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Abstract

We introduce methods and software for estimating total seawater alkalinity from salinity and any combi-

nation of up to four other parameters (potential temperature, apparent oxygen utilization, total dissolved

nitrate, and total silicate). The methods return estimates anywhere in the global ocean with comparable

accuracy to other published alkalinity estimation techniques. The software interpolates between a predeter-

mined grid of coefficients for linear regressions onto arbitrary latitude, longitude, and depth coordinates, and

thereby avoids the estimate discontinuities many similar methods return when transitioning from one regres-

sion constant set to another. The software can also return uncertainty estimates scaled by user-provided

input parameter uncertainties. The methods have been optimized for the open ocean, for which we estimate

globally averaged errors of 5.8–10.4 lmol kg21 depending on which combination of regression parameters is

used. We expect these methods to be especially useful for better constraining the carbonate system from

measurement platforms—such as biogeochemical Argo floats—that are only capable of measuring one car-

bonate system parameter (e.g., pH). It may also provide a useful way of simulating alkalinity for Earth system

models that do not resolve the tracer prognostically.

An emerging strategy for monitoring the ocean carbon

cycle involves using sensors on profiling floats. The primary

advantages of this strategy are significant cost savings rela-

tive to shipboard measurements and the possibility of

extending data coverage to regions and seasons that ships

cannot routinely access with current resources. However,

while float-capable sensors can now measure several biogeo-

chemical properties including oxygen (O2) and nitrate (N)

(e.g., Johnson et al. 2010), float sensors can only currently

measure one of two carbonate system parameters required to

constrain the carbonate system in seawater. Ion-Sensitive

Field Effect Transistor (ISFET)-based sensors now allow pH

measurements on moorings, autonomous underwater

vehicles (AUVs), and profiling floats (e.g., Johnson et al.

2012, unpubl.; Bresnahan et al. 2014; Talley et al. 2014;

Schuller et al. 2015). However, while options exist for moor-

ings (Sutton et al. 2014; Fassbender et al. 2015), inexpensive,

small volume, low-power draw, fast response time, reagent-

free, and pressure-tolerant sensors are not yet available for

profiling float measurements of total seawater titration alka-

linity (AT), total dissolved inorganic carbon or (CT), or partial

pressure of CO2 (pCO2).

The need for additional carbonate system constraints led

many (e.g., Millero et al. 1998; Lee et al. 2006; McNeil et al.

2007; Alin et al. 2012; Sasse et al. 2012; Bostock et al. 2013;

Velo et al. 2013) to regress AT data measured on hydro-

graphic cruises against measurements of other seawater prop-

erties. The regression constants obtained allow AT to be later

estimated from other property measurements where AT

measurements are not also available. AT is an ideal carbonate

system parameter to estimate in this manner and use with

pH for several reasons: it is nearly orthogonal to pH as a con-

straint for the carbonate system; it mixes linearly and is

unaffected by temperature, gas exchange, or the continuing

ocean uptake of anthropogenic carbon; and it varies predict-

ably and linearly with other seawater properties. AT has simi-

lar measurement uncertainties to CT and pH (Bockmon and

Dickson 2015).

AT regression estimates have advanced since Millero et al.

(1998) showed that AT could be estimated across large
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regions of the surface ocean from simple regressions with

high accuracy, and similar regressions have been used to

simulate AT distributions in Earth system models (e.g., Gal-

braith et al. 2015). Scientists have worked to develop regres-

sions for new regions and to incorporate new AT

measurements into regression estimates. Sasse et al. (2012)

and Velo et al. (2013) recently showed that superior fits can

be obtained using neural networks or self-organizing maps

that divide measurement sets into optimized “neurons”

instead of regions, where a neuron can be thought of as a

collection of measurements that share similarities in their

meta, physical, or chemical data. This approach has the

advantage of eliminating the need for arbitrarily prescribed

regional boundaries, but the disadvantage of needing to

optimize the arbitrary number of allowed neurons.

