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Abstract : 

In an ocean reanalysis, historical observations are combined with ocean and biogeochemical general 
circulation models to produce a reconstruction of the oceanic properties in past decades. This is one 
possible method to better constrain the role of the ocean carbon cycle in the determination of the air–sea 
CO2 flux. In this work, we investigate how the assimilation of physical variables and subsequently the 
combined assimilation of physical data and inorganic carbon variables – namely dissolved inorganic 
carbon (DIC) and alkalinity – affect the modelling of the marine carbonate system and the related air–sea 
CO2 fluxes. The performance of the two assimilation exercises are quantitatively assessed against the 
assimilated DIC and alkalinity data and the independent ocean surface pCO2 observations from global 
datasets. We obtain that the assimilation of physical observations has contrasting effects in different 
ocean basins when compared with the DIC and alkalinity data: it reduces the root-mean square error 
against the observed pCO2 in the Atlantic and Southern oceans, while increases the model error in the 
North Pacific and Indian Oceans. In both cases the corrected evaporation rates are the major factor 
determining the changes in concentrations. The assimilation of inorganic carbon variables on top of the 
physical data gives a generalized improvement in the model error of inorganic carbon variables, also 
improving the annual mean and spatial distribution of air–sea fluxes in agreement with other published 
estimates. These results indicate that data assimilation of physical and inorganic carbon data does not 
guarantee the improvement of the simulated pCO2 in all the oceanic regions; nevertheless, errors in pCO2 
are reduced by a factor corresponding to those associated with the air–sea flux formulations. 

Highlights 

► Impacts of physical–biogeochemical data assimilation on marine carbonate system are addressed. ►
A coupled model (NEMO, LIM2, BFM) for the global ocean is combined with 3DVAR system. ► Physical-
only data assimilation has contrasting effects on the regional carbonate system dynamic. ► Combined
assimilation of physical and inorganic carbon data improves global estimate of DIC and ALK.
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1. Introduction43 
44 

Both the land and the ocean act as sinks capable of absorbing fractions of atmospheric CO2 (Le 45 

Quéré et al. 2015). Since the terrestrial sink turns out to be one of the most uncertain terms, it is 46 

usually derived as a difference between the atmospheric growth rate and ocean uptake (Canadell et 47 

al. 2007; Le Quéré et al. 2012). The reconstruction of the air-sea CO2 flux is thus crucial in closing 48 

the global carbon budget. In addition, an adequate estimation of current ocean-atmosphere fluxes is 49 

required by the concern that the capability of the ocean in absorbing atmospheric CO2 is likely to 50 

diminish in the future because of the saturation in the natural sinks due to surface ocean warming 51 

and reduced uptake efficiency (Sarmiento and Le Quéré 1996; Matear and Hirst 1999; Joos et al. 52 

1999; Le Quéré et al. 2007, 2010; Ballantyne et al. 2012). 53 

Recent studies aimed at assessing the value of the global and regional air-sea CO2 flux, using 54 

inorganic carbon data from publicly available global ocean databases, account for ocean inversion 55 

methods (Gloor et al. 2001, 2003; Gurney et al. 2004; Patra et al. 2005; Jacobson et al. 2007; 56 

Mikaloff-Fletcher et al. 2007; Gruber et al. 2009; Maksyutov et al. 2013), interpolation procedures 57 

(Takahashi and Sutherland 2007; Takahashi et al. 2009; Jones et al. 2012; Park et al. 2010; Chen et 58 

al. 2011; Deng and Chen 2011; Gerber and Joos 2010), neural networks (Lefèvre et al. 2005; 59 

Telszewski et al. 2009; Landschützer et al. 2013), and prognostic Ocean Biogeochemical General 60 

Circulation Models (OBGCM) (Watson and Orr 2003; Matsumoto et al. 2004; Le Quéré et al. 61 

2010). 62 

In particular, the application of OBGCMs represents an alternative to the ocean and atmosphere 63 

inversion methods (Wanninkhof et al. 2013). In such a framework, a biogeochemical and physical 64 

oceanic models are coupled to reconstruct both the physical state and the biogeochemical properties 65 

of the ocean. The advantage offered by OBGCMs over statistical methods stems in the fact that the 66 

underlying models rely on diagnostic and prognostic equations, which in turn tests our knowledge 67 

of the main mechanisms involved. In a forward OBGCM, ocean physical dynamics are simulated 68 

with discretized primitive equations whose major uncertainties are mostly related to coarse spatial 69 

resolutions and sub-grid scale parameterizations. In particular, different realizations of the surface 70 

forcing or the model architecture used in the ocean dynamics have been demonstrated to give 71 

substantial differences in the resulting fields of inorganic carbon variables even when a rather 72 

simplified biogeochemical model is used (Doney et al. 2004; Sitch et al. 2015). A more complex 73 

alternative relies on the combination of an OBGCM with an atmospheric model to realize an Earth 74 

System model (Crueger et al. 2008; Vichi et al. 2011). Another source of uncertainty is represented 75 

by the parameterization of the air-sea CO2 flux that is usually based on empirical estimates of the 76 

exchange rate at the interface (Wanninkhof 1992). 77 
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One approach at constraining the air-sea CO2 fluxes consists in the realistic simulation of the space 78 

and time evolution of surface pCO2, which is linked to the physical and biogeochemical dynamics 79 

of the two main carbonate system variables dissolved inorganic carbon (DIC) and total alkalinity 80 

(ALK). However, the large number of different biogeochemical models used in OBGCMs is an 81 

indication that there are few evidence-based constraints on biological processes, whose knowledge 82 

is derived heuristically from laboratory experiments and in situ measurements with necessarily 83 

limited spatial and temporal extents.  84 

Only recently the scientific literature reported on the assimilation of these inorganic carbon 85 

variables or of the CO2 partial pressure into an OBGCM (Ridgwell et al. 2007; Dowd et al. 2014; 86 

Valsala and Maksyutov 2010; While et al. 2012; Gregg et al. 2014). Ridgwell et al. (2007) used an 87 

ensemble Kalman filter method to assimilate alkalinity and phosphates into the global Grid 88 

ENabled Integrated Earth oceanic model, coupled to a model that resolves the biogeochemistry. 89 

Ensemble Kalman Filter was also used to estimate the parameters of the biological processes related 90 

to carbon cycling (Dowd et al. 2014). Valsala and Maksyutov (2010) modelled the ocean carbon 91 

cycle by coupling a biogeochemical model to an offline transport model for physical circulation, 92 

assimilating pCO2 data with a variational method, but do not focus on the benefits of the 93 

assimilation of physical data. While et al. (2012) modified the FOAM data assimilation system to 94 

allow for the possibility of assimilating pCO2 data, using the NEMO ocean model coupled to the 95 

HadOCC biogeochemical model. 96 

At the best of our knowledge, the impact of physical data assimilation alone on the simulation of 97 

the carbonate system was not specifically addressed in previous works and only a limited literature 98 

deals with the effects on other biogeochemical variables. The first pioneering paper by Anderson et 99 

al. (2000) indicated the creation of spurious biogeochemical fluxes when physics and biology were 100 

not assimilated together and a joint assimilation process was suggested. Berline et al. (2007) 101 

reported some slight improvements of the assimilation of physics alone, mostly due to changes in 102 

the mixed layer depth in the North Atlantic. The impact on the ecosystem features was however 103 

deemed small and not necessarily positive. Following the previous work, Ourmieres et al. (2009) 104 

reported that the assimilation of physical data has a rather weak the impact on the ecosystem and, in 105 

some situations, it can even worsen the ecosystem response for areas where the prior nutrient 106 

distribution is significantly incorrect. They come to the conclusion that the combined assimilation 107 

of physical and nutrient data has a positive impact on the phytoplankton patterns, by claiming the 108 

urgent needed of more intensive in situ measurements of biogeochemical nutrients to overcome 109 

these issues. More recently, Raghukumar et al. (2015) used a physical-biogeochemical model of the 110 

California Current System with an incremental 4-dimensional variational method for physical data 111 
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assimilation. They found that the method improves correlation with observations, although 112 

artificially enhancing the phytoplankton standing stock that leads to a large bias particularly in 113 

regions of low mean concentration. 114 

In this work, we investigate the benefits and drawbacks of using an assimilation system for 115 

physical-only observations (temperature and salinity) and the subsequent inclusion of inorganic 116 

carbon data (DIC and ALK) to simulate the evolution of the carbonate system and the related air-117 

sea CO2 fluxes in a forward OBGCM. 118 

The approach based on the assimilation of physical quantities is worth exploring since an 119 

established and well-maintained monitoring network for the physical state of the global ocean exists 120 

(see http://www.argo.ucsd.edu). In view of a similar organized effort in collecting carbonate system 121 

observations through a global ocean network, we also aim at assessing the possible improvements 122 

emerging from the combination of data assimilation and inorganic carbon observations. 123 

We used the Nucleus for European Modelling of the Ocean (NEMO, Madec 2008) general 124 

circulation model coupled online to the Biogeochemical Flux Model (BFM, Vichi et al. 2007a,b). 125 

The assimilation of the physical and biogeochemical components is performed with a three-126 

dimensional variational ocean data assimilation system (Storto et al. 2011). 127 

In this study, we run three different experiments under current climate conditions, which differ by 128 

the inclusion in the assimilation system of in-situ physical data, both physical and inorganic carbon 129 

data (DIC and ALK), compared against a control run. Beside the evaluation of the assimilated state 130 

variables, the overall assessment of the performed simulations focuses on the independent 131 

comparison with observations of the sea surface pCO2 and with literature estimates of the air-sea 132 

CO2 fluxes. 133 

The manuscript is organized as follows. Section 2 describes the OBGCM, the data assimilation 134 

system, and observational data considered for the assimilation and the validation. In Section 3 we 135 

highlight the assessment of the assimilation for both the physical and inorganic carbon variables, 136 

and we present the results for the simulation of the pCO2 and the air-sea CO2 flux. In Section 4 we 137 

discuss the results obtained, drawing conclusions in Section 5. 138 

139 

2. Methods140 
141 

2.1. Oceanic Biogeochemical General Circulation Model 142 
143 

The OBGCM used in the present work is composed by the NEMO general circulation model 144 

(Madec, 2008; see also http://www.nemo-ocean.eu, version 3.4), coupled with the Louvain-La-145 

Neuve sea-ice model (Fichefet and Maqueda, 1997; version 2) and with the Biogeochemical Flux 146 

Model (Vichi et al. 2007a,b, Vichi and Masina, 2009; see http://bfm-community.eu, version 5).  147 
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The model is based on an ORCA grid with a horizontal grid resolution of 2° × 2°, except in the 148 

20°N – 20°S belt where the meridional grid spacing reduces to 0.5°. The grid is irregular and 149 

features three poles, two of which are located over the land regions in the northern hemisphere and 150 

the third over Antarctica. The number of ocean vertical levels is 30, 20 of which are located in the 151 

top 500 m. 152 

The net freshwater flux is corrected by means of the relaxation towards the World Ocean Atlas 153 

2009 (WOA09, http://www.nodc.noaa.gov/) monthly climatology of sea surface salinity, with a 154 

relaxation timescale corresponding to 300 days for a 50 m deep mixed layer. An additional three-155 

dimensional relaxation is applied northward of 60°N and southward of 60°S in order to avoid high-156 

latitude model drifts. At each time step, the freshwater flux is adjusted according to the 157 

climatological flux computed on the previous year. This adjustment directly modifies the Sea 158 

Surface Salinity (SSS). At the same time, we do not enforce the relaxation in the Sea Surface 159 

