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Abstract More than 74 biogeochemical profiling floats that measure water column pH, oxygen, nitrate,
fluorescence, and backscattering at 10 day intervals have been deployed throughout the Southern Ocean.
Calculating the surface ocean partial pressure of carbon dioxide (pCO2sw) from float pH has uncertainty
contributions from the pH sensor, the alkalinity estimate, and carbonate system equilibrium constants,
resulting in a relative standard uncertainty in pCO2sw of 2.7% (or 11μatm at pCO2sw of 400μatm). The
calculated pCO2sw from several floats spanning a range of oceanographic regimes are compared to existing
climatologies. In some locations, such as the subantarctic zone, the float data closely match the climatologies,
but in the polar Antarctic zone significantly higher pCO2sw are calculated in the wintertime implying a
greater air-sea CO2 efflux estimate. Our results based on four representative floats suggest that despite their
uncertainty relative to direct measurements, the float data can be used to improve estimates for air-sea
carbon flux, as well as to increase knowledge of spatial, seasonal, and interannual variability in this flux.

Plain Language Summary The Southern Ocean is a key player in the global flow of carbon, yet it is
hard to reach, and there are relatively fewmeasurements there, especially in winter. Measuring the amount of
carbon dioxide gas in seawater is key to advancing our understanding of the Southern Ocean. More than 74
robotic floats that use sensors to measure seawater properties have been deployed throughout the Southern
Ocean, and each has a lifetime of around 5 years. It is currently not possible to directly measure carbon
dioxide gas from these floats; however, it is possible to estimate carbon dioxide from things that the float can
measure, like pH, a measure of ocean acidity. Here surface ocean carbon dioxide is estimated from several
floats and compared to two ship-based estimates. In some locations, the floats closely match the existing
estimates, but in other locations the floats see significantly higher surface ocean carbon dioxide in the
wintertime, reinforcing the idea that the Southern Ocean’s role in the global carbon cycle needs a closer look.
Our results show that despite not measuring carbon dioxide directly, these floats will help scientists learn a lot
about the Southern Ocean’s part in the global flow of carbon.

1. Background

As anthropogenic carbon dioxide (CO2) from fossil fuel burning and land use changes continues to build up
in our atmosphere, the ocean has mediated the atmospheric increase by absorbing about 26% of emissions
over the timeframe 2006–2015 [Le Quéré et al., 2016]. This oceanic sink for anthropogenic CO2 is not equally
distributed throughout the world oceans but is strongest in areas of deep and intermediate water formation
such as the North Atlantic and the Southern Ocean, with the Southern Ocean accounting for around half of
the total oceanic uptake [Frölicher et al., 2015]. Understanding how this anthropogenic CO2 uptake occurs
against the background of natural carbon fluxes is critical for understanding modern ocean changes as well
as for improving climate modeling and projection.

The ocean takes up or releases CO2 when there is a difference between the surface ocean partial pressure of
CO2 (pCO2sw) and the atmospheric partial pressure of CO2 (pCO2a). The flux (FCO2) of carbon between the
atmosphere and the ocean can be estimated using the following bulk formula:
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CCO2 ¼ kK0 pCO2sw � pCO2að Þ (1)

where k is the gas transfer velocity (typically expressed as a function of wind speed) and K0 is the solubility of
CO2 in seawater as a function of seawater temperature (T) and salinity (S). Because the atmosphere is zonally
well mixed, the pCO2a at any point over the Southern Ocean is nearly equal to the atmospheric CO2measured
at a land-based observatory such as the Cape Grim Station (available from http://www.csiro.au/greenhouse-
gases) for the Southern Hemisphere, corrected for local sea level pressure and the vapor pressure of water as
a function of surface ocean T and S. Historically, for purposes of determining air-sea CO2 fluxes the pCO2sw is
measured directly along with T and S using shipboard underway systems or moored systems. These under-
way and moored pCO2sw measurements have been favored, as no other truly autonomous systems exist.
Moreover, direct pCO2sw measurements at in situ T have been deemed more accurate for assessment of
air-sea flux than either the discrete bottle pCO2sw sampling method, in which samples are warmed to labora-
tory temperature before processing, or calculating pCO2sw with a carbonate system calculator such as
CO2SYS [Lewis and Wallace, 1998; van Heuven et al., 2011] using discrete measurements of any two of the
other carbonate system parameters (total alkalinity (TA), pH, or dissolved inorganic carbon (DIC)).

The seasonality and interannual variability in FCO2 is not well understood in the Southern Ocean owing to
sparse observations, particularly in the austral winter. This lack of observations limits efforts to quantify
annual fluxes, as well as estimates of how FCO2 might change in the future. There have been several commu-
nity efforts to compile high-quality measurements of pCO2sw, and to date these compilations have been lim-
ited to direct measurements from drifter, shipboard, or moored systems. The most recent effort, the Surface
Ocean CO2 Atlas, version 4 (SOCATv4) [Bakker et al., 2016], includes 18.5 million fCO2sw (pCO2sw corrected for
the nonideal behavior of CO2) values globally covering the years 1957–2015. Despite the large number of
observations, the data set is spatially, temporally, and seasonally biased, especially in the Southern Ocean.
Spatial biases arise because most Southern Ocean voyages are reoccupations of supply routes to Antarctic
bases or of repeat hydrographic lines leaving large swaths of the Southern Ocean completely unsampled
(Figure 1a). Seasonal biases occur because the Southern Ocean is difficult to access especially during austral
winter when dangerous weather systems are frequent and when sea ice and icebergs may extend as far north
as 50°S latitude. When comparing the distribution of SOCATv4 data from only austral winter (July–September;
Figure 1b) with all Southern Ocean observations (Figure 1a), this seasonal bias becomes apparent.