We argue boundaries between regions and between neu-

rons limit the usefulness of the AT estimates obtained from

some of these methods and are unnecessary. One can imag-

ine a float drifting from one region to another, or transition-

ing into a new neuron when measuring across a

thermocline. In these cases, AT estimates will show a discon-

tinuity where the transition between one set of regression

coefficients to another occurs. A simple example is the

boundary between the Pacific and other sectors of the South-

ern Ocean where the estimates returned by equations from

Millero et al. (1998) change by 9 lmol kg21. A neuron transi-

tion can also happen over time at a fixed location provided

there is warming or freshening. These discontinuities could

show up as abrupt and spurious changes in the CT calculated

from, for instance, measured pH and estimated AT. We there-

fore argue that AT estimate consistency is at least as impor-

tant as AT estimate accuracy. Lee et al. (2006) recognized this

limitation and forced second order polynomials for sea sur-

face temperature and salinity, applied to regimes of both

physical and property space, to return identical estimates at

regime boundaries. This approach has the drawback of bias-

ing regression fits away from the values that return the

smallest residuals.

We present methods for estimating AT and associated

uncertainty globally at all ocean depths. These methods are

similar to the 3DwMLR method advocated by Velo et al.

(2013), which circumvents the need to carve datasets into

regions by considering a window around each estimate to be

its own region. We take the 3DwMLR approach a step fur-

ther by recognizing that linear coefficients can be linearly

interpolated, or triangulated in three dimensions, onto any

given location of interest. This ensures that transitions

between regression coefficient sets happen smoothly from

location to location. This aspect of our approach is very sim-

ilar to the recently published methods for estimating carbon-

ate mineral saturation in the North Pacific by Kim et al.

(2015). We call our approach LIAR, for “locally interpolated

AT regression.” The traditional meaning for our acronym

serves as a reminder that the AT values generated are only

estimates, not measurements.

In the “Procedures” section, we detail the methods we use

to generate regression coefficients. Then we detail how one

can estimate AT from LIAR coefficients. In the “Assessment”

section, we estimate the uncertainty of LIAR AT estimates

and how estimate uncertainty varies with changing inputs

and input uncertainties. In the “Discussion” section, we enu-

merate the advantages of LIAR strategy with respect to scope,

convenience, consistency, and accuracy over similar estima-

tion strategies.

Procedures

The merged data product

We merged the PACIFICA (Suzuki et al. 2013),

GLODAPv1.1 (Key et al. 2004), and CARINA (Velo et al. 2009)

Fig. 1. A map of the locations of measurements included for our analysis (black x’s) and of locations where we have estimated regression constants

(grey dots).
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datasets, and then eliminated duplicates of bottle measure-

ments that appear in more than one of these products. We

eliminated any data flagged with a quality control code corre-

sponding to “bad” or “questionable” for all of our regression

parameters. We removed data collected before 1990—or the

approximate advent of seawater reference materials which

were later certified for AT (Dickson et al. 2003)—for the data

product we use to derive regression constants, although we

retain this data in a separate data product and use that set for

regression error estimate calculations in “Assessment” section.

We omitted data from the PACIFICA dataset falling along the

Ocean Station Papa line because some of the station profiles

disagree with neighboring AT profiles at depth (> 3000 m) by

as much as 100 lmol kg21. We also removed measurements

from GLODAPv1.1 stations 24048 through 24065 because the

station profiles appeared noisy. Finally, we removed data from

CARINA stations 11000 through 11013 because these Southern

Ocean station profiles disagreed with neighboring profiles in

GLODAPv1.1 (there were no neighboring profiles in CARINA).

We are left with a merged data product with 204,110 sets of AT

measurements and other regression parameters. The locations

of stations at which we have data are mapped as x’s in Fig. 1.

Estimating regression coefficients

We estimate regression constants for each location on a

three-dimensional (3D) grid, which is a subset of the World

Ocean Atlas grid subsampled at 58 resolution. Specifically, we

use all coordinates that have a longitude of [0.58: 58: 355.58], a

latitude of [284.58: 58: 85.58], and a depth z of [0, 10, 20, 30,

50, 75, 100, 125, 150, 200, 250, 300, 400, 500, 600, 700, 800,

900, 1000, 1100, 1200, 1300, 1400, 1500, 1750, 2000, 2500,

3000, 3500, 4000, 4500, 5000, or 5500 m]. There are 44,957

combinations of these coordinates in total in our subset. The

locations of coordinates are mapped as circles in Fig. 1.