Temperature (SST). 160 

The Biogeochemical Flux Model (BFM) describes the dynamics of major biogeochemical processes 161 

occurring in global marine systems including the carbonate system. The model is based on a set of 162 

differential equations describing the fluxes of matter and energy between inorganic pools and living 163 

functional groups. The BFM describes through a continuum biomass representation the lower 164 

trophic levels dynamics of the marine ecosystem. The model implements a set of biomass-based 165 

differential equations that solve the fluxes of nutrients (carbon, nitrogen, phosphorus, silicate and 166 

iron) among selected biological functional groups (namely, 1 bacterial, 3 phytoplanktonic and 3 167 

zooplanktonic groups) representing the major components of the ocean ecosystem (Vichi et al. 168 

2015). 169 

It was here included the parameterization of calcite formation and dissolution proposed by Aumont 170 

and Bopp (2006), with the reference phytoplankton content of particulate inorganic carbon (PIC) as 171 

estimated by Gehlen et al. (2007). Calcite is produced by nanoflagellates and released as a 172 

consequence of grazing by micro- and meso-zooplankton and loss processes involving particulate 173 

matter originate by cells death. The sinking velocity of PIC is set to a constant value of 30 m/d and 174 

changes in the calcite pool lead to a stoichiometric adjustment in DIC and ALK concentrations. A 175 

scheme of the state variables and resolved physiological and ecological processes is available on the 176 

model web page (http://bfm-community.eu), where it is also possible to download the code and 177 

access the full documentation. Additional details for the parameterization of the advection and 178 

diffusion schemes, the forcing, and the river runoff used in the experiments are provided in Tab. 1. 179 

 180 

 181 

 182 
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2.2. Ocean Data Assimilation system 183 
 184 

The OBGCM is coupled with the global implementation of a three-dimensional variational data 185 

assimilation system, here OceanVar (Dobricic and Pinardi, 2008; Storto et al. 2011). The model 186 

assimilates data over the whole oceanic region with no depth exclusion over a fixed length time 187 

window. The data assimilation step consists in minimizing a cost function J(x) with respect to the 188 

state vector x, containing both physical and biogeochemical parameters (T, S, DIC, ALK) in the 189 

model three-dimensional grid, of the form (Courtier et al., 1994) 190 

 191 

, (1) 192 

 193 

where xb is the background model state, B is the background-error covariance matrix, d is the vector 194 

of misfits, H is the observation operator that interpolates x over d, and R is the observational error 195 

covariance matrix. In OceanVar, the background error covariances of the model state B are further 196 

split into a sequence of operators that account separately for the horizontal and vertical error 197 

covariances of the assimilated fields (Dobricic and Pinardi, 2008). The vector of misfits d is 198 

computed through the First Guess at Appropriate time (FGAT) method, namely observations are 199 

compared to the model equivalents closer in time to observations within 3-hourly time slots.  200 

Due to the structure of the background error covariance matrix, vertical corrections are spread over 201 

the physical and biogeochemical variables by using Empirical Orthogonal Functions (EOFs). In 202 

order to derive the set of EOFs used in the experiments, we first run a non-assimilative experiment, 203 

from which we obtain an initial set of EOFs for both the physical and inorganic carbon variables. 204 

Then, we set to zero all cross-correlations between any physical and biogeochemical variable, and 205 

derive a new set of EOFs. These cross-correlations have been set to zero in order to ensure that the 206 

assimilation of biogeochemical quantities does not affect the physical reanalysis, as unrealistic 207 

correlations may arise when the number of biogeochemical observations is remarkably smaller than 208 

the physical ones. The EOFs thus computed retain all cross-correlations between temperature and 209 

salinity, as well as those between DIC and ALK. Since non-zero correlation between temperature 210 

and salinity exists, when only one of the two physical quantities is assimilated, vertical corrections 211 

apply to the other as well. Similarly, the assimilation of one specific biogeochemical variable 212 

affects the other assimilated biogeochemical property (DIC or ALK) through the specific cross-213 

correlation term. For the assimilation, we use ten EOF modes for each vertical profile, which 214 

explained variance averaged over the global oceanic region is 98.9%. 215 
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In order to model horizontal correlations, a 4-iteration first-order recursive filter is used (Purser et 216 

al. 2003a,b), with a uniform horizontal correlation length-scale equal to 300 km for all assimilated 217 

variables. In the OceanVar system, cyclic conditions during the application of the recursive filter 218 

are approximated by imposing an extension of the domain with duplicated observations on the 219 

symmetric extension zones (Storto et al. 2011). 220 

The assimilation system assumes the observational error covariance matrix to be diagonal, namely 221 

errors between observations are mutually uncorrelated, and the observation error variance is given 222 

by the sum of instrumental and representativeness errors variances. 223 

Observational errors for the physical variables are derived from the profiles of instrumental errors 224 

provided by Ingleby and Huddleston (2007), which are subsequently multiplied by a coefficient that 225 

depends on the spatial variability at each point (Oke and Sakov 2008; Storto et al. 2014) and 226 

accounts for large representativeness errors in areas of strong variability. Since the corresponding 227 

information for the observational errors of inorganic carbon variables is not available within the 228 

GLODAP dataset, we have used the method proposed in Eq. (3) of Desroziers et al. (2005) to 229 

reconstruct the biogeochemical observation error. This method relates the error variance with the 230 

expectation value of the product between the observation minus background (d) and the observation 231 

minus analysis, i.e. , with xa representing the analysis. 232 

The assimilation system performs several data quality controls on both physical and 233 

biogeochemical variables, among which a check against the climatology and one against 234 

background fields that rejects observations with a too large departure from the model fields. In 235 

detail, observations are rejected if the square of the errors d2 between the data and the model 236 

outcome is 237 

 238 

, (2) 239 

 240 

where σb is a fixed parameter describing the error associated with the background and σ0 is the 241 

error associated with the observation, and αINS is a threshold factor. The value of αINS was estimated 242 

to ensure that only a few data outliers are rejected and the use of observational information is 243 

maximized (see Storto et al. 2011). In particular, the assimilation system was repeatedly applied 244 

with different threshold values and αINS was selected when both the magnitude of misfit range and 245 

rejection rates were in the +/- 2% range with respect to the initial standard statistics. The threshold 246 

factors αINS are set as in Tab. 1. 247 
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An assimilation time window of 10 days was here adopted to balance between the frequency of 248 

available observations and the assumptions implied by the OceanVar scheme. In fact, a shorter time 249 

window would prevent the assimilation system from using a fairly homogenous observing network, 250 

while a longer one would lead to infrequent corrections with a detrimental impact on the skill 251 

scores. 252 

 253 

2.3. Observations and statistical assessment 254 
 255 

Global temperature and salinity data from the EN-ACT Quality Checked dataset (EN3, Ingleby and 256 

Huddleston 2007) were used for the assimilation. Each measurement has been quality controlled by 257 

using a set of objective tests, with data available from 1950 to present day. This collection 258 

comprises several independent data from different observing platforms, like e.g., moored and 259 

expendable bathythermographs, conductivity-temperature-depth profiles, moored buoys, and floats 260 

such as the instrumentation used in the ARGO project (see http://www.argo.ucsd.edu). More 261 

specifically, the moored buoys considered in EN3 are the PIRATA floats in the Atlantic basin, the 262 

TOGA-TAO floats in the Pacific basin, and the RAMA floats in the Indian Ocean (McPhaden et al. 263 

1998). 264 

Global biogeochemical data are obtained from the following datasets: GLODAP (Key et al. 2004), 265 

CARINA (Velo et al. 2009; Olsen 2009a,b), PACIFICA (Suzuki et al. 2013), the Bermuda Atlantic 266 

Time Series (BATS, Michaels and Knap 1996), and the Hawaii Ocean Time series (HOT, Lukas 267 

and Karl 1999). The available number of data considered in the assimilation system over the whole 268 

period of the simulations is shown in Fig. 1. For each basin, a different amount of data is available, 269 

clustered over specific years. For example, data in the Pacific Ocean were mostly collected during 270 

the period 1992-1994, while data in the Indian Ocean were mostly collected on 1995. Due to the 271 

shortage of available information, we have retained all data prior assimilation, which are 272 

subsequently filtered by the variational assimilation model under the condition described by Eq. (2). 273 

To assess the overall efficiency of the OceanVar assimilation system, we computed the Root-Mean 274 

Square Error (RMSE) for temperature, salinity, DIC and ALK three-dimensional fields with respect 275 

to the datasets above over marine regions selected on the basis of the recent literature (see Schüster 276 

et al. 2013; Sarma et al. 2013; Ishii et al. 2014; Lenton et al. 2013; regions listed in Tab. 2). We 277 

only considered data collected in the entire water column, excluding the outliers larger than 3 278 

standard deviations from the mean of the dataset. The latter condition selects data depending on the 279 

statistical properties of the data only, and it is independent from the filtering performed by the 280 

OceanVar scheme in Eq. (2). Although RMSE is a metric potentially affected by the sampling and 281 

the representativeness of the verifying observations, our choice stems from its widespread use as 282 
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intuitive and summarizing skill score and ease of comparison among the experiments and with other 283 

published works. 284 

Given the multivariate nature of the experiments, it is useful to have a graphical representation of 285 

the RMSE metric for the different regions that enables for the comparison of changes due to the 286 

sequential assimilation of physical and biogeochemical data. This was done using the non-metric 287 

multidimensional scaling (MDS) that is an ordination method to refit the original data into a low 288 

dimensional space (here 2D). A symmetrical matrix for all pairwise distances among the original 289 

data is computed using a suitable distance metric, here assumed to be the Manhattan or cityblock 290 

distance (Cox and Cox 2000). An iterative procedure is then used to test the goodness of fit between 291 

the ordination-based distance matrix (computed for different refits of data) and the distance matrix 292 

of the original data. The Kruskal’s Stress function is minimized through iteration and a value lower 293 

than 0.2 was here adopted to select the optimal refit of the original distances in the lower 294 

dimensional space. 295 

In the case of physical data the validation step aims mostly to demonstrate the efficiency of the 296 

assimilation system in this specific simulation. However, it does have a merit in the assessment of 297 

the carbonate system variables because it allows evaluating the improvements due to the 298 

assimilation of physical variables (when DIC and ALK are not assimilated), as well as providing a 299 

reference for the combined assimilation. 300 

The simulated surface pCO2 fields were assessed against data from the Surface Ocean CO2 Atlas 301 

(SOCAT2, Sabine et al. 2013; Bakker et al. 2013) a global pCO2 dataset that reports measurements 302 

of pCO2 at surface waters collected from 1968 to 2012.  303 

The estimated air-sea flux of CO2 comes from Takahashi et al. (2012) that provides data referred to 304 

the nominal year 2000 over a 4° × 5° regular grid. Other global and regional estimates of CO2 305 

fluxes have been taken from Rödenbeck et al. (2014), Landschützer et al. (2014), Park et al. (2010), 306 

Peters et al. (2010), Peylin et al. (2013), Jacobson et al. (2007), Le Quéré et al. (2015) and 307 

Wanninkhof et al. (2013). 308 

Both the SOCAT2 and Takahashi et al. (2012) datasets are not included in the assimilation system 309 

to enable an independent assessment of the pCO2 fields and the air-sea CO2 flux. 310 

 311 

2.4. OBGCM setup and numerical simulations 312 
 313 

We perform three different numerical simulations covering the period 1988-2010: 314 

1. A control run (CTRL) without any data assimilation; 315 

2. A physical reanalysis (TSRE) where we assimilate in-situ temperature and salinity data;  316 



10

3. A reanalysis (here REAN) where we assimilate in-situ temperature, salinity, alkalinity and 317 

dissolved inorganic carbon.318 

In all experiments, we used the same parameterizations for the ocean and the biogeochemical 319 

models. The oceanic component has been spun up by repeating the year 1988 twenty-five times. 320 

Initial conditions for the temperature and salinity fields were obtained from the WOA09 dataset, 321 

whereas the zonal and the meridional components of the velocity fields start from rest. Initial 322 

conditions, external forcing, and parameterizations used are summarized in Tab. 1. 323 