From such data compilations researchers have developed data products for surface ocean pCO2sw and for
FCO2 such as the global monthly climatologies presented by Takahashi et al. [2009, 2014] and the global
monthly gridded data product presented by Landschützer et al. [2014, 2015]. Takahashi et al. [2014] used this
pCO2sw climatology combined with estimates of alkalinity to develop global monthly surface climatologies
for pH, DIC, and the saturation states of aragonite and calcite. Efforts are taken to minimize the effects that
spatial and temporal biases in the data have on these climatologies, but in much of the Southern Ocean
the variability is large, the data are sparse, and such biases are unavoidable.

The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project (http://soccom.prin-
ceton.edu) aims to fill these observational gaps by deploying approximately 200 biogeochemical profiling
floats over 5 years. Now in year three, the project has deployed more than 74 floats (Figure 1c). These floats
are different from traditional Argo floats in that many include ice avoidance software and all carry some
combination of additional biogeochemical sensors (pH, nitrate, oxygen, fluorescence, and backscattering).
The measurement of pH is of special significance; when well calibrated, this can allow the calculation
of pCO2sw to high precision using existing algorithms for TA that are based on other float-measured
parameters (T, S, pressure (P), and O2) [e.g., Carter et al., 2016]. With current measurement accuracies
the uncertainty of calculating pCO2sw from TA and pH is significantly smaller than calculating it from
TA and DIC [Dickson and Riley, 1978]. The focus of this manuscript is to assess the uncertainties that result
when these profiling float data are used to calculate pCO2sw.

2. Methods

To calculate pCO2sw from SOCCOM biogeochemical floats, the in situ pHmeasured using a Deep-sea DuraFET
pH sensor [Johnson et al., 2016] is combined with an algorithm-based estimate for TA. The CO2SYS MATLAB
program [van Heuven et al., 2011; available from http://cdiac.ornl.gov/ftp/co2sys], the equilibrium constants
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of Lueker et al. [2000], Dickson [1990], and Perez and Fraga [1987], and the boron to salinity ratio of Lee et al.
[2010] as recommended by A. Dickson [Wanninkhof et al., 2016a] were used for this analysis, and pH is in situ
on the total hydrogen ion concentration scale. For the remainder of this manuscript the notation X (Y, Z) is
used to indicate that carbonate system parameter X was calculated using CO2SYS with inputs of Y and Z.

The SOCCOM float pH sensor data are adjusted in near-real time using an empirical algorithm for in situ pH
based on T, S, P, and O2 [Williams et al., 2016]. The following steps describe the pH sensor calibration
adjustment process: (1) convert shipboard bottle pH (T=25°C and P= 0dbar) to in situ pH (at conductivity-
temperature-depth (CTD) T and P), (2) determine multiple linear regression (MLR) algorithm [Williams et al.,
2016] to estimate in situ pH as a function of T, S, P, and O2 using in situ pH from depths between 1000 and
2000m determined from recent shipboard bottle measurements (2011 to present) from Southern Ocean
and SOCCOM deployment cruises, (3) apply MLR algorithm to float-measured T, S, P, and O2 to obtain MLR
in situ pH estimate, (4) adjust Deep-sea DuraFET pH sensor reference potential [Johnson et al., 2016] to match
1500m sensor in situ pH to MLR in situ pH estimate using either a one-time offset correction or a time-
dependent drift correction (units of year�1), (5) apply new calibration to entire float profile.

A minimum number of adjustments are made to keep the float pH within 0.005 of the MLR algorithm
estimate; the method is described in more detail by Johnson et al. [2016], Wanninkhof et al. [2016a], and

Figure 1. SOCATv4 pCO2sw data [Bakker et al., 2016] south of 30°S colored by month for years 1957–2015 (a) for all months and (b) for only austral winter months
(July–September). (c) A map of trajectories of all SOCCOM floats from 26 March 2014 to 4 January 2017 with the floats used in this study colored in green.
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Williams et al. [2016]. When appropriate, time-dependent drift corrections are applied to decrease bias in the
pH measurements as the sensor drifts over time. Table 1 outlines the adjustments that have been made to
the four SOCCOM float pH sensors utilized in the discussion. Offset adjustments are additive and
cumulative, whereas drift adjustments only apply until they are overridden by a subsequent drift
adjustment. Equation (2) provides a generalized calculation for the cumulative adjustment:

Atx ¼ Ot0 þ Ot1 þ Dt0 t1 � t0ð Þ½ � þ…þ Otx þ Dtx�1 tx � tx�1ð Þ½ � (2)

where A is the cumulative adjustment, O is adjustment for offset, D is adjustment for drift, and t is the time in
years since deployment. Conditioning the DuraFET sensors in flowing seawater for a few weeks prior to
deployment leads to improved sensor stability and smaller initial offsets [Bresnahan et al., 2014; Johnson
et al., 2016], and this method has been adopted for all SOCCOM float deployments from 2016 forward.
Three of the four floats analyzed here (floats 9254, 9031, and 9096) were not conditioned prior to deploy-
ment, and as a result, the adjustments that have been made to these pH sensors are larger than the current
typical adjustments (see Figure S1 in the supporting information).

