The green line shows the

same but with additional observations from the SOCATv3 database. The red line illustrates previously

published results. The light blue line illustrates the results without the use of climatological data. The

dark blue and puple lines represent runs where data were only selected at alternating 5 year periods

(highlighted by the shaded background in the same color). (b) The number of gridded observations

within the SOCATv2 and SOCATv3 datasets.
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