We select a subset of the data product to use for each

regression at each coordinate set. To prevent using data from

seawater measured on opposite sides of Central America or

the Bering Strait in a single regression, we exclude data in

the Arctic and Atlantic Oceans when estimating regression

constants outside of these oceans and exclude data from out-

side of these oceans when estimating regression constants

within them. Exceptions are that data in the Southern Atlan-

tic, south of 08 N, is never excluded for this reason and no

data is excluded for this reason for regression constant esti-

mates in the Southern Atlantic. The latitude-longitude poly-

gons we use for these basins are provided as Supporting

Information. We also exclude all data with a salinity less

than 30 to ensure our open ocean coefficients are not overly

biased by river water. Finally, we exclude all data not within

latitude, longitude, depth, and potential density rh windows

of our measurement values. Window sizes W are given by

criteria (1–4):
WLat55�3i (1)

WLon5
10�3i

cos ðLatitudeÞ (2)

WDepth550 m 1
z

10
3i (3)

Wrh50:05
kg

m3
3i (4)

Data are included if they satisfy criteria (1), (2), and either

(3) or (4). We iteratively increment the integer i whenever

exclusion criteria result in fewer than 100 viable measure-

ments. We divide by the cosine of the latitude in (2) to main-

tain an approximately constant window width at all latitudes.

Once we have selected a subset of our merged data prod-

uct, we perform regressions with 16 combinations of regres-

sion parameters. Like Velo et al. (2013), we use robust linear

regression, which iteratively re-estimates regression coeffi-

cients, following an initial traditional least squares estimate,

by assigning smaller weights to measurements with larger

residuals. The iterative outlier un-weighting step addresses

inaccuracies in the assumption that measurement errors are

adequately described by a normal distribution. We use a bis-

quare outlier test with the turning constant of 4.685 for this

step, meaning data with residuals in excess of 4.685 the

standard residual are given no weight. The first of the 16

regressions has all regression parameters we consider:

AT5a01aSS1ahh1aAOUAOU1aNN1aSiSi (5)

Here a terms are regression coefficients we estimate for

the subscripted properties, S is salinity, h is potential temper-

ature in 8C, N is nitrate concentration in lmol kg21, AOU is

apparent oxygen utilization in lmol kg21, and Si is total dis-

solved silicate concentration in lmol kg21
: We use apparent

oxygen utilization in place of O2 concentration because pre-

liminary testing found this to be a slightly more powerful

predictor and one that is less correlated with temperature.

We do not use phosphate since these are highly correlated

with N—for which sensor measurements are more

common—and including both measurements would there-

fore risk overfitting AT. We henceforth call Eq. 5 “Regression

1.” Predictors used in Regressions 1 through 16 are indicated

in Table 1.

Regressions 9 through 16 do not include potential tempera-

ture because McNeil et al. (2007) found temperature terms can

create large spurious surface seasonal AT estimate swings in

estimates calibrated using data with incomplete seasonal cov-

erage. aSi, aAOU, and aN are omitted from some regressions

because the related measurements are frequently unavailable.

Estimating AT

The LIAR method requires two steps to estimate AT. The

first step is interpolating the regression coefficients to the

location of interest. Linear interpolation can be done easily

once appropriate points are chosen to interpolate between,

and choosing points that bound the location of interest is
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made simple by our use of a regular grid. However, there are

edge cases to consider when interpolating near holes in our

grid (e.g., Greenland). For this reason, we use MATLAB

Delaunay Triangulation 3D linear interpolation routines (see

Lee and Schachter 1980) after dividing depth differences by

a factor of 25 to equate 100 m depth with �48 latitude in

the triangulation distance calculation. Delaunay triangula-

tion selects nearby points that bound the location of interest

while avoiding sets of points that make “skinny” polygons

with small minimum interior angles. Triangulation is faster

and performs less smoothing than objective mapping. We

note that additional smoothing is unnecessary because of

the smoothing inherent in our regression constant estima-

tion process. The changing window sizes with latitude and

depth (see “Estimating regression coefficients” section)

ensure our estimates are not strongly sensitive to the choice

of 25 for the depth-to-latitude conversion or to our assuming

latitude differences equate to longitude differences regardless

of coordinate latitude in this step. The latter of these simpli-

fications allows us to use a single interpolant for all estimate

coordinates for each regression coefficient, and greatly

reduces the LIAR estimation routine computational burden.