While many empirical methods exist for estimating seawater TA, we use estimates from a SOCCOM-specific
Southern Ocean algorithm (based on T, S, P, O2, and location; see supporting information for fit equation and
Table S1 for fit coefficients) for this analysis. Another option for alkalinity estimation is LIAR (Locally
Interpolated Alkalinity Regression) [Carter et al., 2016], which uses data from the Global Ocean Data Analysis
Project (GLODAP) data set [Key et al., 2004] through 1999, with global resolution. The SOCCOM-specific algo-
rithm is a more simple MLR, with one set of coefficients for the entire Southern Ocean determined using dis-
crete bottle samples from recent (2007 to present) Southern Ocean Climate Variability and Predictability and
GO-SHIP repeat hydrographic cruises. LIAR and the SOCCOM-specific algorithmemploy the same set of predic-
tor variables, and TA estimates generally agree to within their standard uncertainties (6.5 and 4.7μmol kg�1,
respectively). For the following analysis an average standard uncertainty in TA of 5.6μmol kg�1 is used.

3. Contributions to Uncertainty in Calculated pCO2sw (pH, TA)

Toestimate theuncertainty inpCO2swestimated frompHandTA,pCO2sw (pH,TA), calculated fromafloat-based
pHmeasurement and an algorithm estimate of TA, we consider the contributions to uncertainty from three

Table 1. Float pH Sensor Quality Control Adjustment Record

SOCCOM Float ID
Deployment Calibration

CTD Station
Approximate Days
Since Deployment

Adjustment for
Offseta

Adjustment for Driftb

(year�1)
Cumulative
Adjustmenta

9254 station 53 of P16S 2014 GO-SHIP cruise; 20 April 2014 0 �0.0217 0 �0.0217
6 0.029 0.125 0.0073
43 0.002 �0.028 0.0220
291 0 0 0.0030

9031 station 27 of P16S 2014 GO-SHIP cruise; 11 April 2014 0 �0.0237 0 �0.0237
5 �0.033 0 �0.0567
11 0.013 �0.135 �0.0437
187 0 �0.036 �0.1088
339 �0.004 �0.005 �0.1277
582 0 0 �0.1311

9096 station 12 of A12/PS89; 10 Dec 2014 0 �0.2770 0 �0.2770
10 0.0500 0 �0.2270
70 �0.0130 �0.059 �0.2400
190 �0.002 �0.078 �0.2614
390 0.002 �0.036 �0.3021
670 0 0 �0.3297

9099c station 78 of A12/PS89; 19 Jan 2015 0 �0.0097 0 �0.0097
170 0.0000 0 �0.0097
240 �0.0130 0.017 �0.0227
350 �0.002 �0.005 �0.0196
500 0.003 0 �0.0186
640 �0.0090 0 �0.0276

aOffset is negative when sensor pH is low compared to MLR pH estimate.
bDrift rate is negative when sensor pH is drifting lower.
cFloat 9099 was conditioned in flowing seawater before deployment.
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main components: (1) float-measured pH, (2) algorithm-estimated TA, and (3) the silicate and phosphate
concentrations and carbonate system equilibrium and solubility constants used in the calculation. Figure 2
diagrams the sources of uncertainty with asterisks indicating sources that could lead to a bias in the
results and plus signs indicating sources that will be considered in a separate bias assessment.
Uncertainties leading to biases will be considered differently than random uncertainties because a bias
leads to a larger error in calculated annual air-sea fluxes. Absolute uncertainties are expressed as values,
and relative uncertainties are expressed as percentages relative to pH=8, TA = 2300μmol kg�1, and
pCO2sw = 400μatm (e.g., absolute uncertainty of 5μmol kg�1 is 0.2% relative uncertainty in TA). The word
“standard” with an uncertainty estimate indicates that the value is expressed as a standard deviation with
a confidence interval based on the normal distribution curve. After detailing each source of uncertainty,
we calculate an overall uncertainty in float pCO2sw (pH, TA) using a Monte Carlo error analysis.