324 

3. Results325 
326 

3.1. Assessment of the assimilated variables 327 
328 

The RMSE errors computed against the assimilated datasets for the 3 simulations over a selected 329 

number of ocean regions and over the entire ocean depth (see Sec. 2.3) in the period 1988-2010 are 330 

presented in Tab. 2.  331 

On average, the assimilation of physical data reduces the RMSE with temperature and salinity 332 

observations by about 20-30%, reducing the temperature error below 1°C in almost every region 333 

considered but the Indian Ocean. One major correction for temperature occurs in the Northern and 334 

Tropical Atlantic Ocean and for salinity in the South Pacific Ocean where in this case the RMSE is 335 

reduced to 40% with respect to the CTRL simulation.  336 

The impact of the ocean physics improvements on DIC and alkalinity is however limited to certain 337 

regions, and not always the same ones where the physical model error is reduced the most. For 338 

instance, DIC benefits from the assimilation of temperature and salinity observations only in the 339 

Subpolar Atlantic region, and ALK only in the North and Tropical Atlantic regions. In all other 340 

areas, the simulations of DIC and ALK in TSRE show larger RMSE with observations with respect 341 

to the CTRL. The impact of the combined assimilation of physical and inorganic carbon variables 342 

is, on the other hand, positive in all the regions, reducing the RMSE with observations with respect 343 

to both the CTRL and TSRE experiments everywhere with peaks of about 40% reduction.  344 

The values of the RMSE indicators for temperature, salinity, DIC and ALK in every region and 345 

every experiment are combined to give a measure of the distance from a perfect reference 346 

simulation without errors (all RMSE equal to 0) using the MDS method (see Sec. 2.3). This 347 

operation returns the plot shown in Fig. 2, where the axes are arbitrary and distances are 348 

representative of the quality of the simulation in that region.  349 

It is evident that the combined assimilation in REAN reduces the multivariate RMSEs shifting 350 

almost all region points toward the reference and closer to each other. The figure shows for instance 351 

that Northern subtropical Atlantic (indicated with the code ATL-NST) is first shifted closer to the 352 



 11

reference because of the assimilation of physical data and further more by the carbonate variable 353 

data. The use of inorganic carbon data also improves some of the regions that showed a worsening 354 

with the physical assimilation. For instance, the discrepancies in the reconstruction of the inorganic 355 

carbon variables obtained in TSRE for the Indian and Pacific oceans (see for instance the tropical 356 

Pacific region, PAC-T) are corrected with the assimilation of the inorganic carbon variables in 357 

REAN.  358 

In Fig. 3 and 4 we show the time series of SST, SSS, surface DIC, and surface ALK for the three 359 

experiments, compared with the sustained observations at the two stations at BATS and HOT. For 360 

both stations, observed data present a positive trend in surface DIC because of the atmospheric 361 

increase in the CO2 concentration, which was generally reconstructed in all experiments.  362 

BATS (Fig. 3) belong to the Subtropical North Atlantic region that shows a marked improvement 363 

by physical data assimilation only. In fact, CTRL has lower salinity and warmer temperature than 364 

observed; both facts contribute to high evaporation rates (Fig. 5a) and to a more stratified water 365 

column that determine an unrealistic trend in the surface concentrations, especially for alkalinity. 366 

The assimilation of temperature and salinity in TSRE determines a strong reduction of the 367 

evaporation process, which in turn leads to a strong reduction of the positive trend in ALK and an 368 

improved seasonal variability. The further assimilation of inorganic carbon data drives both DIC 369 

and ALK toward a closer agreement with the observations, even if the latter is better constrained 370 

only after the year 1992 when more data are available. 371 

The CTRL simulation at HOT (Fig. 4) shows a remarkable overestimation of surface salinity, while 372 

the surface temperature is satisfactorily reproducing the observations. Conversely to what found at 373 

BATS, the assimilation of physical data is heavily correcting the salinity bias, namely RMSE 374 

reduces from 0.36 to 0.19, and leads to a significant increase in the net freshwater flux (Fig. 5b). 375 

Such an enhanced evaporation determines both the bias and positive trend obtained in TSRE for the 376 

simulated DIC and ALK. However, these unrealistic changes in the inorganic carbon variables are 377 

successfully corrected in the REAN simulation.  378 

The results of the REAN simulation at BATS and HOT show the advantage of having a relatively 379 

high abundance of DIC and ALK data: the assimilation system corrects the discrepancy moving the 380 

model toward the observations. This is a demonstration of the efficiency of the adopted assimilation 381 

system that is expected to improve the carbonate system equilibrium also in oceanic areas where 382 

data are less abundant compared to these stations. This will be analysed in the next section 383 

comparing the results over the various regions against the independent surface pCO2 data.  384 
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 385 

 386 

3.2. Regional analysis of surface pCO2 field 387 
 388 

In Fig. 6 we assess the simulated surface pCO2 against the Surface Ocean CO2 Atlas (see Sect. 2.3), 389 

by computing the RMSE between the monthly pCO2 data of the dataset and the corresponding 390 

values from each simulation for the period 1988-2010. Since we do not assimilate pCO2 data into 391 

the OBGCM, this assessment represents a totally independent validation of the assimilation system. 392 

In the whole Atlantic Ocean, the RMSE against data decreases with the subsequent assimilation of 393 

physical (TSRE) and both physical and inorganic carbon (REAN) data. In general, the assimilation 394 

of physical data worsens surface pCO2 in the Arctic, Pacific and Indian oceans, with respect to 395 

those computed for CTRL. The assimilation of DIC and ALK counters this effect and improves 396 

pCO2 in the Tropical Indian ocean, also lowering the RMSE obtained in the South Pacific and 397 

South Indian oceans, even if with values still larger than those obtained in the CTRL simulation. 398 

However, despite the assimilation of DIC and ALK data that has led to an overall improvement of 399 

the main carbonate system variables (see Tab. 2 and Fig. 2), the RMSE of surface pCO2 in the 400 

Arctic and North Pacific is larger in REAN than in the control run without any data assimilation. 401 

Finally, the Southern Ocean is the unique region where the physical-only reanalysis slightly 402 

improves the simulation of pCO2, while the additional assimilation of inorganic carbon data leads to 403 

an RMSE that is larger than CTRL. All these cases will be compared and further discussed in Sec. 404 

4. 405 

 406 

The North Pacific Ocean is the most notable region where physical data assimilation increases the 407 

error of surface pCO2 and, whereas improvements in DIC and ALK are obtained with their direct 408 

assimilation, its error becomes even larger. By looking at the differences between the three 409 

experiments (Fig. 7), the physical data assimilation leads to colder but less saline surface waters 410 

similarly to what shown in the results at HOT (Sec. 3.1 and Fig. 4). Despite the data-driven cooling 411 

of surface waters, the salinity corrections in REAN have a major effect on the evaporation rate in 412 

the North Pacific Ocean that has a positive bias in comparison to CTRL (Fig. 7c). This modified 413 

freshwater flux is physically consistent with the correction, but it also impacts the concentrations of 414 

DIC and ALK whose surface concentrations steadily increase in the REAN simulation (Fig. 7d,e). 415 

The assimilation of inorganic carbon data is not sufficient to correct this imbalance in the North 416 

Pacific as a whole, since observations in this area are rather scarce and concentrated over specific 417 

years (supplementary Fig. S1). The available data allow to partly reduce the overall RMSE (see 418 

Tab. 2), but after year 2000, the REAN experiment is very little constrained by observations and the 419 
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lack of combined assimilation of physical and carbon data thus leads to a spurious departure in the 420 

REAN pCO2 (Fig. 7f). 421 

 422 

3.3. Assessment of air-sea CO2 fluxes 423 
 424 

The statistical indicators for the globally integrated air-sea CO2 flux for the three simulations are 425 

summarized in Tab. 3, where we have computed the average, decadal trend, InterAnnual Variability 426 

(IAV) and Seasonal Variability (SV) over the period 1992-2010 for the three simulations. The air-427 

sea CO2 fluxes indicate that the global ocean is always acting as a sink (negative values) and the 428 

sequential assimilation of physical and inorganic carbon data leads to a significant reduction, 429 

namely from -4.7 PgC/yr in the CTRL simulation to -2.4 PgC/yr in the REAN one. Similarly, the 430 

interannual and seasonal metrics are characterized by decreasing values, but IAV shows a major 431 

change in the TSRE run and SV mainly reduces with the additional assimilation of DIC and ALK. 432 

The decadal trends obtained with a least-squared fit for each simulations have quite different values, 433 

which are not distinguishable from zero since the uncertainty on the trend is on the same order of 434 

the trend itself.  435 

The impacts of assimilation on the regional distribution of mean annual fluxes are illustrated in 436 

Figure 8, which shows the air-sea CO2 flux climatological field obtained from the dataset by 437 

Takahashi et al. (2012) and compare it with the three experiments for the period 1992-2010. The 438 

Atlantic Ocean stands out as the ocean with the largest differences from the climatological 439 

estimates; the large sink in the Northern Atlantic region is substantially reduced in TSREAN and 440 

further improved in REAN. A similar consideration can be done for the Northern Indian Ocean, 441 

where the large sink bias of the CTRL is appropriately reduced toward a source by the assimilation 442 

of physics. The assimilation of carbon data is then enhancing this source, possibly exceeding the 443 

estimates because of the presence of coastal data with high alkalinity. The inorganic carbon source 444 

in the tropical Pacific is evidently increased as estimated in the Takahashi et al. (2012) thanks to 445 

data assimilation, although the region of source is still too confined within the tropics (Vichi et al. 446 

2011). The tropical Atlantic is also not well represented in both CTRL and TSRE, while the 447 

additional assimilation of inorganic carbon data determines a reduction of the CO2 sinking flux. 448 

Estimates of the climatological air-sea CO2 flux integrated over the selected marine regions for the 449 

three experiments are presented in Tab. 4. Overall, the assimilation system leads to a reduction of 450 

the CO2 fluxes in the regions located at mid latitudes, in the Tropical Indian and Pacific oceans, and 451 

to a lower extent in the Tropical Atlantic. In particular, the major sinks in the REAN simulation 452 

occur in ATL-NST, PAC-N, and PAC-S regions. Conversely, the Arctic and Subpolar Atlantic 453 
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regions have nearly unchanged values within the different simulations. The only positive value of 454 

the CO2 flux was obtained for the Southern Ocean region in the REAN simulation. 455 

 456 

 457 

 458 

4. Discussion  459 
 460 

The set of experiments presented in this work combines the assimilation of physical data and the 461 

assimilation of inorganic carbon data with the final aim to better constrain the dynamics of the 462 

carbonate system and the related air-sea CO2 flux. 463 

The key question addressed in the previous sections is whether the assimilation of physical and 464 

carbon data is likely to improve the surface carbon fluxes by improving the representation of pCO2. 465 

A summary of all the findings presented in Sec. 3 is given in Fig. 9, where the change in pCO2 466 

RMSE for each region and experiment is plotted against the corresponding change in the 467 

multivariate combined RMSE (shown Fig. 2). The latter is computed as the change of the Euclidean 468 

distance between the region points and the reference in Fig. 2 for each assimilation run against the 469 

CTRL one. Figure 9 clearly shows that the assimilation of physics is a necessary first step to 470 

improve pCO2 simulation in the Northern and Tropical Atlantic (bottom-left quadrant), whereas an 471 

opposite effect was obtained, i.e., for the North Pacific (top-right quadrant). The bottom-line is that 472 

the assimilation of temperature and salinity leads to significant changes in surface physical 473 

processes, which have a twofold impact on the inorganic carbon variables. Beside the improved 474 

solution of biogeochemical processes under more realistic physical conditions, the modification of 475 

evaporation rates will directly impact other conservative oceanic properties, like e.g. alkalinity. 476 

Such a feedback of the physical assimilation was clearly identified at BATS and HOT stations (see 477 

Sec. 3.1), as the changes in surface concentrations of DIC and ALK were driven by those of the 478 

evaporation rates (Fig. 5). This condition occurs very likely for the whole North Pacific and North 479 