Extrapolated values outside the domain over which we have

regression constant estimates (e.g., near sediments and some

coasts) are set equal to the regression constants interpolated

at the nearest location inside the domain. As when selecting

data for a regression, we interpolate the Atlantic and Arctic

Oceans separately to avoid interpolating across Central

America or the Bering Strait. In the second step, the interpo-

lated regression coefficients are used to estimate AT directly

from the intended equation (e.g., Eq. 5) in the second step.

Estimate requirements

The LIAR code is written for MATLAB R2014b, with back-

ward compatibility tested through version 2012. Computa-

tion time varies with application and machine, although our

desktop 64 bit PC operating with a 2.0 GHz processor returns

an average of 35,000 AT estimates per second.

LIAR estimates require any combination of the following

measurements, with S being the only mandatory input: S, Si,

N, O2 or AOU, h or in situ temperature. Concentrations can

be provided in molar or molal units. Temperature and O2

are converted to h and AOU, respectively. These conversions

are made using the CSIRO MATLAB seawater package version

3.1 (Morgan and Pender 2006). The (now deprecated) sea-

water package is used in place of updated Thermodynamic

Equation of Seawater 2010 (TEOS-10) functions to ensure

converted measurements are consistent with the GLO-

DAPv1.1, CARINA, and PACIFICA data products used to esti-

mate regression coefficients. Input uncertainties are an

optional input; default values, corresponding to the uncer-

tainties in Table 3 scaled to typical deep water properties, are

assumed if none are provided.

Table 1. Constant terms used for each of the 16 regressions.

Reg. # a0 aS ah aAOU aN aSi

1 � � � � � �

2 � � � � �

3 � � � � �

4 � � � �

5 � � � � �

6 � � � �

7 � � � �

8 � � �

9 � � � � �

10 � � � �

11 � � � �

12 � � �

13 � � � �

14 � � �

15 � � �

16 � �

Table 2. R2 fits for the 16 regressions against measured AT for
Variant 2 of the LIAR method. The “Ranking” ranks the 16
regressions in order of how well they reproduce measured AT

with Variant 2.

Reg. # Parameters used R2 Variant 2 Ranking

1 S, h, N, AOU, Si 0.973 1

2 S, h, N, Si 0.972 3

3 S, h, AOU, Si 0.971 5

4 S, h, Si 0.970 7

5 S, h, N, AOU 0.966 9

6 S, h, N 0.964 11

7 S, h, AOU 0.966 10

8 S, h 0.955 15

9 S, N, AOU, Si 0.972 2

10 S, N, Si 0.971 4

11 S, AOU, Si 0.970 6

12 S, Si 0.969 8

13 S, N, AOU 0.961 12

14 S, N 0.959 13

15 S, AOU 0.957 14

16 S 0.940 16

Table 3. Assumed input measurement uncertainties

Parameter U

S 0.005

h 0.0058C

N 2% meas.

AOU 1% meas. O2

Si 2% meas.
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Assessment

We use two variants on LIAR to assess aspects of the esti-

mation strategy. For both variants, we estimate regression

coefficients at the locations of each of our 204,110 AT meas-

urements for which we have measurements of all regression

parameters instead of at the 44,957 WOA coordinates, allow-

ing us to bypass the interpolation step when estimating AT

at the measured locations. Variant 2 also does not use meas-

urements from a cruise as training data for regression coeffi-

cients estimated along that cruise track. For assessments with

the “unmodified LIAR method,” we interpolate regression

coefficients from the 44,957 WOA coordinates to the

204,110 measurement coordinates.

Figure 2 has two-dimensional (2D) histograms of

unmodified LIAR-estimated AT against measured AT for

measurements in our merged data product for regression 1

(see Supporting Information for histograms for all 16

regressions). The strong linear relationships demonstrate

that the LIAR method estimates the global AT field well. R2

statistics are given for the 16 regressions for LIAR Variant 2

estimates in Table 2 for all data in our merged data prod-

uct. Variant 2 estimates, like estimates that will be made

when the LIAR method is applied, do not benefit from

using the measured alkalinity at the location of interest to

estimate the regression constants used for that location.