3.1. Float pH

For float-measured pH, there are uncertainty contributions from instrumental precision and from the calibra-
tion adjustment process. For the calculation of pCO2sw (pH, TA), Dickson and Riley [1978] estimated that a 1%
change in the hydrogen ion concentration (0.004 in pH) results in a 1.2% change in pCO2sw (pH, TA), and we
use this sensitivity factor to convert uncertainties in pH to uncertainties in pCO2sw (pH, TA) in Table 2. The
DuraFET pH sensor has a standard precision of 0.003 based on consecutive pH measurements through a
well-mixed surface layer at pH≈ 8 [Martz et al., 2010; Johnson et al., 2016], which converts to 0.9% relative
uncertainty in pCO2sw (pH, TA). During initial calibration, the responses of each DuraFET pH sensor as a
function of T and P are characterized in a laboratory setting [Johnson et al., 2016]. The uncertainty in the T
coefficient is negligible, and the uncertainty in the P coefficient equates to a pH uncertainty of 0.0025, result-
ing in 0.8% uncertainty in pCO2sw (pH, TA). As shown in Figure 2, the pH sensor calibration adjustment
process introduces additional uncertainty stemming from the MLR algorithm. The MLR algorithm used to
adjust the pH sensor is determined using bottle measurements of pH, S, and O2 and CTD measurements of

Figure 2. Diagram of contributions to the uncertainty in float-calculated pCO2sw (pH, TA) using float pH and an algorithm
TA estimate.
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T and P. The root-mean-square error (RMSE) of the MLR fit residuals in pH is 0.004 [Williams et al., 2016], and
the absolute uncertainty in the bottle pH measurements used to determine the algorithm is 0.0047 [Carter
et al., 2013]. Because the pH algorithm is determined using bottle pH data that were analyzed at lab T and
P and converted to in situ conditions at 1500m, the uncertainty introduced by this conversion must also
be considered. The uncertainties in this lab-to-in situ conversion are not well quantified, but a 0.005
uncertainty is likely realistic at the ocean surface [A. Dickson, personal communication, 2016].

An additional possible source of uncertainty in pH originates from uncertainties in the float T, S, and O2

measurements, which are required for the MLR used for pH sensor calibration adjustments. The uncertain-
ties in the T and S data used in the application of the MLR algorithm are on the order of 0.002°C and 0.01,
respectively [Owens and Wong, 2009]. When the algorithm is applied, the resulting pH uncertainties from
the T and S terms (0.00001 and 0.0018, respectively) are several orders of magnitude smaller than the other
uncertainties at hand. For Aanderaa O2 optodes mounted on floats Johnson et al. [2015] found no signifi-
cant drift after float deployment, whereas Bushinsky et al. [2016] found, on average, a 0.3% yr�1 drift and
recommended adjusting the O2 sensor gain correction factor over time using ongoing float-based surface
air-O2 measurements. A 0.3% yr�1 drift in O2, if left uncorrected, would propagate through as a 0.4% bias in
calculated pCO2sw (pH, TA) over one year. Most SOCCOM floats obtain an air-O2 measurement every
10 days, but floats that spend time under ice may not get an air-O2 measurement for over half a year. To
be conservative, we assume that floats will be recalibrated using an air-O2 measurement at minimum once
per year and a 0.4% relative uncertainty contribution in pCO2sw (pH, TA) from the O2 sensor is included in
this analysis.

3.2. Estimated Alkalinity

The uncertainty contribution by TA in the calculation of pCO2sw (pH, TA) can be approximated by multiplying
the relative uncertainty in the TA estimate, 0.24% (5.6μmol kg�1 out of 2300μmol kg�1), by the %∂pCO2/%∂
TA scaling factor, 1.0, given by Dickson and Riley [1978]. The result is a relative uncertainty in pCO2sw (pH, TA)
of 0.24% or an absolute uncertainty of 1μatm at a pCO2sw of 400μatm. pCO2sw (pH, TA) is mostly dependent
on the pH and is less sensitive to TA; therefore, the choice of TA algorithm is relatively unimportant for this
application. Of note is that because both LIAR and the SOCCOM-specific algorithm are primarily based on
austral summer data, the uncertainties in estimated TA are likely increased when the algorithms are applied
throughout the full seasonal cycle and under sea ice, where the processes affecting alkalinity are not as well
understood. However, even a doubling of the uncertainty in TA in wintertime would result in just a 1μatm

Table 2. Summary of Uncertainties in pCO2sw

Standard Uncertainty
in Parameter

Resulting Relative
Uncertainty in pCO2sw

Absolute Uncertainty at
pCO2sw = 400 μatm (μatm)

Accounted for in Top-
Down Bias Assessment?

pH sensor precision 0.0030 0.9% 3.6
Uncertainty in pH sensor resulting from
uncertainty in pressure coefficient

0.0025 0.8% 3.0

RMS error of MLR pH introduced through
calibration

0.0040 1.2% 4.8

Bottle pH inaccuracya introduced through
calibration

0.0047 1.4% 5.6 yes

Lab to in situ pH conversion uncertainty
introduced through calibration

0.0050 1.5% 6.0

Uncertainty in float O2 sensor measurements
introduced through calibration

0.3% 0.4% 1.6

Uncertainty in float S sensor measurements
introduced through calibration

0.01 0.01% 0.0

Uncertainty in float T sensor measurements
introduced through calibration

0.002 0.005% 0.0

Uncertainty in estimated Alkalinity 5.6 μmol kg�1 0.24% 1.0
% uncertainty in K0

b 0.50 0.50% 2.0 yes
% uncertainty in K1 1.73 1.71% 6.8 yes
% uncertainty in K2 3.45 0.72% 2.9 yes

aFrom Carter et al. [2013].
bFom Dickson and Riley [1978].
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increase in the absolute uncertainty in pCO2sw (pH, TA), which is small compared to the other uncertainties
involved in the calculation.