Atlantic regions, thus explaining the opposite effect produced by the physical assimilation and 480 

indirectly pointing to an imbalance due to whether the atmospheric forcing fields or the bulk 481 

formulations. In all other regions, an improved representation of physical variables - as 482 

demonstrated by the reduced RMSE for temperature and salinity in Tab. 2 – does not lead to 483 

significantly better inorganic carbon in the ocean, although there may still be an improvement of 484 

pCO2 due to better constraints on temperature control.  485 

On the other hand, once DIC and ALK are assimilated, pCO2 improves almost everywhere, which 486 

is expected to better constrain the air-sea CO2 fluxes. It is not a substantial improvement but 487 

certainly in the desired direction. An average error reduction of 3-5 μmol is comparable to the error 488 
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attributed to the parameterization of gas exchange piston velocity (Takahashi et al., 2009), which 489 

implies that data assimilation may help to reduce the overall uncertainty. 490 

How is it possible to reconcile the regions where pCO2 worsens due to the assimilation of inorganic 491 

carbon data, even if the improvement against those variables is large (Fig. 9 bottom-right 492 

quadrant)? The typical example is the Arctic, where the assimilation of a limited number of 493 

observations markedly reduces the RMSE for DIC and ALK (see Tab. 2). However, these data are 494 

just enough to reduce the model bias but not sufficient to capture the pCO2 variability found in the 495 

SOCAT data and the RMSE increases (Fig. 6). A similar consideration can be done for the 496 

Southern Ocean. Both the Arctic and Southern Ocean have been sampled for pCO2 only for one 497 

month out of the year (Sabine et al. 2013, most likely during summer) and the eddy-driven spatial 498 

variability, which is estimated to account for an error of about 3 μmol (Lenton et al., 2006), is likely 499 

to become the dominant factor. Given the coarse resolution of this model, the corrections applied to 500 

the simulated DIC and ALK are actually worsening the performance of REAN against TSRE. The 501 

assimilations of the more numerous physical data in the Southern Ocean lead to a representation of 502 

the pCO2 field that is better than assimilating sparse observations of inorganic carbon (see Fig. S2 503 

for the map of the assimilated data per model grid point).  504 

The case of the North Pacific has been explored in detail in Sec. 3.3. The results of this work 505 

indicate that both physical and carbon variables should be assimilated to reach an improved 506 

representation of carbonate system variables. Supplemental figures S1 and S2 show that the North 507 

Pacific carbon data are unevenly distributed in time and have lower data density with respect to the 508 

northern Atlantic Ocean (Landschützer et al., 2013). This implies that there must be more adequate 509 

temporal and spatial collection of carbon data to improve pCO2 in the North Pacific as it occurs for 510 

the Atlantic. 511 

The final question is whether data assimilation actually improves the simulation of the carbon flux 512 

between ocean and atmosphere. This issue is necessarily related to the quality of the specific model 513 

being analysed, and in this particular case the model presented a substantial overestimation of the 514 

annual mean ocean uptake that can be reduced by means of the assimilation of physical and 515 

inorganic carbon data (Sec. 3.3). As presented in the introduction, global carbon models have been 516 

demonstrated to agree on the annual global means and to some extent on some regional means. 517 

Table 3 compare the global air-sea CO2 flux simulated in the three experiments with the results 518 

obtained in previous literature works using different forward ocean models and atmospheric 519 

inversion models.  520 

In Le Quéré et al. (2015), the ocean flux is computed over the period 1959-2013 by using an 521 

ensemble containing seven OBGCMs. For each model, the reconstructed air-sea CO2 flux has been 522 
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normalized to observations by dividing it by the observed average over the period 1990-1999 523 

(Keeling et al. 2011), then multiplying the result by 2.2 Pg C/yr, obtaining a multi-model mean of -524 

1.9 Pg C/yr with standard deviation 0.5 Pg C/yr. 525 

Wanninkhof et al. (2013) also obtained −1.9 ± 0.3 PgC/yr with a trend −0.14 Pg C/yr/decade, by 526 

using an ensemble mean consisting of six OBGCMs, and −2.1 ± 0.3 PgC/yr with trend −0.13 527 

PgC/yr/decade, by using eleven Ocean Inversion Models, for the period 1990-2009. As the trend for 528 

the considered period is mostly due to human activities, our findings are closely comparable to 529 

those of Wanninkhof et al. (2013). The air-sea flux simulated by CTRL in the present OBGCM is 530 

clearly higher if compared to the results of the other global models. The assimilation of the 531 

inorganic carbon variables allows reducing the bias. 532 

In general, OBGCMs simulate a higher air-sea CO2 flux with respect to the available ocean 533 

inversion models (Rödenbeck et al. 2014, Landschützer et al. 2014, Park et al. 2010, Peters et al. 534 

2010, Peylin et al. 2013), although the values obtained by the inversions in Jacobson et al. (2007) 535 

and Peters et al. (2010) lie within the inter-annual variability (IAV) obtained in our simulations. 536 

Also the seasonal variability decreases with data assimilation towards values that are close to what 537 

obtained in other works. The IAV of the air-sea CO2 flux obtained in the experiments varies from 538 

0.22 to 0.40, and the estimates over the period 1990-2009 in the literature give a similar range. The 539 

errors associated to this quantity are however large, although all of the results from our experiments 540 

fall within the range given in the literature.  541 

These comparisons indicate the positive role played by data assimilation, although without an 542 

independent measure of the carbon fluxes in the various regions it is not possible to assess the 543 

overall quality. The comparison of model results with some recent assessment of the regional air-544 

sea CO2 flux presented in Tab. 4 indicates an improvement in some key regions. The main 545 

differences with the results reported in the literature are found in the tropical regions, which 546 

however have been demonstrated to improve against the independent pCO2 SOCAT data (Fig. 6). 547 

These discrepancies are probably linked more to methodological differences and to the scarcity of 548 

data rather than to substantial problems.  549 

 550 

5. Conclusions 551 

 552 

This work has shown that the data-driven correction of the factors regulating the concentration of 553 

carbonate system variables do not guarantee that pCO2 is closer to the observations in a global 554 

ocean carbon model having the spatial resolution used in the last round of CMIP simulations. 555 

However, some important findings have emerged. The assimilation of physical data only has shown 556 
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to improve pCO2 in the North Atlantic Ocean and in the Southern Ocean, the latter being a region 557 

where the extensive collection of carbon data is much more difficult. The correction of physical 558 

model errors has a direct effect on evaporation that helps to constrain alkalinity biases, although this 559 

does not occur in all the regions and especially in the North Pacific. The concurrent assimilation of 560 

dissolved inorganic carbon and alkalinity may help to reduce the errors in some regions such as the 561 

tropics, also leading to improved fluxes. In general, errors in pCO2 are reduced of a factor 562 

corresponding to those introduced by to the air-sea flux formulations. However, the spatial and 563 

temporal distribution of the available data appears to be an important constraint to the effective 564 

improvements. 565 

Since a global-scale network for collecting inorganic carbon data is still under development, the 566 

current monitoring network for the global physical ocean is likely to be the most readily available 567 

resource to increase the confidence on air-sea carbon fluxes especially in remote regions like the 568 

Southern Ocean. 569 

  570 
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Figures 571 
 572 

 

Figure 1. Number of DIC (left) and ALK (right) data used in the assimilation for the Atlantic (blue), Pacific 
(Orange) and Indian (red) oceans, for each year of the simulation. A description of this composite inorganic carbon 
dataset is given in Sec. 2.3.  

 573 

 

Figure 2. Two-dimensional ordination for the multivariate RMSE indicators (temperature, salinity, DIC and ALK), 
as obtained with the MDS method (see Sec. 2.3), in CTRL (orange), TSRE (purple), and REAN (green) experiments 
over the different marine regions listed in Tab. 2. The blue dot is a reference perfect experiment when all RMSE 
values are zero. 

 574 
 575 
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Figure 3. Time series of ocean variables at surface at BATS, obtained from each experiment considered: CTRL 
(blue), TSRE (red), REAN (dark green). The black dots show the data collected over the first 10 m depth at each 
station. 

 576 
 577 

  

  

Figure 4. Time series of ocean variables at surface at HOT, obtained from each experiment considered: CTRL 
(blue), TSRE (red), REAN (dark green). The black dots show the data collected over the first 10 m depth at each 
station. 
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 578 

 

Figure 5. Time series of mean annual net freshwater flux at (a) BATS and (b) HOT for the CTRL and TSRE 
simulations.  

 579 
 580 

 

Figure 6. Root-Mean Square Error (RMSE) of surface pCO2 (μatm) against the SOCAT2 dataset in the selected 
marine regions (see caption of Tab. 2 for a description).  

 581 
 582 
  583 
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 584 
a) 

 

 b)  

 
c)  

 

d)  

 
e)  

 

f)  

 
Figure 7. Difference in the mean SST, SSS, evaporation, surface DIC, surface ALK, and surface pCO2, averaged 
over the North Pacific region. The difference is taken between TSRE and CTRL for temperature, salinity, and 
evaporation flux, and also between REAN and CTRL for the inorganic carbon variables. 
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Figure 8. Map of the climatological mean air-sea CO2 flux (in mol C/m2/year) over the period 1992-2010, for the 
dataset from Takahashi and the three experiments. 
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 589 

 
Figure 9. Comparison of improvements in pCO2 RMSE and errors in physical and inorganic carbon variables for the 
two assimilation experiments. The multivariate RMSE difference is computed as the change of the Euclidean distance 
in Fig. 2 between a region point and the reference for each assimilation experiment against the CTRL one. Regions in 
the lower left quadrant are the ones where improvements in physics and/or carbonate variables lead to concurrent 
improvements in the pCO2 RMSE. 
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Tables  593 
 594 
Table 1. Description of the initial conditions, external forcing, and parameterizations used in the present OBGCM and 595 
shared by all numerical simulations. 596 
 597 

Model NEMO BFM 

Atmospheric 
forcing 

CORE bulk formulae  
(Large and Yeager 2008) 
ERA-INTERIM atmospheric data  
(Dee et al. 2011) 

Atmospheric CO2 concentration of historical and 
RCP8.5 scenarios (Moss et al. 2010)  
Climatological iron deposition (Moore et al. 2002) 
based on Tegen and Fung (1994, 1995). 