Variant 2 estimates are therefore a more appropriate test

for the strength of the fit than unmodified LIAR estimates.

There is also no need to adjust Variant 2 R2 values in light

of the differing degrees of freedom since a larger number of

predictors does not guarantee a better fit to data withheld

from the regression constant estimation procedure. We cau-

tion that estimate uncertainty can increase with an increas-

ing number of predictors when collinear regression

parameters are used, but note that our uncertainty estima-

tion procedure (detailed later) accounts for this by propa-

gating uncertainty with the regression coefficients. Variant

2 R2 values suggest the relative importance of non-salinity

regression parameters is h < AOU<N< Si. All four parame-

ters improve the fit.

We rank the 16 regressions by their Variant 2 R2 values

in Table 2, but note that the best regression to use

depends both on which regression parameters are available

and the uncertainties of the input parameter measure-

ments. We therefore develop an approach to estimating

LIAR estimate uncertainty from the bottom up. This

approach can be applied to measurements of arbitrary

quality, so we are able to return estimate uncertainties

from user-provided input uncertainties as part of the LIAR

software.

We consider four sources of error E for our bottom-up

error uncertainty estimate:

1. EAlk from errors in the AT data used to fit the regression

constants,

2. EInput from input parameter measurement uncertainties,

3. EMLR from the inadequacies inherent to the use of multi-

ple linear regression to reproduce the global AT

distribution,

4. and errors associated with interpolating regression coeffi-

cients EInterp.

We combine these errors as the square root of the sum of

squares to produce the overall uncertainty, ELIAR:

ELIAR5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EAlk

21EMLR
21EInterp

21EInput
2

q
(6)

We start with an EAlk estimate of 3.3 lmol kg21 for the

uncertainty of the AT measurements in our merged data

product (Velo et al. 2009). This is the minimum possible

uncertainty for LIAR estimates. For reasons discussed shortly,

over or underestimation of this uncertainty is not of great

concern for this assessment.

Next we estimate EInput. We assume measurement uncer-

tainties (other than AT uncertainties) have negligible influ-

ence on the regression constant a values due to the large

number of measurements used to estimate each constant.

EInput is due rather to uncertainties in the singular sets of

parameter measurements used to estimate AT from the 16

regressions. We estimate EInput as the input uncertainty

propagated through the regression equations (e.g., Eq. 5).

For a regression with n predictors, EInput is:

Fig. 2. 2D histogram with the number of measurements falling within

small square bins of LIAR-estimated AT (y axis) and measured AT (x axis)
shown as color on a log scale for Regression 1 (see Supporting Informa-

tion for histograms for other regressions). More than 90% of measure-
ments fall within the darker bins corresponding to log histogram
frequencies>2. Thin blue 1 : 1 foreground lines and a background grid

are provided for reference. No measurements fall within bins where the
blue-grey background is visible.

Carter et al. Locally interpolated alkalinity regression

272



EInput5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

j51

ðUjajÞ2
vuut (7)

Here, Uj is assumed uncertainty for the jth parameter

used. Here we assume our measurement uncertainties are

independent despite potential small correlations between

errors in, for instance, temperature and AOU calculated from

temperature. Our input parameter uncertainty estimates for

our merged data product are given in Table 3. These esti-

mates are inferred from Suzuki et al. (2013)’s minimum

adjustments for the PACIFICA data product.

We estimate EInterp by comparing the root mean squared

error (henceforth: error) for Variant 1 estimates (or E1) to the

error for estimates from the unmodified LIAR method (or

E0). Variant 1 has no interpolation step, so EInterp is 0. The

methods are the same otherwise. This allows us to write:

EInterp5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2

02E2
1Þ

q
(8)

EInterp is statistically indistinguishable from 0 over the

open ocean salinity range of 33–38, and small relative to

EMLR(<10%) outside this range. We henceforth assume EInterp

is 0.

The overall LIAR uncertainty estimate is the error for Vari-

ant 2 AT estimates, or ELIAR. We use error estimates from Var-

iant 2 in place of similar estimates from the unmodified

LIAR method or Variant 1 because the Variant 2 estimates

are not derived from regression coefficients determined using

the target AT values, as will be the case for future LIAR

estimates.

