A Sensitivity Analysis of the Impact of Rain on Regional and Global Sea-Air Fluxes of CO2

Type Article
Date 2016-09
Language English
Author(s) Ashton I. G.1, Shutler J. D.1, Land P. E.2, Woolf D. K.3, Quartly G. D.
Affiliation(s) 1 : Univ Exeter, Ctr Geog Soc & Environm, Penryn Campus, Penryn TR10 9EZ, Cornwall, England.
2 : Plymouth Marine Lab, Prospect Pl, Plymouth PL1 3DH, Devon, England.
3 : Int Ctr Isl Technol, Stromness KW16 3AW, Orkney, Scotland.
Source Plos One (1932-6203) (Public Library Science), 2016-09 , Vol. 11 , N. 9 , P. e0161105 (1-18)
DOI 10.1371/journal.pone.0161105
WOS© Times Cited 16
Abstract

The global oceans are considered a major sink of atmospheric carbon dioxide (CO2). Rain is known to alter the physical and chemical conditions at the sea surface, and thus influence the transfer of CO2 between the ocean and atmosphere. It can influence gas exchange through enhanced gas transfer velocity, the direct export of carbon from the atmosphere to the ocean, by altering the sea skin temperature, and through surface layer dilution. However, to date, very few studies quantifying these effects on global net sea-air fluxes exist. Here, we include terms for the enhanced gas transfer velocity and the direct export of carbon in calculations of the global net sea-air fluxes, using a 7-year time series of monthly global climate quality satellite remote sensing observations, model and in-situ data. The use of a non-linear relationship between the effects of rain and wind significantly reduces the estimated impact of rain-induced surface turbulence on the rate of sea-air gas transfer, when compared to a linear relationship. Nevertheless, globally, the rain enhanced gas transfer and rain induced direct export increase the estimated annual oceanic integrated net sink of CO2 by up to 6%. Regionally, the variations can be larger, with rain increasing the estimated annual net sink in the Pacific Ocean by up to 15% and altering monthly net flux by > +/- 50%. Based on these analyses, the impacts of rain should be included in the uncertainty analysis of studies that estimate net sea-air fluxes of CO2 as the rain can have a considerable impact, dependent upon the region and timescale.

Full Text
File Pages Size Access
Publisher's official version 18 2 MB Open access
Top of the page