River forcing Runoff (Dai and Trenberth 2002) Inorganic nutrients (Cotrim da Cunha et al. 2007) 

Experiment 
IC 

25years spin-up from WOA09 
DIC, ALK: GLODAP (Key et al. 2004) 
 Oxygen, inorganic nutrients: WOA09  
Iron: Vichi et al. (2007b) 

Advection TVD scheme (Harten 1997) MUSCL scheme (Van Leer 1979) 

Lateral 
diffusion 

Laplacian operator Laplacian operator 

Vertical 
diffusion 

Turbulent Kinetic Energy (Blanke and 
Delecluse 1993) 

Same as T and S  

Assimilation 
system 

3DVar 3DVar 

αINS,  17 17 

EOFs 10 10 

Data output Ten days Ten days 

 598 

Table 2. Root-Mean Square Error (RMSE) of temperature (in °C), salinity, DIC (in μmol/kg), and ALK (in μmol/kg), 599 
computed against the datasets presented in Sect. 2.3 in the period 1988-2010. Region codes: ARCT: Arctic Sea (>80N); 600 
ATL-NSP: Subpolar North Atlantic (50÷80N); ATL-NST: Subtropical North Atlantic (14÷50N); ATL-T: Tropical 601 
Atlantic (15S÷14N); ATL-SST: Subtropical South Atlantic (40÷15S); PAC-N: North Pacific (18÷66N); PAC-T: 602 
Tropical Pacific (18S÷18N); PAC-S: South Pacific (44.5÷18S); IND-T: Tropical Indian (18S÷30N); IND-S: South 603 
Indian (18S÷44S); SO: Southern Ocean (44÷75S). The last column reports the total number of DIC and ALK data used 604 
in REAN (Sec. 2.3). 605 
 606 

Code Temperature 
(degC) 

Salinity 
DIC (μmol/kg) ALK (μmol/kg) 

# Data 

 CTRL TSRE CTRL TSRE CTRL TSRE REAN CTRL TSRE REAN DIC+ALK 

ARCT 0.89 0.79 0.55 0.33 47.6 49.9 30.1 30.8 35.5 24.4 31 
ATL-NSP 1.23 0.92 0.30 0.21 33.8 32.0 24.6 24.3 22.8 19.9 8557 
ATL-NST 1.22 0.95 0.30 0.26 26.2 31.4 22.4 27.8 26.0 18.2 20364 

ATL-T 1.34 0.95 0.28 0.20 50.6 58.2 40.4 35.6 27.2 24.3 2579 
ATL-SST 1.17 1.00 0.21 0.18 22.3 22.3 16.8 19.5 20.5 17.3 1785 
PAC-N 1.37 1.02 0.21 0.16 43.7 47.0 33.0 20.9 28.4 15.2 34507 
PAC-T 1.11 0.92 0.19 0.15 39.8 44.3 32.1 17.5 21.1 14.3 22285 
PAC-S 1.18 0.94 0.22 0.13 24.2 28.7 18.9 13.2 13.7 11.0 4695 
IND-T 1.36 1.23 0.26 0.18 59.8 66.8 43.6 32.4 38.6 20.8 1325 
IND-S 1.43 1.12 0.23 0.16 22.8 26.1 22.4 23.5 25.8 13.6 2576 

SO 1.16 0.82 0.23 0.16 26 27.3 20.9 14.3 14.4 11 9147 

 607 
 608 
 609 
  610 
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Table 3. Statistical properties (average, trend, inter-annual and seasonal variability, IAV and SV, respectively) of the 611 
global average value of the air-sea CO2 flux over the period 1992-2010. Also shown are the comparisons with results 612 
from literature. 613 
 614 

Air-sea CO2 flux 
Average 
(PgC/yr) 

Trend 

(*0.01PgC/yr/
decade) 

IAV 

(PgC/yr) 
SV (Pg C/yr) Method Notes 

CTRL -4.7 0.9±1 0.40 0.97 OBGCM 1992-2010 

TSRE -3.3 0.1±0.9 0.28 0.80 OBGCM 
1992-2010 

T+S Assimilation 

REAN -2.4 0.7±0.9 0.22 0.69 OBGCM 
1992-2010 

T+S+DIC+ALK 
Assimilation 

Wanninkhof et al. 
(2013) 

-1.9±0.3 -0.14 0.16 0.38 
Ensemble 

of 6 
OBGCM 

1990-2009 
Anthropogenic, 

Wanninkhof et al. 
(2013) 

-2.1±0.3 -0.13 0.40 0.41 
Ensemble 
of 11 OIM 

1990-2009 
Anthropogenic  

Wanninkhof et al. 
(2013) 

-2.0±0.6 - - - 
Tier 1 

(Canadell 
et al. 2011) 

2000 
Anthropogenic 

Zeng et al. (2014) -1.9 ÷ -2.3 - - - NNM 
1990-2011 

Anthropogenic 
Le Quéré et al. 
(2015) 

-1.9 ± 0.5 - - - Ensemble 
of 8 

OBGCM 

1959-2015 

Rödenbeck et al. 
(2014) 

-1.45 -0.64 0.29 - OC V1.2 2001-2011 

Landschützer et 

al. (2014) 
-1.70  -1.13 0.08 - 

CDIAC 
Global 
Carbon 
Project 

2001-2010 

Park et al. (2010) -1.28 -0.23 0.09 - 

Diagnostic 
model with 
empirical 
relationshi

ps 

2001-2011 

Jacobson et al. 
(2007) 

-2.62 -0.62 0.03  CTE2014 2001-2011 

CTE2014 (Peters 
et al. 2010) 

-2.27 ± 
0.77 

-0.69   CTE2014 2001-2013 

 

 615 

  616 
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Table 4. Annual air-sea CO2 flux (in Pg C/yr) averaged over the selected marine regions (see caption of Tab. 2 for a 617 
description) for the three experiments in the period 1992-2010, compared with the recent literature findings from 618 
Schüster et al. 2013 (a), Ishii et al. 2014 (b), Sarma et al. 2013 (c), and Lenton et al. 2013 (d). 619 

Marine Region CTRL TSRE REAN Literature 

ARCT -0.01 -0.01 -0.01 -0.12±0.06a 

ATL-NSP -0.09 -0.10 -0.09 -0.21±0.06a 

ATL-NST -0.77 -0.61 -0.54 -0.26±0.06a 

ATL-T -0.58 -0.50 -0.35 0.12±0.04a 

ATL-SST -0.38 -0.32 -0.28 -0.14±0.04a 

PAC-N -0.47 -0.42 -0.31 -0.47±0.13b 

PAC-T -0.47 -0.16 -0.07 0.44±0.14b 

PAC-S -0.42 -0.28 -0.32 -0.37±0.08b 

IND-T -0.50 -0.15 -0.10 0.08±0.04c 

IND-S -0.50 -0.41 -0.41 -0.43±0.07c 

SO -0.26 -0.20 0.04 -0.42±0.07d 

 620 

 621 

  622 



 27

 623 

Acknowledgements 624 
 625 

The authors wish to thank the Centro Euro-Mediterraneo sui Cambiamenti Climatici for its financial 626 

and scientific support of the activities presented in this work. The implementation and the following 627 

improvements of the global ocean assimilation system were carried out in the framework of the 628 

GEOCARBON and MYOCEAN projects. The research leading to these results has received 629 

funding from the Italian Ministry of Education, University and Research and the Italian Ministry of 630 

Environment, Land and Sea under the GEMINA project. M.V. has been partly funded by the 631 

SANAP project TRAIN-SOPP (UID93089). The authors acknowledge the public availability of the 632 

BFM system (http://bfm-community.eu). The authors want to thank Dr. Simon Good (U.K. Met 633 

Office) for the support in the use of the EN3 dataset, and the TAO Project Office of NOAA/PMEL 634 

for the availability of the TAO/RAMA/PIRATA dataset. L.V. would like to thank I. van der Laan-635 

Luijkx, P. Landschützer, and C. Rödenbeck for providing part of the useful data presented in Tab. 3. 636 

 637 

References 638 

 639 

 

L. A. Anderson, A. R. Robinson, C. J. Lozano, C. J. Physical and biological modeling in the Gulf Stream region:: I. 
Data assimilation methodology. Deep Sea Research Part I: Oceanographic Research Papers, 47(10), 1787-1827, 
2000. 

O. Aumont and L. Bopp. Globalizing results from ocean in-situ iron fertilization studies. Global Biogeochemical 

Cycles, 20, 2006. 

D. C. E. Bakker, B. Pfeil, K. Smith, S. Hankin, A. Olsen, S. R. Alin, C. Cosca, S. Harasawa, A. Kozyr, Y. Nojiri, K. 
M. O’Brien, U. Schüster, M. Telszewski, B. Tilbrook, C. Wada, J. Akl, L. Barbero, N. Bates, J. Boutin, W.-J. Cai, R. 
D. Castle, F. P. Chavez, L. Chen, M. Chierici, K. Currie, H. J. W. de Baar, W. Evans, R. A. Feely, A. Fransson, Z. 
Gao, B. Hales, N. Hardman-Mountford, M. Hoppema, W.-J. Huang, C. W. Hunt, B. Huss, T. Ichikawa, T. 
Johannessen, E. M. Jones, S. D. Jones, S. Jutterström, V. Kitidis, A. Körtzinger, P. Landscützer, S. K. Lauvset, N. 
Lefèvre, A. B. Manke, J. T. Mathis, L. Merlivat, N. Metzl, A. Murata, T. Newberger, T. Ono, G.-H. Park, K. 
Paterson, D. Pierrot, A. F. Rıos, C. L. Sabine, S. Saito, J. Salisbury, V. V. S. S. Sarma, R. Schlitzer, R. Sieger, I. 
Skjelvan, T. Steinhoff, K. Sullivan, H. Sun, A. J. Sutton, T. Suzuki, C. Sweeney, T. Takahashi, J. Tjiputra, N. 
Tsurushima, S. M. A. C. van Heuven, D. Vandemark, P. Vlahos, D. W. R. Wal lace, R. Wanninkhof, and A. J. 
Watson. An update to the surface ocean CO2 atlas (socat version 2). Earth System Science Data Discussions, 
6(2):465–512, 2013. doi: 10.5194/essdd-6-465-2013. URL http://www.earth-syst-sci-data-discuss.net/6/465/2013/. 

A. P. Ballantyne, C. B. Alden, J. B. Miller, P. P. Tans, and J. W. C. White. Increase in observed net carbon dioxide 
uptake by land and oceans during the past 50 years. Nature, 488(7409):70–72, Aug 2012. 

L. Berline, J. M. Brankart, P. Brasseur, Y. Ourmières, J. Verron. Improving the physics of a coupled physical–
biogeochemical model of the North Atlantic through data assimilation: Impact on the ecosystem. Journal of Marine 
Systems, 64(1), 153-172, 2007. 

B. Blanke and P. Delecluse. Variability of the tropical Atlantic ocean simulated by a general-circulation model with 2 
different mixed-layer physics. 23:1363–1388, 1993. 

J. G. Canadell, C. Le Quéré, M. R. Raupach, C. B. Field, E. T. Buitenhuis, P. Ciais, T. J. Conway, N. P. Gillett, R A 
Houghton, and G. Marland. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon 
intensity, and efficiency of natural sinks. Proc Natl Acad Sci USA, 104(47): 18866–18870, Nov 2007. ISSN 1091-
6490 (Electronic). 

J. G. Canadell, P. Ciais, K. Gurney, C. Le Quéré, S. Piao, M. R. Raupack, and C. L. Sabine. An international effort to 



 28

quantify regional carbon fluxes. Eos Trans., 92:81–88, 2011. 

L. Chen, S. Xu, Z. Gao, H. Chen, Y. Zhang, J. Zhan, and W. Li. Estimation of monthly air-sea CO2 flux in the 
southern Atlantic and Indian ocean using in-situ and remotely sensed data. Remote Sensing of Environment, 
115(8):1935-1941, 2011. ISSN 0034-4257. doi: http://dx.doi.org/10.1016/j.rse.2011. 03.016. URL 
http://www.sciencedirect.com/science/article/pii/S0034425711000939. 

L. Cotrim da Cunha, E.T. Buitenhuis, C. Le Quéré, X. Giraud, and W. Ludwig. Potential impact of changes in river 
nutrient supply on global ocean biogeochemistry. page GB4007, 2007. doi: 10.1029/2006GB002718. 

P. Courtier, J.-N. Thepaut, and A. Hollingsworth. A strategy for operational implementation of 4D-VAR, using an 
incremental approach. Quarterly Journal of the Royal Meteorological Society, 120(519): 1367–1387, 1994. ISSN 
1477-870X. doi: 10.1002/qj.49712051912. URL http://dx.doi.org/10. 1002/qj.49712051912. 

T. F. Cox and M. A. A. Cox. Multidimensional Scaling. CRC press. 2000. 

T. Crueger, E. Roeckner, T. Raddatz, R. Schnur, and P. Wetzel. Ocean dynamics determine the response of oceanic 
CO2 uptake to climate change. 31(2-3):151–168, Aug 2008. ISSN 0930-7575. 

A. Dai and K.E. Trenberth. Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. 

Hydrometeor, 3:660–687, 2002. 

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Bamaseda, G. 
Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. 
Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hölm, L. Isaksen, P. Kållberg, M. Koehler, M. 
Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-
N. The ́paut, and F. Vitart. The era-interim reanalysis: configuration and performance of the data assimilation system. 
Quart. J. Roy. Meteor. Soc., 137: 553–597, 2011. 