We rearrange Eq. 6 and neglect EInterp to solve for EMLR:

EMLR5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ELIAR

22EAlk
22EInput

2

q
(9)

This EMLR estimate is highly sensitive to the assumed EAlk

estimate, although this is unimportant for our final uncer-

tainty estimates because EMLR and EAlk will always be com-

bined in Eq. 6; an underestimation of one is compensated

for by an overestimation of the other.

In Table 4, we report mean EMLR, EInput, and ELIAR for each

of the 16 regressions for the portion (>95%) of our data prod-

uct found within the open-ocean salinity range of 33–38.

Critically, LIAR estimates have similar or superior accuracy

to alternative estimates. Velo et al. (2013) suggested their neu-

ral network and 3DwMLR methods have average absolute

residuals (note: not standard deviations) of<5 lmol kg21.

Regression 1 is our most comparable regression to Velo et al.

(2013)’s method—they use O2 in place of AOU and include

pressure and phosphate as additional regression parameters—

for which we have an average absolute residual of 4.1 lmol

kg21. McNeil et al. (2007) reported an error of 8.1 lmol kg21

for the depth range, regression, and region over which we esti-

mate an error of �5.8 lmol kg21. Bostock et al. (2013) obtain

an error of 9.8 lmol kg21 for the region south of 208 S while

the LIAR regression with the same parameters (regression 7)

returns an error of 6.4 lmol kg21 for this region. Lee et al.

(2006) used six constant terms in five 2nd degree regional

regressions to estimate surface (<30 m) alkalinity with a com-

bined error of 8.1 lmol kg21, while we achieve smaller errors

for this depth range with all regressions except 8 and 16 (i.e.,

with only h and S and with just S, respectively). The self-

organizing map approach of Sasse et al. (2013) achieved an

error of 9.2 lmol kg21 for a similar region to that considered

by Lee et al. (2006). Alin et al. (2012) used a four-term func-

tion of temperature and salinity to estimate AT with an error

of 6.4 lmol kg21 above 500 m depth in the CALCOFI region,

and the LIAR error in this region is 3.9–6.2 lmol kg21

(depending on regression). We apply Millero et al. (1998)’s

estimate for the Pacific Gyres to data in our data product shal-

lower than 50 m depth, between 208S to 308N, and between

1508 and 2408E and estimate an error of 7.5 lmol kg21. LIAR

error for this subset of our data product using the equivalent

Regression 16 is 6.4 lmol kg21. We do not exclude data

beyond the open ocean salinity range or measured before

1990 for these error comparisons.

As with other estimation strategies (e.g., Velo et al. 2013)

LIAR estimation performs substantially worse in the �4% of

our dataset that does not fall within the open ocean salinity

range. For example, the RMSE values in Table 4 increase by

an average of 3% when we extend the minimum salinity

measurement used for the calculation to 32, and increase by

Table 4. Error estimates for the subset of our data product
found within the open-ocean salinity range of 33–38. EMLR is
error arising from the use of a MLR approach, EInput is error aris-
ing from uncertainties in our input data, and ELIAR is the overall
estimate uncertainty. Errors are expressed as errors in lmol AT

kg21.

Reg. # Parameters used EMLR EInput ELIAR

1 S, h, N, AOU, Si 2.8 2.1 5.8

2 S, h, N, Si 3.0 2.1 5.9

3 S, h, AOU, Si 3.3 1.7 6.0

4 S, h, Si 3.5 1.7 6.1

5 S, h, N, AOU 3.6 2.3 6.3

6 S, h, N 3.5 3.2 6.7

7 S, h, AOU 4.2 1.6 6.5

8 S, h 6.5 1.9 8.2

9 S, N, AOU, Si 3.1 2.1 5.9

10 S, N, Si 3.2 2.2 6.1

11 S, AOU, Si 3.6 1.6 6.1

12 S, Si 4.0 1.8 6.4

13 S, N, AOU 4.9 3.0 7.4

14 S, N 5.2 3.2 7.7

15 S, AOU 6.3 1.7 8.0

16 S 9.1 1.8 10.4
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an average of 36% when all measurements are included. Salin-

ities between 32 and 33 are common in the surface North

Pacific, and LIAR only performs slightly worse for these esti-

mates (32% higher RMSE values for this surface subset). Very

large errors are typically found in regions with unusual AT to S

relationships resulting from river water (e.g., the Arctic or Bay

of Bengal) or in evaporative marginal seas where there are not

enough measurements to estimate LIAR coefficients locally

(e.g., the Red and Mediterranean Seas) (Carter et al. 2014).