3.3. Carbonate System Equilibrium Constants and Nutrient Concentrations

The carbonate system solubility and equilibrium constants (K0, K1, and K2), which describe the solubility of
CO2 and dissociation of the carbonate species in seawater as a function of T and S, are determined in labora-
tory studies, and each carries its own uncertainty. Several sets of equilibrium constants are available for use in
carbonate system calculations, and the choice of constants may introduce a bias in pCO2sw (pH, TA)
[Wanninkhof et al., 1999]. Here we use the equilibrium constants of Lueker et al. [2000] as recommended
by A. Dickson [Wanninkhof et al., 2016a] because, given the choice of pH on the total scale, they provide
the most consistent intercomparison for the four measurable carbonate system parameters [Patsavas et al.,
2015]. The estimated uncertainty in K0 from Dickson and Riley [1978] (based on Weiss [1974]) and estimates
of the uncertainties in K1 and K2 are used to estimate their contributions to uncertainty in pCO2sw (pH, TA).
The percent change in pCO2sw per percent change in each dissociation constant, K, (%∂pCO2/%∂Kx scaling
factor) given by Dickson and Riley [1978] is multiplied by the estimated standard relative uncertainty in K
for each of the three equilibrium constants (Table S2), and the results are included in Table 2.

Concentrations for silicate and phosphate are required for carbonate system calculations because they
represent another acid base system in seawater. However, since the floats do not measure these parameters,
they are estimated using a subset of Southern Ocean data from the GLODAPv1 database [Key et al., 2004] as
a function of potential density. The difference in pCO2sw (pH, TA) calculated using zero concentrations or
using maximum concentrations of silicate and phosphate is around 0.6μatm; thus, they do not contribute
appreciably to the bias and uncertainty.

Table 2 summarizes the sources of uncertainty described thus far.

3.4. Top-Down Bias Assessment

Calculating pCO2sw (pH, TA) from floats allows the use of the data to calculate FCO2, which can then be
integrated over time to calculate annual net oceanic CO2 fluxes in the Southern Ocean. After integration,
the contribution to the uncertainty in estimated CO2 uptake by random uncertainties in pCO2sw (pH, TA)
for any one float will decrease as the number of samples increases, while any biases (i.e., systematic uncer-
tainties) in pCO2sw (pH, TA) will remain constant and potentially lead to significant errors in FCO2. Several
of the uncertainties described thus far (marked with asterisks in Figure 2) are systematic. Generally, if the
direction and magnitude of a bias is unknown, it should be added to the sum of the other uncertainties.
However, if the direction and magnitude of a bias is known, it can be corrected, and then it is only necessary
to account for the uncertainty associated with the bias correction [CITAC and Eurachem, 2012]. Here the direc-
tion of each individual bias is not explicitly known. However, the following top-down assessment shows that
several of these biases (marked as “yes,” accounted for in top-down bias assessment in Table 2 and with a
plus sign in Figure 2) partially offset one another and allows the combined overall bias to be characterized.

The equilibrium constants used in this study [Lueker et al., 2000] were derived to optimize the consistency
between laboratory measurements of DIC, TA, and pCO2sw across a range of seawater conditions.
However, this derivation did not include any direct spectrophotometric measurements for pH. As a result,
there is a difference between pCO2sw (pH, TA) and either directly measured pCO2sw or pCO2sw (DIC, TA),
although the latter two roughly match each other. This difference in pCO2sw (pH, TA) can be traced back
to differences between pH measured spectrophotometrically and pH calculated from measured DIC and
TA as described by Figure 2 of Carter et al. [2013]. A similar pattern was observed for the two cruises that were
used to quality control the SOCCOM float pH sensor data [Sabine et al., 2012; Talley et al., 2015], where
spectrophotometric pH is low relative to pH (DIC, TA) at lower pH and the opposite at high pH (Figure 3).
This means that the SOCCOM pH data must be adjusted according to equation (3) below prior to calculating
pCO2sw (pH, TA) if the result is to be consistent with direct measurements of pCO2sw.

bias correction ¼�0:034529�pH 25°Cð Þ þ 0:26709 (3)

The SOCCOM floats are quality controlled at 1500m depth where pH (25°C, 0 dbar) averages ~7.58 in the
Southern Ocean. According to the empirical equation (3) derived from the cruise bottle data, the float pH
values are on average 0.0054 low relative to pH (DIC, TA) at this pH, which would lead to about a 1.6%
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positive bias in float pCO2sw (pH, TA)
(6.4μatm at pCO2sw of 400μatm)
relative to a direct measurement of
pCO2sw. To adjust for this bias, the in
situ pH for each individual float pro-
file should be adjusted according to
the bias correction calculated using
equation (3) and the 1500m pH
(25°C, 0 dbar) value for that profile.
The RMS error in the regression line
shown in Figure 3 is 0.0053, and this
uncertainty will be accounted for in
the Monte Carlo error analysis
that follows.