F. Deng and J. M. Chen. Recent global CO2 flux inferred from atmospheric CO2 observations and its regional 
analyses. Biogeosciences, 8(11):3263–3281, 2011. doi: 10.5194/bg-8-3263-2011. URL 
http://www.biogeosciences.net/8/3263/2011/. 

G. Desroziers, L. Berre, B. Chapnik, and P. Poli. Diagnosis of observation, background and analysis error statistics in 
observation space. Quarterly Journal of the Royal Meteorological Society, 131(613): 3385–3396, 2005. ISSN 1477-
870X. doi: 10.1256/qj.05.108. URL http://dx.doi.org/10.1256/ qj.05.108. 

S. Dobricic and N. Pinardi. An oceanographic three-dimensional variational data assimilation scheme. Ocean 

Modelling, 22:89–105, 2008. 

S. C. Doney, K. Lindsay, K. Caldeira, J. M. Campin, H. Drange, J. C. Dutay, M. Follows, Y. Gao, A. Gnanadesikan, 
N. Gruber, A. Ishida, F. Joos, G. Madec, E. Maier-Reimer, J. C. Marshall, R. J. , Matear, P. Monfray, A. Mouchet, R. 
Najjar, J. C. Orr, G. K. Plattner, J. Sarmiento, R. Schlitzer, R. Slater, I. J. Totterdell, M. F. Weirig, Y. Yamanaka, and 
A. Yool. Evaluating global ocean carbon models: The importance of realistic physics. Global Biogeochemical 

Cycles, 18(3):GB3017, 2004. doi: 10.1029/2003GB002150. URL http://dx.doi.org/10.1029/2003GB002150. 

M. Dowd, E. Jones, and J. Parslow. A statistical overview and perspectives on data assimilation for marine 
biogeochemical models. Environmetrics, 25(4):203–213, 2014. ISSN 1099-095X. doi: 10. 1002/env.2264. URL 
http://dx.doi.org/10.1002/env.2264. 

T. Fichefet and M. A. M. Maqueda. Sensitivity of a global sea ice model to the treatment of ice thermodynamics and 
dynamics. J. Geophys. Res., 102(C6):12609–12646, 1997. 

H. E. Garcia, R. A. Locarnini, T. P. Boyer, J. I. Antonov, M. M. Zweng, O. K. Baranova, and D. R. Johnson. World 

Ocean Atlas 2009, Volume 4: Nutrients, volume NOAA Atlas NESDIS 71. U.S. Government Printing Office, 
Washington D.C., 2010. 

M. Gehlen, R. Gangstø, B. Schneider, L. Bopp, O. Aumont, and C. Ethe. The fate of pelagic CaCO3 production in a 
high CO2 ocean: a model study. Biogeosciences, 4(4):505–519, 2007. doi: 10.5194/ bg-4-505-2007. URL 
http://www.biogeosciences.net/4/505/2007/. 

M. Gerber and F. Joos. Carbon sources and sinks from an ensemble Kalman filter ocean data assimilation. Global 

Biogeochemical Cycles, 24(GB3004), 2010. 

M. Gloor, N. Gruber, T P Hughes, and J. L. Sarmiento. An inverse modelling method for estimation of net air-sea 
fluxes from bulk data: Methodology and application to the heat cycle. Global Biogeochem. Cycles, 15:767–782, 
2001. doi: 10.1029/2000GB001301. 

M. Gloor, N. Gruber, J. L. Sarmiento, C. L. Sabine, R. A. Feely, and C. Röedenbeck. A first estimate of present and 
pre-industrial air-sea CO2 fluxes patterns based on ocean interior carbon measurements and models. Geophys. Res. 



 29

Lett., 30(1):1010, 2003. URL http://dx.doi.org/10.1029/ 2002GL015594. 

W. W. Gregg, N. W. Casey, and C. S. Rousseaux. Sensitivity of simulated global ocean carbon flux estimates to 
forcing by reanalysis products. Ocean Modelling, 80(0):24-35, 2014. ISSN 1463- 5003. doi: 
http://dx.doi.org/10.1016/j.ocemod.2014.05.002. 

URL http://www.sciencedirect. com/science/article/pii/S1463500314000651. 

N. Gruber, M. Gloor, S. E. Mikaloff-Fletcher, S. C. Doney, S. Dutkiewicz, M. J. Follows, M. Gerber, A. R. 
Jacobson, F. Joos, K. Lindsay, D. Menemenlis, A. Mouchet, S. A. Mueller, J. L. Sarmiento, and T. Takahashi. 
Oceanic sources, sinks, and transport of atmospheric CO2. Global Biogeochemical Cycles, 23(1):GB1005, 02 2009. 
URL http://dx.doi.org/10.1029/2008GB003349. 

K. R. Gurney, R. M. Law, A. S. Denning, B. C. Rayner, P. J .and Pak, D. Baker, P. Bousquet, L. Bruhwiler, Y.-H. 
Chen, P. Ciais, I. Y. Fung, M. Heimann, J. John, T. Maki, S. Maksyutov, P. Peylin, M. Prather, and S. Taguchi. 
Transcom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks. 
Global Biogeochem. Cycles, 18(1), 2004. doi: 10.1029/2003GB002111.  

A. Harten. High resolution schemes for hyperbolic conservation laws. Journal of Computational Physics, 135:260–
278, Aug 1997. doi: 10.1006/jcph.1997.5713. URL http://adsabs.harvard.edu/abs/ 1997JCoPh.135..260H. 

B. Ingleby and M. Huddleston. Quality control of ocean temperature and salinity profiles - historical and real-time 
data. Journal of Marine Systems, 65(1-4):158–175, 2007. ISSN 0924-7963. doi: 
http://dx.doi.org/10.1016/j.jmarsys.2005.11.019.  

M. Ishii, R. A. Feely, K. B. Rodgers, G.-H. Park, R. Wanninkhof, D. Sasano, H. Sugimoto, C. E. Cosca, S. Nakaoka, 
M. Telszewski, Y. Nojiri, S. E. Mikaloff Fletcher, Y. Niwa, P. K. Patra, V. Valsala, H. Nakano, I. Lima, S. C. Doney, 
E. T. Buitenhuis, O. Aumont, J. P. Dunne, A. Lenton, and T. Takahashi. Air-sea CO2 flux in the pacific ocean for the 
period 1990-2009. Biogeosciences, 11(3):709–734, 2014. doi: 10.5194/bg-11-709-2014.  

A. R. Jacobson, S. E. Mikaloff-Fletcher, N. Gruber, J. L. Sarmiento, and M. Gloor. A joint atmosphere-ocean 
inversion for surface fluxes of carbon dioxide: 1. Methods and global-scale fluxes. Global Biogeochem. Cycles, 
21(1), 2007. doi: 10.1029/2005GB002556.  

A. R. Jacobson, S. E. Mikaloff-Fletcher, N. Gruber, J. L. Sarmiento, and M. Gloor.  A joint atmosphere-ocean 
inversion for surface fluxes of carbon dioxide: 2. Regional results, Global Biogeochem. Cycles 21 (2007), 
doi:10.1029/2006GB002703.  

S. D. Jones, C. Le Quéré, and C. Rödenbeck. Autocorrelation characteristics of surface ocean pCO2 and air-sea CO2 
fluxes. Global Biogeochem. Cycles, 26(GB2042), 2012. doi: 10.1029/2010GB004017. 

F. Joos, G.-K. Plattner, T. F. Stocker, O. Marchal, and A. Schmittner. Global warming and marine carbon cycle 
feedbacks on future atmospheric pCO2. Science, 284:464-467, 1999. 

R. F. Keeling, A. C. Manning, and M. K. Dubey. The atmospheric signature of carbon capture and storage, 2011. 
URL http://rsta.royalsocietypublishing.org/roypta/369/1943/2113.full. pdf. 

R. M. Key, A. Kozyr, C. L. Sabine, K. Lee, R. Wanninkhof, J. L. Bullister, R. A. Feely, F. J. Millero, C. Mordy, and 
T. H. Peng. A global ocean carbon climatology: Results from global data analysis project (GLODAP). 
18(4):GB4031, Dec 2004. ISSN 0886-6236. 

P. Landschützer, N. Gruber, D. C. E. Bakker, U. Schüster, S. Nakaoka, M. R. Payne, T. P. Sasse, and J. Zeng. A 
neural network-based estimate of the seasonal to inter-annual variability of the Atlantic ocean carbon sink. 
Biogeosciences, 10(11):7793–7815, 2013. doi: 10.5194/bg-10-7793-2013 

P. Landschützer, N. Gruber, D. C. E. Bakker, and U. Schüster. Recent variability of the global ocean carbon sink. 
Global Biogeochemical Cycles, 28(9):927–949, 2014. ISSN 1944-9224. doi: 10.1002/ 2014GB004853. URL 
http://dx.doi.org/10.1002/2014GB004853. 

P. Landschützer, N. Gruber, D. C. E. Bakker, and U. Schüster. An observation-based global monthly gridded sea 

surface pCO2 product from 1998 through 2011 and its monthly climatology (2014). 

doi:10.3334/CDIAC/OTG.SPCO2_1998_2011_ETH_SOM-FFN  

url: http://cdiac.ornl.gov/ftp/oceans/spco2_1998_2011_ETH_SOM-FFN 

W.G. Large and S.G. Yeager. The global climatology of an interannually varying air-sea flux data set. Climate 

Dynamics, 33:341–364, 2008. 

C. Le Quéré, Christian Rödenbeck, Erik T Buitenhuis, Thomas J Conway, Ray Langenfelds, Antony Gomez, Casper 



 30

Labuschagne, Michel Ramonet, Takakiyo Nakazawa, Nicolas Metzl, Nathan Gillett, and Martin Heimann. Saturation 
of the Southern Ocean CO2 sink due to recent climate change. Science, 316(5832):1735–1738, Jun 2007. ISSN 1095-
9203 (Electronic). 

C. Le Quéré, Taro Takahashi, Erik T. Buitenhuis, Christian Röedenbeck, and Stewart C. Sutherland. Impact of 
climate change and variability on the global oceanic sink of CO2. Global Biogeochemical Cycles, 24(4):1–10, 10 
2010. ISSN 1944-9224. doi: 10.1029/2009GB003599. URL http://dx. doi.org/10.1029/2009GB003599. 

C. Le Quéré, R. J. Andres, T. Boden, T. Conway, R. A. Houghton, J. I. House, G. Marland, G. P. Peters, G. van der 
Werf, A. Ahlstro ̈m, R. M. Andrew, L. Bopp, J. G. Canadell, P. Ciais, S. C. Doney, C. Enright, P. Friedlingstein, C. 
Huntingford, A. K. Jain, C. Jourdain, E. Kato, R. F. Keeling, K. Klein Goldewijk, S. Levis, P. Levy, M. Lomas, B. 
Poulter, M. R. Raupach, J. Schwinger, S. Sitch, B. D. Stocker, N. Viovy, S. Zaehle, and N. Zeng. The global carbon 
budget 1959 - 2011. Earth System Science Data Discussions, (5):1107 – 1157, 2012. URL http://www.earth-syst-sci-
data-discuss.net/5/ 1107/2012/. 

C. Le Quéré, R. Moriarty, R. M. Andrew, G. P. Peters, P. Ciais, P. Friedlingstein, S. D. Jones, S. Sitch, P. Tans, A. 
Arneth, T. A. Boden, L. Bopp, Y. Bozec, J. G. Canadell, L. P. Chini, F. Chevallier, C. E. Cosca, I. Harris, M. 
Hoppema, R. A. Houghton, J. I. House, A. K. Jain, T. Johannessen, E. Kato, R. F. Keeling, V. Kitidis, K. Klein 
Goldewijk, C. Koven, C. S. Landa, P. Landschützer, A. Lenton, I. D. Lima, G. Marland, J. T. Mathis, N. Metzl, Y. 
Nojiri, A. Olsen, T. Ono, S. Peng, W. Peters, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Ro ̈denbeck, S. 
Saito, J. E. Salisbury, U. Schüster, J. Schwinger, R. Seferian, J. Segschneider, T. Steinhoff, B. D. Stocker, A. J. 
Sutton, T. Takahashi, B. Tilbrook, G. R. van der Werf, N. Viovy, Y.-P. Wang, R. Wanninkhof, A. Wiltshire, and N. 
Zeng. Global carbon budget 2014. Earth System Science Data, 7(1):47–85, 2015. doi: 10.5194/essd-7-47-2015. URL 
http://www.earth-syst-sci-data.net/7/47/2015/. 