While the LIAR method could, at higher resolution, be adapted

to reflect the distinct AT to S relationships characteristic of

these regions, we decided to instead optimize our method for

the open ocean with a coarse resolution grid, the requirement

of>100 measurements per regression, and the omission of

data with S<30 from the data used to estimate regression con-

stants. Nevertheless, we develop methods to estimate the

greater uncertainties for LIAR estimates for unusually fresh or

saline seawater. We do this by calculating EMLR separately for

all data product measurements falling within each 1 unit S bin

that our dataset spans. For bins for which we have no measure-

ments, we linearly interpolate between estimates for neighbor-

ing bins. Our final error estimate then uses the EMLR estimate

appropriate to the salinity bin the measurement is found

within. Figure 3 shows EMLR for Regression 1 as well as the

number of data product measurements within each bin. Other

regressions have similar distributions.

Our software therefore returns AT estimate uncertainty EEst:

EEst5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EAlk

21EMLR
21
Xn

j51

ðUjajÞ2
vuut (10)

where EAlk is the constant 3.3 lmol kg21, EMLR is determined

from the histogram in Fig. 3 (or an equivalent histogram

appropriate to the regression used), and U values are pro-

vided by the user (or assumed to equal the values in Table 3

if not provided).

LIAR estimate bias is indistinguishable from 0 for all 16

regressions. However, LIAR errors are not normally distrib-

uted about 0 due to large errors for a small number of meas-

urements. For all 16 regressions, more than 94% of LIAR

errors are less than the standard error estimates in Table 4,

whereas for normally distributed errors we would expect

�68% of deviations to be less than or equal to the standard

error. However, �87% of errors are less than EEst. This

suggests Eq. 10 does scale estimate uncertainty with estimate

error for our data product to a degree, but not sufficiently to

ensure that the ratio of the deviations to EEst is normally

distributed. We do not anticipate this will be a problem for

applications in the open ocean, but note that LIAR

uncertainties are likely underestimated for river plumes,

marginal seas, and areas without many historical AT

measurements.

We tested the LIAR method on the recent occupation of

the P16 repeat hydrographic line. Data from this occupation

were collected over two cruises with three total legs from

early 2014 through mid-2015 (Talley 2014; Cross 2015; Mac-

donald 2015). These data were not used for estimating the

LIAR regression constants, so they provide a preliminary

demonstration of how well the method could perform in

regions where there are ample measurements available in the

training dataset. Figure 4 maps (preliminary) measured AT,

LIAR-estimated AT (from Regression 1), and differences

between these values. It can be seen that LIAR does an excel-

lent job of capturing the broad-scale patterns observed on

this cruise, including several localized features of the fronts

in the Antarctic Circumpolar Current and the North Pacific.

The measurement-estimate disagreement averaged

20.1 6 3.2 lmol kg21 AT for data from this cruise.

Discussion

LIAR AT estimates improve on the previously available suite

of estimation strategies in several important ways without

compromising the high estimate accuracy characteristic of

recent AT estimation efforts. First, LIAR estimates are applica-

ble globally at all ocean depths. Second, lacking regional or

neural boundaries, LIAR provides estimate precision when

transitioning between regions of physical or property space.

Third, LIAR can be used with many combinations of parame-

ter measurements, including combinations that are measure-

able by float-capable biogeochemical sensors. Fourth, LIAR

provides uncertainty estimates that scale with input uncertain-

ties and seawater S. Fifth, LIAR regression coefficients are

determined using more data and more recent data than some

alternatives. Finally, we provide MATLAB code and documen-

tation that make LIAR estimates accessible. It is our hope LIAR

estimates will be used to supplement incomplete constraints

Fig. 3. EMLR (grey bars) and ELIAR (larger or similarly sized white bars
behind grey bars) estimates for Regression 1 (left y-axis), and the num-
ber of measurements (dashed line, right y-axis) for each 1 unit salinity

bin (x-axis).
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of the seawater carbonate system from, for example, sensor

measurements and Earth system models that do not include

prognostic AT due to computational or data storage constraints

(e.g., Galbraith et al. 2015).