3.5. Monte Carlo Error Analysis

We use a Monte Carlo error analysis
to assess the overall uncertainty due
to the sources of error listed in

Table 2, which accounts for the nonlinear nature of the carbonate system. The Monte Carlo error analysis
involves modeling the uncertainty in calculated pCO2sw (pH, TA) when the input parameters are varied ran-
domly around their values by their respective uncertainties. The uncertainties associated with the equilibrium
constants and the bottle inaccuracy in pH (marked as “yes,” accounted for in top-down bias assessment in
Table 2) will not be included in the analysis, but in their place we will use the RMSE of Figure 3 line of best
fit (0.0053) as mentioned above. One thousand iterations of calculated pCO2sw (pH, TA) are performed for
each float profile over the full lifetimes of four SOCCOM floats (9254, 9031, 9096, and 9099). These floats span
several frontal regions and represent a wide range of ocean conditions.

4. Results

After correction for known biases (marked as “yes,” accounted for in top-down bias assessment in Table 2) and
running theMonteCarlo error analysiswith the remaininguncertainties, the combined relative standarduncer-
tainty of 2.7% (11μatm at pCO2sw of 400μatm) represents the 68% confidence level of biogeochemical float-
based pCO2sw (pH, TA) estimates in the Southern Ocean. This work focuses on surface pCO2sw estimates and
does not consider the additional uncertainties that may be introduced when these calculations are
done subsurface.

To evaluate our uncertainty estimate, surface float pCO2sw (pH, TA) are compared with shipboard underway
pCO2sw measurements [Sutherland et al., 2015, 2016; van Heuven et al., 2016; Wanninkhof et al., 2016b] from
the time and location of float deployment (Figure 4) using both the uncorrected (open circles) and the bias-
corrected (solid squares) float results. The underway pCO2sw data were matched by date, time, and location
(±0.01° latitude and longitude) to the float deployment calibration CTD cast. The underway pCO2sw data have
a 1% relative uncertainty [Takahashi et al., 2009], and because pCO2sw is highly temperature dependent, the
underway pCO2sw data are adjusted to float T using CO2SYS [Lewis and Wallace, 1998; van Heuven et al., 2011]
in combination with float-based estimates of TA, silicate, and phosphate. The uncorrected and bias-corrected
float data are both on average biased high relative to the underway data by 7.2 and 3.7μatm, respectively. All
float pCO2sw data move in the same direction after bias correction because all of the floats discussed here are
in regions where 1500m pH is relatively low. The reduction in error between the two data sets indicates that
the bias correction outlined in section 3.4 improves the overall agreement between the float and underway
pCO2sw results and improves the accuracy of float pCO2sw (pH, TA).

The remaining bias and scatter in the comparison of float and underway pCO2sw could be attributed to a
combination of factors. An unknown bias may be introduced to the float pH data during the quality control
process as a result of the uncertainties in the effect of pressure on the carbonate system equilibrium con-
stants, which has been measured only once [Culberson and Pytkowicz, 1968]. Also, the float performs its

Figure 3. The difference between pHT (25°C, 0 dbar) measured spectropho-
tometrically and pHT (DIC, TA) plotted as a function of pHT (25°C, 0 dbar) for
the two GO-SHIP/SOCCOM deployment cruises used to quality control the
float pH sensor data.
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first profile after drifting at 1000m
depth for approximately 18 h after
deployment, and this time and space
lag, along with the uncertainty in
underway pCO2sw measurements,
could account for the scatter in the
difference between the bias-
corrected float and the underway
pCO2sw values. In the Southern
Ocean, drifters and shipboard under-
way measurements have observed
gradients in pCO2sw that can range
from 5 to 50μatm over scales of
100 km that cannot be fully explained
by gradients in sea surface tempera-
ture (SST) [Lo Monaco et al., 2014;
Resplandy et al., 2014].

5. Discussion

While float-based calculated pCO2sw

(pH, TA) is inherently more uncertain
(2.7% relative uncertainty) than most
ship- or mooring-based pCO2sw mea-
surements [Takahashi et al., 2009;
Bakker et al., 2016], a well-calibrated
array of biogeochemical floats can
complement the existing global data
set by providing a seasonal context

