FN Archimer Export Format PT J TI Temperature versus salinity gradients below the ocean mixed layer BT AF HELBER, Robert W. KARA, A. Birol RICHMAN, James G. CARNES, Michael R. BARRON, Charlie N. HURLBURT, Harley E. BOYER, Timothy AS 1:1;2:1;3:1;4:1;5:1;6:1;7:2; FF 1:;2:;3:;4:;5:;6:;7:; C1 USN, Div Oceanog, Res Lab, Stennis Space Ctr, MS 39529 USA. NOAA, Natl Oceanog Data Ctr, Silver Spring, MD 20910 USA. C2 USN, USA NOAA, USA IF 2.939 TC 27 UR https://archimer.ifremer.fr/doc/00383/49452/49917.pdf https://archimer.ifremer.fr/doc/00383/49452/49918.txt https://archimer.ifremer.fr/doc/00383/49452/49919.pdf https://archimer.ifremer.fr/doc/00383/49452/49920.txt https://archimer.ifremer.fr/doc/00383/49452/49921.txt LA English DT Article CR OISO - OCÉAN INDIEN SERVICE D'OBSERVATION DE ;density compensation;mixed layer depth;transition layer AB We characterize the global ocean seasonal variability of the temperature versus salinity gradients in the transition layer just below the mixed layer using observations of conductivity temperature and depth and profiling float data from the National Ocean Data Center's World Ocean Data set. The balance of these gradients determines the temperature versus salinity control at the mixed layer depth (MLD). We define the MLD as the shallowest of the isothermal, isohaline, and isopycnal layer depths (ITLD, IHLD, and IPLD), each with a shared dependence on a 0.2 degrees C temperature offset. Data are gridded monthly using a variational technique that minimizes the squared analysis slope and data misfit. Surface layers of vertically uniform temperature, salinity, and density have substantially different characteristics. By examining differences between IPLD, ITLD, and IHLD, we determine the annual evolution of temperature or salinity or both temperature and salinity vertical gradients responsible for the observed MLD. We find ITLD determines MLD for 63% and IHLD for 14% of the global ocean. The remaining 23% of the ocean has both ITLD and IHLD nearly identical. It is found that temperature tends to control MLD where surface heat fluxes are large and precipitation is small. Conversely, salinity controls MLD where precipitation is large and surface heat fluxes are small. In the tropical ocean, salinity controls MLD where surface heat fluxes can be moderate but precipitation is very large and dominant. PY 2012 PD MAY SO Journal Of Geophysical Research-oceans SN 2169-9275 PU Amer Geophysical Union VL 117 IS C05006 UT 000303670000002 BP 1 EP 19 DI 10.1029/2011JC007382 ID 49452 ER EF