The high, and in some cases improved, accuracy of LIAR

estimates relative to other AT estimates is likely due to the

larger quantities of data used to produce the regression

coefficients, the large fraction of data collected in the years

following the introduction of reference materials for alkalin-

ity AT in our data product, and to the circumvention of the

limitation of alternate approaches (except 3DwMLR) that

each measurement in the training data set be used to con-

strain only one set of regional regression constants. Also,

LIAR implicitly relies on sample position information

through the regression constant interpolation step. This is

the reason LIAR achieves comparatively small errors even

for regressions with few parameters (e.g., 10.4 lmol kg21

globally using only S as a predictor) and is able to auto-

matically adopt regression coefficients appropriate for both

dynamic frontal regions and stable subtropical gyres. The

local-interpolation step is added for the convenience of

deriving regression coefficients appropriate to arbitrary loca-

tions in the ocean and has little impact on the estimate

accuracy.

An important question for our estimation strategy is

how well the methods reproduce temporal AT changes

from natural variability and long term changes. LIAR does

capture natural variability to an extent. For example, the

standard deviation of surface (<25 m) AT is 13 lmol kg21

and 11 lmol kg21 at ocean stations ALOHA and BATS,

respectively (Joyce and Robbins 1996; Karl and Lukas

1996), while the standard deviation between measured and

LIAR-estimated AT is only 6 lmol kg21 and 6 lmol kg21,

respectively. Lacking a temporal component, LIAR cannot

capture the long term changes expected with biogeochemi-

cal feedbacks with ocean acidification. However, these

impacts have been estimated to only become detectable

after �2040 (Ilyina et al. 2009), so they are not a large con-

cern for the immediate future. Furthermore, LIAR estimates

may be of use as a baseline for detecting such changes. For

instance, regression of surface AT at BATS normalized to a

salinity of 35 against time reveals a statistically significant

(at 95% conf.) increase of �0.24 lmol kg21 per year over

the record, while no increase is found in the difference

between measurements and LIAR estimates. These observa-

tions suggest this observed surface increase can be attrib-

uted to captured natural variability rather than to long

term changes.

Fig. 4. (a) Measured and (b) LIAR-estimated (Regression 1) AT mapped against latitude and depth using the same colorscale, and (c) differences
between these values. Data are from the 2014 to 2015 occupation of the P16 hydrographic section (mapped in d). Contours in (c) demark regions
where the average offset between measured and estimated AT exceeds 6 5 lmol kg21 for a version of the same plot smoothed with weighted average

gridding (with 8 and 9 permille length scales in the X and Y directions, respectively).
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Comments and recommendations

The next step for development of the LIAR method is to

update regression coefficients with the planned version 2 of

the GLODAP data product. This data product will have qual-

ity controlled data from over 700 cruises including data

from more recent cruises than those included in GLO-

DAPv1.1, CARINA, and PACIFICA. This data product will

also likely have cruises from several under-represented

regions in our merged data product, such as the Gulf of

Mexico, the Mediterranean, and the South China Sea.

It would be desirable to extend LIAR to other program-

ming platforms commonly used by oceanographers, espe-

cially freely-distributed platforms such as Python, Fortran,

Ocean Data View, and R. Implementations in Fortran, a

common language for Earth system models and ocean circu-

lation models, would allow the LIAR method to more easily

be used to simulate AT distributions in models that do not

resolve AT prognostically.

It may be useful to estimate and interpolate EMLR region-

ally instead of against S. This would allow uncertainty esti-

mates to increase where residuals are larger due to enhanced

measurement uncertainty or variability that is not well cap-

tured by our regression approach. We expect such a strategy

would further reduce the non-normality of our uncertainty-

estimate-normalized error distribution.

Methodological adaptations near river mouths and in

marginal seas may also allow the LIAR method to return bet-

ter estimates for these regions. For instance, deriving regres-

sion constant sets specific to riverine or estuarine outflows

and placing these regression constant sets in the LIAR regres-

sion constant grid at the locations of river mouths may

allow for better estimates to be returned in these areas. Cur-

rently, LIAR uncertainties in these regions are quite large,

and possibly underestimated.
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