to regions where wintertime measurements are sparse. Figure 5 shows the calculated ΔpCO2 (bias-corrected
pCO2sw (pH, TA)�pCO2a from Cape Grim) for four SOCCOM floats representing four different regions: 9254
(WMO ID 5904395) in the subtropical zone, 9031 (WMO ID 5904396) in the subantarctic zone (SAZ), 9096
(WMO ID 5904469) in the polar Antarctic zone, and 9099 (WMO ID 5904468) in the seasonal sea ice zone, with
error bars representing 2.7% relative standard uncertainty. The pCO2a values are adjusted to reflect local sea
level pressure at the time of the measurement using National Centers for Environmental Prediction/National
Center for Atmospheric Research data available from http://www.esrl.noaa.gov/psd. Also plotted are monthly
colocated ΔpCO2 estimates from Takahashi et al. [2014, hereafter T14] and Landschützer et al. [2014, 2015,
hereafter L14]. For L14, which includes monthly estimates for the years 1982–2011, an average of
2002–2011 was used to create one monthly climatology for this comparison. The RMSEs of the fits to the data
from which they were trained are ±10μatm [Takahashi et al., 2009] and ±12μatm [Landschützer et al., 2014].
Positive values will cause a carbon flux out of the ocean and into the atmosphere. Time series of surface in situ
float pH and algorithm TA used to calculate pCO2sw (pH, TA) for each float can be found in Figure S2.

Directly comparing pCO2sw from different years requires adjusting for anthropogenic carbon uptake, which
adds uncertainty, so ΔpCO2 is used instead of pCO2sw to compare the floats with climatologies. Because
pCO2sw is highly temperature dependent, it is also important to consider differences in SST when comparing
values for pCO2sw or ΔpCO2. A 1°C warming causes a 4.23% increase in pCO2sw [Takahashi et al., 1993], which
at a pCO2 near 400μatm is ~17μatm/°C�1. When we compare the float T with SST from the T14 climatology
(Figure 6), we observe temperature differences of up to 2°C between the floats and the climatology, but only
sometimes can SST differences explain the observed differences in ΔpCO2.

Float 9254 (Figure 5a), which is located in the subtropical zone, compares reasonably well with the climato-
logical estimates for ΔpCO2 throughout the annual cycle with the exception that the float observes a few
anomalously high ΔpCO2 values in the summers of 2015 and 2016. A comparison of float 9254 and T14 cli-
matological SST (Figure 6a) reveals that the area where the float surfaced was anomalously warm at those

Figure 4. The difference between surface float pCO2sw (pH, TA) from the first
float profile and shipboard underway pCO2sw [Sutherland et al., 2015;
Takahashi et al., 2016; van Heuven et al., 2016;Wanninkhof et al., 2016b] at the
time and location of the float deployment and calibration CTD cast for 16
SOCCOM floats. Open circles represent the uncorrected float data, and solid
squares represent the bias-corrected float data. The average differences for
the uncorrected and bias-corrected float data are shown in the dotted and
solid lines, respectively.
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times, and this could explain the summertime differences in ΔpCO2. However, there were other times when
float 9254 was warmer than the climatological SST but the float did not observe significantly different ΔpCO2

from the climatologies.

For float 9031 (Figure 5b), which is just north of the subantarctic front of the Antarctic Circumpolar Current
(ACC) in the Pacific sector of the SAZ, calculated ΔpCO2sw matches well with climatological estimates that
show the region to be a weak sink for CO2 throughout the year. The SST observed by the float matches well
with the climatological SST (Figure 6b).

In contrast, there is significant disagreement between the climatologies and float 9096, which is located
south of the ACC in the Atlantic sector of the polar Antarctic zone (Figure 5c). Both climatological estimates
imply a nearly neutral oceanic sink/source for CO2, while the float-calculated ΔpCO2 is mostly positive, imply-
ing that the region occupied by this float was a strong CO2 source for around two thirds of the year each
year. Float 9096 is consistently cooler than the climatological SST (Figure 6c), and this temperature difference
alone would cause the float ΔpCO2 to be lower than the climatological ΔpCO2, but we observe the opposite.
The large differences in ΔpCO2 between the float and the climatologies occur in winter months when upwel-
ling and entrainment are dominant drivers of surface ocean pCO2sw. An increase in the strength of the
upwelling or an increase in the DIC of the upwelled waters could explain this observed increase in ΔpCO2.
Williams et al. [2015] observed an increase in the DIC of circumpolar deep waters (the source of upwelled
waters in this region) of around 12μmol kg�1 in the Pacific sector of the Southern Ocean between 1992

Figure 5. Bias-corrected calculated ΔpCO2sw for SOCCOM floats (a) 9254, (b) 9031, (c) 9096, and (d) 9099 with error bars representing 2.7% relative uncertainty and
nearby climatological estimates from Takahashi et al. [2014] and the Landschützer et al. [2014, 2015] data product (averaged over the years 2002–2011). Positive
values indicate carbon flux out of the ocean and into the atmosphere. Inset map shows float locations as of 21 December 2016.
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and 2011; Woosley et al. [2016] and Wanninkhof et al. [2010] found similar increases in the Atlantic sector
over a similar time period.