N. Lefèvre, A. J. Watson, and A. R. Watson. A comparison of multiple regression and neural network techniques for 
mapping in situ pCO2 data. Tellus B, 57(5):375–384, 2005. ISSN 1600-0889. doi: 10.1111/j.1600-
0889.2005.00164.x. URL http://dx.doi.org/10.1111/j. 1600-0889.2005.00164.x. 

A. Lenton, Matear RJ, Tilbrook B. 2006 Design of an observational strategy for quantifying the Southern Ocean 
uptake of CO2. Glob. Biogeochem. Cycles 20, GB4010. doi:10.1029/2005GB002620 

A. Lenton, B. Tilbrook, R. M. Law, D. Bakker, S. C. Doney, N. Gruber, M. Ishii, M. Hoppema, N. S. Lovenduski, R. 
J. Matear, B. I. McNeil, N. Metzl, S. E. Mikaloff Fletcher, P. M. S. Monteiro, C. Rödenbeck, C. Sweeney, and T. 
Takahashi. Sea-air CO2 fluxes in the southern ocean for the period 1990-2009. Biogeosciences, 10(6):4037–4054, 
2013. doi: 10.5194/bg-10-4037-2013. URL http://www.biogeosciences.net/10/4037/2013/. 

R. A. Locarnini, A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. 
Johnson. World Ocean Atlas 2009, Volume 1: Temperature, volume NOAA Atlas NESDIS 68. U.S. Government 
Printing Office, Washington D.C., 2010. 

R. Lukas and D. Karl. Hawaii ocean time-series (hot), 1988–1998: A decade of interdisciplinary oceanography. CD-
ROM 99-05, School of Ocean and Earth Science and Technology, University of Hawaii, 1999. 

G. Madec and M. Imbard. A global ocean mesh to overcome the North Pole singularity. 12:381–388, 1996. 

S. Maksyutov, H. Takagi, V. K. Valsala, M. Saito, T. Oda, T. Saeki, D. A. Belikov, R. Saito, A. Ito, Y. Yoshida, I. 
Morino, O. Uchino, R. J. Andres, and T. Yokota. Regional CO2 flux estimates for 2009-2010 based on GOSAT and 
ground-based CO2 observations. Atmos. Chem. Phys., 13(18):9351– 9373, 2013. doi: 10.5194/acp-13-9351-2013. 
URL http://www.atmos-chem-phys.net/13/ 9351/2013/. 

R.J. Matear and Andrew Hirst. Climate change feedback on the future oceanic CO2 uptake. Tellus B, 51: 722-733, 
1999. 

K. Matsumoto, J. L. Sarmiento, R. M. Key, O. Aumont, J. L. Bullister, K. Caldeira, J.-M. Campin, S. C. Doney, H. 
Drange, J.-C. Dutay, M. Follows, Y. Gao, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, K. Lindsay, E. Maier-
Reimer, J. C. Marshall, R. J. Matear, P. Monfray, A. Mouchet, R. Najjar, G.-K. Plattner, R. Schlitzer, R. Slater, P. S. 
Swathi, I. J. Totterdell, M.-F. Weirig, Y. Yamanaka, A. Yool, and J. C. Orr. Evaluation of ocean carbon cycle models 
with data-based metrics. Geophysical Research Letters, 31(7):1–4, 2004. ISSN 1944-8007. doi: 
10.1029/2003GL018970. URL http://dx.doi. org/10.1029/2003GL018970. 

M. J. McPhaden, A. J. Busalacchi, R. Cheney, Jean-Ren Donguy, Kenneth S. Gage, D. Halpern, M. Ji, P. Julian, G. 
Meyers, G. T. Mitchum, P. P. Niiler, J. Picaut, R. W. Reynolds, N. Smith, and K. Takeuchi. The tropical ocean-
global atmosphere observing system: A decade of progress. J. Geophys. Res., 103 (C7):14169–14240, 1998. ISSN 
2156-2202. doi: 10.1029/97JC02906. URL http://dx.doi.org/ 10.1029/97JC02906. 

A.F. Michaels and A.H. Knap. Overview of the U.S. JGOFS Bermuda Atlantic Time Series study. 43: 157–198, 
1996. 



 31

S. E. Mikaloff Fletcher, N. Gruber, A. R. Jacobson, M. Gloor, S. C. Doney, S. Dutkiewicz, M. Gerber, M. Follows, 
F. Joos, K. Lindsay, D. Menemenlis, A. Mouchet, S. A. Mueller, and J. L. Sarmiento. Inverse estimates of the 
oceanic sources and sinks of natural CO2 and the implied oceanic carbon transport. 21(1):GB1010, 2007. ISSN 1944-
9224. doi: 10.1029/2006GB002751. URL http://dx. doi.org/10.1029/2006GB002751. 

J. K. Moore, S. C. Doney, D. M. Glover, and I. Y. Fung. Iron cycling and nutrient-limitation patterns in surface 
waters of the World ocean. 49:463–507, 2002. 

R.H. Moss, J.A. Edmonds, K.A. Hibbard, M.R. Manning, S.K. Rose, et al. The next generation of scenarios for 
climate change research and assessment. Nature 463, 747-756, 2010. 

P. R. Oke and P. Sakov. Representation error of oceanic observations for data assimilation. J. Atmos. Oceanic 

Technol., (25):1004–1017, 2008. 

A. Olsen. Nordic seas total dissolved inorganic carbon data in carina. Earth System Science Data, 1: 35–43, 2009a. 

A. Olsen. Nordic seas total alkalinity data in carina. Earth System Science Data, 1:77–86, 2009b. 

Y. Ourmières, P. Brasseur, M. Lévy, J. M. Brankart, J. Verron. On the key role of nutrient data to constrain a coupled 
physical–biogeochemical assimilative model of the North Atlantic Ocean. Journal of Marine Systems, 75(1), 100-
115, 2009. 

G.-H. Park, R. Wanninkhof, Scott C. Doney, T. Takahashi, Kitack Lee, Richard A. Feely, Christopher L. Sabine, J. 
Trinanes, and Ivan D. Lima. Variability of global net sea–air CO2 fluxes over the last three decades using empirical 
relationships. Tellus B, 62(5):352–368, 2010. ISSN 1600-0889. doi: 10.1111/ j.1600-0889.2010.00498.x. URL 
http://dx.doi.org/10.1111/j.1600-0889.2010.00498.x. 

S. K. Park and L. Xu, editors. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II), 
volume 2. Springer-Verlag Berlin Heidelberg, 2013. doi: 10.1007/978-3-642-35088-7. 

P. K. Patra, M. Ishizawa, S. Maksyutov, T. Nakazawa, and G. Inoue. Role of biomass burning and climate anomalies 
for land-atmosphere carbon fluxes based on inverse modeling of atmospheric CO2. Global Biogeochem. Cycles, 
19(3), 2005. doi: 10.1029/2004GB002258. URL http://dx.doi.org/10. 1029/2004GB002258. 

W. Peters, M. C. Krol, G. R. van der Werf, S. Houweling, C. D. Jones, J. Hughes, K. M. Schaefer, K. A. Masarie, A. 
R. Jacobson, J. B. Miller, C. H. Cho, M. Ramonet, M. Schmidt, L. Ciattaglia, F. Apadula, D. Heltai, F. Meinhardt, A. 
G. Di Sarra, S. Piacentino, D. Sferlazzo, T. Aalto, J. Hatakka, J. Strom, L. Haszpra, H. A. J. Meijer, S. van der Laan, 
R. E. M. Neubert, A. Jordan, X. Rodo, J.- A. Morgui, A. T. Vermeulen, E. Popa, K. Rozanski, M. Zimnoch, A. C. 
Manning, M. Leuenberger, C. Uglietti, A. J. Dolman, P. Ciais, M. Heimann, and P. P. Tans. Seven years of recent 
European net terrestrial carbon dioxide exchange constrained by atmospheric observations. Global Change Biology, 
16(4):1317–1337, 2010. ISSN 1365-2486. doi: 10.1111/j.1365-2486.2009.02078.x. URL 
http://dx.doi.org/10.1111/j.1365-2486.2009.02078.x. 

P. Peylin, R. M. Law, K. R. Gurney, F. Chevallier, A. R. Jacobson, T. Maki, Y. Niwa, P. K. Patra, W. Peters, P. J. 
Rayner, C. Rödenbeck, I. T. van der Laan-Luijkx, and X. Zhang. Global atmospheric carbon budget: results from an 
ensemble of atmospheric CO2 inversions. Biogeosciences, 10(10):6699– 6720, 2013. doi: 10.5194/bg-10-6699-2013. 
URL http://www.biogeosciences.net/10/6699/ 2013/. 

R. James Purser, Wan-Shu Wu, David F. Parrish, and Nigel M. Roberts. Numerical aspects of the application of 
recursive filters to variational statistical analysis. Part i: Spatially homogeneous and isotropic Gaussian covariances. 
Monthly Weather Review, 131(8):1524–1535, 2014/10/24 2003a. doi: 10.1175//1520-0493 

R. J. Purser, W.-S. Wu, D. F. Parrish, and N. M. Roberts. Numerical aspects of the application of recursive filters to 
variational statistical analysis. Part ii: Spatially inhomogeneous and anisotropic general covariances. Monthly 

Weather Review, 131(8):1536–1548, 2014/10/24 2003b. doi: 10.1175//2543.1.  

K. Raghukumar, C. A. Edwards, N. L. Goebel, G. Broquet, M. Veneziani, A. M. Moore, J. P. Zehr. Impact of 
assimilating physical oceanographic data on modeled ecosystem dynamics in the California Current System. Progress 
in Oceanography, 138, 546-558, 2015. 

A. Ridgwell, J. C. Hargreaves, N. R. Edwards, J. D. Annan, T. M. Lenton, R. Marsh, A. Yool, and A. Watson. 
Marine geochemical data assimilation in an efficient earth system model of global biogeochemical cycling. 
Biogeosciences, 4(1):87–104, 2007. ISSN 1726-4170. URL http: //www.biogeosciences.net/4/481/2007/. 

C. Rödenbeck, S. Houweling, M. Gloor, and M. Heimann. CO2 flux history 1982-2001 inferred from atmospheric 
data using a global inversion of atmospheric transport. Atmospheric Chemistry and Physics, 3(6):1919–1964, 2003. 
doi: 10.5194/acp-3-1919-2003. URL http://www.atmos-chem-phys.net/ 3/1919/2003/. 

C. Rödenbeck, R. F. Keeling, D. Bakker, N. Metzl, A. Olsen, C. Sabine, and M. Heimann. Global surface-ocean 
pCO2 and sea–air CO2 flux variability from an observation-driven ocean mixed-layer scheme, Ocean Science, 9(2), 



 32

193–216, 2013.  

C. Rödenbeck, D. C. E. Bakker, N. Metzl, A. Olsen, C. Sabine, N. Cassar, F. Reum, R. F. Keeling, and M. Heimann. 
Interannual sea-air CO2 flux variability from an observation-driven ocean mixed-layer scheme. Biogeosciences, 
11(17):4599–4613, 2014. doi: 10.5194/bg-11-4599-2014. URL http: //www.biogeosciences.net/11/4599/2014/. 