Float 9099 (Figure 5d), located in the seasonal sea ice zone in the Atlantic sector and covered by sea ice
between May and November, is in better agreement with L14 in both the magnitude of the seasonal cycle
and time evolution of ΔpCO2 than with the T14 climatology. As with float 9096, the SST observed by the float
is lower on average than the climatological T14 SST and explains the summertime but not the wintertime dif-
ferences in ΔpCO2. Takahashi et al. [2009] used underway data from six north-south wintertime transects to
estimate pCO2sw for regions with partial ice coverage as a function of the day of the year and then used this
relationship to represent the pCO2sw in the entirety of the climatological Antarctic seasonal sea ice zone. The
Takahashi et al. [2009] relationship (pCO2sw = 0.802 ×day of year + 208.9) along the float 9099 track results in
T14 ΔpCO2 increasing through time until September, and then declining, whereas the float ΔpCO2sw stays
positive until October or November, when the ice begins to break up and outgassing and biological draw-
down of CO2 brings ΔpCO2 back toward negative values.

In general, the climatologies tend to agree with the floats within their respective uncertainties during the
austral summer when there are significantly more underway pCO2sw data to create the climatology. Large
disagreements arise when there are no suitable data to constrain the climatology, such as austral winter
and in ice-covered waters. This disagreement is not surprising, considering (1) the limited availability of
austral winter and under ice observations to compute the climatologies and (2) the pCO2sw climatologies
are based on climatological sea ice cover, which may differ from float observations. L14 attempt to overcome
data limitations through the use of a self-organizing map to cluster available pCO2sw data into geochemical

Figure 6. The sea surface temperature measured by the float (black dots) compared with colocated climatological sea surface temperature from Takahashi et al.
[2014] (blue dashed line). Inset map shows float locations as of 21 December 2016.
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provinces, using T, S, mixed layer depth, and climatological pCO2sw from Takahashi et al. [2009]. These geo-
chemical provinces are allowed to evolve with time, and data from the Southern Ocean seasonal sea ice zone
are often combined with data from other similar ocean regions to estimate the L14 pCO2sw climatology.
However, the disagreements with the float data are similar to that of T14 because the geochemical provinces
are constructed, in part, using the same pCO2sw data and suffer from wintertime data limitation.

While the calculation of the magnitude of the CO2 flux relies on several other factors such as wind speed and
solubility, which each bring significant additional uncertainties, the direction of the flux at a given time is
determined by the sign of ΔpCO2. In addition to illuminating the source or sink component of the CO2 flux
in these frontal regions, the float pCO2sw (pH, TA) estimates reveal that the magnitude of the seasonal cycles
in pCO2sw in the subtropical zone, polar Antarctic zone, and seasonal sea ice zone is larger than estimated by
currently available climatologies. These biogeochemical floats will also be useful in constraining processes
controlling gas flux in partial sea ice coverage because of their capability to sample under sea ice and because
the errors in TA estimation are less important than other errors in the pCO2sw (pH, TA) calculation. Because
these floats have a lifetime of up to 5 years, they can also provide insights into interannual variability in
pCO2sw and FCO2 and their drivers and provide contrast between various oceanographic regimes as they
migrate across fronts and in and out of eddies. An array of floats providing data on 10 day time scales has
a strong potential to significantly improve our understanding of the effect that large-scale climate variability
has on the air-sea CO2 flux in the Southern Ocean [Majkut et al., 2014].

6. Conclusions

Ongoing shipboard andmoored observation programs show that the pCO2sw is increasing globally as a result
of anthropogenic emissions. Nonetheless, our current understanding of the seasonal cycle and interannual
variability, and thus the mechanisms controlling pCO2sw and air-sea CO2 flux, is lacking over many parts of
the world ocean. Despite the estimated 2.7% relative standard uncertainty in current biogeochemical float-
based pCO2sw (pH, TA) estimates, it is clear from the differences between existing climatologies and new float
pH-based pCO2sw (pH, TA) estimates that incorporating information from these novel carbon observational
platforms can improve climatologies, climate models, and future projections. While true space/time cross-
overs between biogeochemical floats and shipboard pCO2 systems are rare, and spatial and temporal hetero-
geneity make direct comparisons difficult, we have shown that a well-calibrated biogeochemical float
provides meaningful data that strengthen the current body of pCO2sw observations.

Maintaining a well-calibrated biogeochemical float array for estimating carbonate system parameters relies
on high-quality shipboard measurements of pH and oxygen to anchor the sensor data at deployment and
float-based air oxygen measurements to adjust the float calibration beyond the initial deployment cast.
While early SOCCOM floats exhibited pH sensor drift and relied heavily upon the MLR algorithms for calibra-
tion adjustments, the pH sensors deployed during the 2015/2016 field season equilibrated with natural sea-
water prior to deployment [Bresnahan et al., 2014; Johnson et al., 2016] show no sign of significant drift to date
as compared with the empirical algorithms. As float-based sensors continue to improve, the uncertainties in
float-based pCO2sw (pH, TA) estimates should decrease. However, the uncertainty in calculated pCO2sw (pH,
TA) resulting from uncertainties in the carbonate system equilibrium and solubility constants will likely
remain. Due to the significant value added, well-calibrated float pH-based pCO2sw (pH, TA) along with other
derived variables, such as aragonite and calcite saturation state, should be included in future data compiling
efforts and climatological estimates while taking into account the estimated uncertainty in these calculated
quantities. We believe that this uncertainty analysis will aid in the consideration and planning for a future glo-
bal biogeochemical array [Johnson and Claustre, 2016].
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