C. L. Sabine, S. Hankin, H. Koyuk, D. C. E. Bakker, B. Pfeil, A. Olsen, N. Metzl, A. Kozyr, A. Fassbender, A. 
Manke, J. Malczyk, J. Akl, S. R. Alin, R. G. J. Bellerby, A. Borges, J. Boutin, P. J. Brown, W.-J. Cai, F. P. Chavez, 
A. Chen, C. Cosca, R. A. Feely, M. Gonza ́lez-Da ́vila, C. Goyet, N. Hardman- Mountford, C. Heinze, M. Hoppema, 
C. W. Hunt, D. Hydes, M. Ishii, T. Johannessen, R. M. Key, A. Körtzinger, P. Landschützer, S. K. Lauvset, N. 
Lefèvre, A. Lenton, A. Lourantou, L. Merlivat, T. Midorikawa, L. Mintrop, C. Miyazaki, A. Murata, A. Nakadate, Y. 
Nakano, S. Nakaoka, Y. Nojiri, A. M. Omar, X. A. Padin, G.-H. Park, K. Paterson, F. F. Perez, D. Pierrot, A. 
Poisson, A. F. Rìos, J. Salisbury, J. M. Santana-Casiano, V. V. S. S. Sarma, R. Schlitzer, B. Schneider, U. Schüster, 
R. Sieger, I. Skjelvan, T. Steinhoff, T. Suzuki, T. Takahashi, K. Tedesco, M. Telszewski, H. Thomas, B. Tilbrook, D. 
Vandemark, T. Veness, A. J. Watson, R. Weiss, C. S. Wong, and H. Yoshikawa-Inoue. Surface ocean CO2 atlas 
(socat) gridded data products. Earth System Science Data, 5(1):145–153, 2013. URL http://www.earth-syst-sci-
data.net/5/145/2013/. 

V. V. S. S. Sarma, A. Lenton, R. M. Law, N. Metzl, P. K. Patra, S. Doney, I. D. Lima, E. Dlugokencky, M. Ramonet, 
and V. Valsala. Sea-air CO2 fluxes in the Indian Ocean between 1990 and 2009. Biogeosciences, 10(11):7035–7052, 
2013. doi: 10.5194/bg-10-7035-2013. URL http: //www.biogeosciences.net/10/7035/2013/. 

J. L. Sarmiento and N. Gruber. Ocean Biogeochemical Dynamics. Princeton Univ. Press, Princeton, NJ, 2006. 

J. L. Sarmiento and C. Le Quéré. Oceanic carbon dioxide uptake in a model of century-scale global warming. 
Science, 274:1346–1350, 1996. 

U. Schüster, Galen A. McKinley, Nicholas R. Bates, F. Chevallier, S. C. Doney, A. R. Fay, M. Gonzalez- Davila, 
Nicolas Gruber, S. Jones, J. Krijnen, P. Landschützer, N. Lefèvre, N. Manizza, J. Mathis, Nicolas Metzl, A. Olsen, 
A. F. Rios, Christian Rödenbeck, J. M. Santana-Casiano, Taro Takahashi, Rik Wanninkhof, and Andrew J. Watson. 
An assessment of the Atlantic and Arctic sea–air CO2 fluxes, 1990–2009. Biogeosciences, 10:607-627, 2013. doi: 
10.5194/bg-10-607-2013. 

D. Seidov T. P. Boyer R. A. Locarnini A. V. Mishonov Antonov, J. I. and H. E. Garcia. World Ocean Atlas 2009 

Volume 2: Salinity, volume NOAA Atlas NESDIS 69. U.S. Government Printing Office, Washington D.C., 2010. 

S. Sitch, P. Friedlingstein, N. Gruber, S. D. Jones, G. Murray-Tortarolo, A. Ahlstro ̈m, S. C. Doney, H. Graven, C. 
Heinze, C. Huntingford, S. Levis, P. E. Levy, M. Lomas, B. Poulter, N. Viovy, S. Zaehle, N. Zeng, A. Arneth, G. 
Bonan, L. Bopp, J. G. Canadell, F. Chevallier, P. Ciais, R. Ellis, M. Gloor, P. Peylin, S. L. Piao, C. Le Quéré, B. 
Smith, Z. Zhu, and R. Myneni. Recent trends and drivers of regional sources and sinks of carbon dioxide. 
Biogeosciences, 12(3):653–679, 2015. doi: 10.5194/ bg-12-653-2015. URL 
http://www.biogeosciences.net/12/653/2015/. 

A. Storto, S. Dobricic, S. Masina, and P. Di Pietro. Assimilating along-track altimetric observations through local 
hydrostatic adjustment in a global ocean variational assimilation system. Mon. Weather Rev., 139:738–754, 2011. 

A. Storto, S. Masina, and S. Dobricic. Estimation and impact of non-uniform horizontal correlation length-scales for 
global ocean physical analyses. J. Atmos. Oceanic Technol., (31):2330–2349, 2014. 

T. M. Suzuki, M. Ishii, J. R. Aoyama, K. Christian, T. Enyo, R. M. Kawano, N. Key, A. Kosugi, L. A. Kozyr, A. 
Miller, T. Murata, T. Nakano, T. Ono, K. Saino, D. Sasaki, Y. Sasano, M. Takatani, Wakita, and C. L. Sabine. 
Pacifica data synthesis project. ORNL/CDIAC-159, (NDP-092), 2013. doi: 10.3334/ CDIAC/OTG.PACIFICA 
NDP092. 

T. Takahashi and S. C. Sutherland. Global ocean surface water partial pressure of CO2 database: Measurements 
performed during 1968–2007. ORNL/CDIAC-152 NDP-088a, Lamont-Doherty Earth Observatory, Columbia 
University, Palisades, NY 10964, 2007. 

T. Takahashi, S. C. Sutherland, R. Wanninkhof, C. Sweeney, R. A. Feely, D. W. Chipman, B. Hales, G. Friederich, 
F. P. Chavez, C. L. Sabine, A. Watson, D. C. E. Bakker, U. Schüster, N. Metzl, H. Yoshikawa-Inoue, M. Ishii, T. 
Midorikawa, Y. Nojiri, A. Körtzinger, T. Steinhoff, M. Hoppema, J. Olafsson, T. S. Arnarson, B. Tilbrook, T. 
Johannessen, A. Olsen, R. G. J. Bellerby, C. S. Wong, B. Delille, N. R. Bates, and H. J. W. de Baar. Climatological 
mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea 

Research Part II: Topical Studies in Oceanography, 56(8–10):554 – 577, 2009. ISSN 0967-0645. doi: 
http://dx.doi.org/10.1016/j.dsr2.2008.12.009. URL http://www.sciencedirect.com/science/ 
article/pii/S0967064508004311. Surface Ocean CO2 Variability and Vulnerabilities. 

T. Takahashi, S. C. Sutherland, and A. Kozyr. Global ocean surface water partial pressure of CO2 database: 
Measurements performed during 1968–2012. ORNL/CDIAC-160 NDP-088(V2012), Carbon Dioxide Information 



 33

Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee (USA), 2012. 

I. Tegen and I. Fung. Modeling of mineral dust in the atmosphere - sources, transport, and optical- thickness. 
99:22897–22914, 1994. 

I. Tegen and I. Fung. Contribution to the atmospheric mineral aerosol load from land-surface modification. 
100:18707–18726, 1995. 

M. Telszewski, A. Chazottes, U. Schüster, A. J. Watson, C. Moulin, D. C. E. Bakker, M. Gonzalez-Davila, T. 
Johannessen, A. Körtzinger, H. Lüger, A. Olsen, A. Omar, X. A. Padin, A. F. Rıos, T. Steinhoff, M. Santana-
Casiano, D. W. R. Wallace, and R. Wanninkhof. Estimating the monthly pCO2 distribution in the North Atlantic 
using a self-organizing neural network. Biogeosciences, 6(8):1405–1421, 2009. doi: 10.5194/bg-6-1405-2009. URL 
http://www.biogeosciences.net/6/1405/2009/. 

V. K. Valsala and S. Maksyutov. Simulation and assimilation of global ocean pCO2 and air–sea CO2 fluxes using 
ship observations of surface ocean pCO2 in a simplified biogeochemical offline model. Tellus B, (62):821–840, 2010. 

B. Van Leer. Towards the ultimate conservative difference scheme, v. a second order sequel to Godunov’s method. J. 

Com. Phys., 32:101–136, 1979. 

A. Velo, F. F. Perez, P. Brown, T. Tanhua, U. Schüster, and R. M. Key. Carina alkalinity data in the Atlantic ocean. 
Earth System Science Data, 1:45–61, 2009. 

M. Vichi and S. Masina. Skill assessment of the PELAGOS global ocean biogeochemistry model over the period 
1980-2000. Biogeosciences, 6(11):2333–2353, 11 2009. URL http://www. biogeosciences.net/6/2333/2009/. 

M. Vichi, S. Masina, and A. Navarra. A generalized model of pelagic biogeochemistry for the global ocean 
ecosystem. Part II: numerical simulations. Journal of Marine Systems, 64:110–134, 2007a. 

M. Vichi, N. Pinardi, and S. Masina. A generalized model of pelagic biogeochemistry for the global ocean 
ecosystem. Part I: theory. Journal of Marine Systems, 64:89–109, 2007b. 

M. Vichi, E. Manzini, P. Fogli, A. Alessandri, L. Patara, E. Scoccimarro, S. Masina, and A. Navarra. Global and 
regional ocean carbon uptake and climate change: sensitivity to a substantial mitigation scenario. 37(9):1929–1947, 
11 2011. URL http://dx.doi.org/10.1007/s00382-011-1079-0.  

Vichi, M., T. Lovato, P. Lazzari, G. Cossarini, E. Gutierrez Mlot, G. Mattia, W. McKiver, S. Masina, N. Pinardi, C. 
Solidoro and M. Zavatarelli (2015), The Biogeochemical Flux Model (BFM): Equation Description and User 
Manual. BFM version 5.1 (BFM-V5). Release 1.1, BFM Report Series 1, Bologna, Italy. 

R. Wanninkhof. Relationship between windspeed and gas exchange over the ocean. 97:7373–7382, 1992. 

R. Wanninkhof, G. H. Park, T. Takahashi, C. Sweeney, R. Feely, Y. Nojiri, N. Gruber, S. C. Doney, G. A. 
McKinley, A. Lenton, C. Le Quéré, C. Heinze, J. Schwinger, H. Graven, and S. Khatiwala. Global ocean carbon 
uptake: magnitude, variability and trends. Biogeosciences, 10(3):1983–2000, 2013. doi: 10.5194/bg-10-1983-2013.  

A. J. Watson and J. C. Orr. Ocean Biogeochemistry. Global Change — The IGBP Series (closed). Springer Berlin 
Heidelberg, 2003. 

J. While, I. Totterdell, and M. Martin. Assimilation of pCO2 data into a global coupled physical- biogeochemical 
ocean model. Journal of Geophysical Research: Oceans, 117(C3):1–12, 2012. ISSN 2156-2202. doi: 
10.1029/2010JC006815. URL http://dx.doi.org/10.1029/2010JC006815. 

J. Zeng, Y. Nojiri, P. Landschützer, M. Telszewski, and S. Nakaoka. A global surface ocean fCO2 climatology based 
on a feed-forward neural network. Journal of Atmospheric and Oceanic Technology, 31(8):1838–1849, 2015/06/09 
2014. doi: 10.1175/JTECH-D-13-00137.1. URL http: //dx.doi.org/10.1175/JTECH-D-13-00137.1. 

 640 

  641 



 34

Supplemental material 642 
 643 

 644 

 645 

 646 
 647 

Figure S1. Number of combined DIC and ALK data used in the assimilation for the North Pacific 648 

for each year of the simulation. A description of this composite inorganic carbon dataset is given in 649 

Sec. 2.3. 650 
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 652 
Figure S2. Number of assimilated DIC and ALK data (paired) computed for every model grid point 653 

over the entire study period. 654 
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