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Abstract. Reconstructing surface ocean CO2 from scarce
measurements plays an important role in estimating oceanic
CO2 uptake. There are varying degrees of differences among
the 14 models included in the Surface Ocean CO2 Mapping
(SOCOM) inter-comparison initiative, in which five models
used neural networks. This investigation evaluates two neural
networks used in SOCOM, self-organizing maps and feed-
forward neural networks, and introduces a machine learning
model called a support vector machine for ocean CO2 map-
ping. The technique note provides a practical guide to select-
ing the models.

1 Introduction

The global ocean is a major sink for anthropogenic carbon
and therefore an important contributor to slowing down the
human-induced global warming (Stocker et al., 2013). To
calculate the oceanic CO2 uptake, various models have been
used to interpolate scarce CO2 measurements in the surface
ocean spatially and temporarily to obtain basin-wide (e.g.,
Zeng et al., 2002; Lefèvre et al., 2005; Chierici et al., 2006;
Sarma et al., 2006; Jamet et al., 2007; Friedrich and Oschlies,
2009; Telszewski et al., 2009; Takamura et al., 2010; Land-
schützer et al., 2013; Nakaoka et al., 2013; Iida et al., 2015;
Goddijn-Murphy et al, 2015) and global ocean CO2 maps
(Takahashi et al., 2002, 2009, 2014; Park et al., 2010; Rö-
denbeck et al., 2013; Sasse et al., 2013; Jones et al., 2015;
Zeng et al., 2015). The Surface Ocean CO2 Mapping (SO-
COM) inter-comparison initiative revealed varying degrees
of differences among 14 models (Rödenbeck et al., 2015), of
which 5 used neural networks. They include self-organizing

maps (SOMs) and feedforward neural networks (FNNs). The
SOM has a long history in CO2 mapping (Lefèvre et al.,
2005; Friedrich and Oschlies, 2009; Telszewski et al., 2009;
Nakaoka et al., 2013). Recently, the FNN has been gaining
popularity in this field (Landschützer et al., 2015; Zeng et al.,
2014, 2015). In this investigation we introduce a machine
learning model called a support vector machine (SVM) for
ocean CO2 mapping and compare the SVM with the SOM
and FNN. We intend to provide a practical guide for using
these machine learning models.

2 Model equations

The machine learning models included in this study cannot
directly model the long-term trend of CO2. Therefore, we ex-
press the dependence of CO2 fugacity (fCO2) on year (YR),
month (MON), latitude (LAT), and longitude (LON) as the
sum of a nonlinear static component and a linear trend com-
ponent:

fCO2 = Fstatic (LAT,LON,MON)+Ftrend(YR). (1)

As available observations are scarce with respect to the
biogeochemical properties of the surface ocean, we used
sea surface temperature (SST), sea surface salinity (SSS),
chlorophyll-a concentration (CHL), and mixed layer depth
(MLD) as the proxy variables of space and time. These proxy
variables were commonly used by models included in the
SOCOM. The model equation becomes

fCO2 = Fstatic (LAT,SST,SSS,CHL,MLD,dSST)+Ftrend (YR) (2)

where dSST denotes the difference between the monthly and
annual means of SST. Here we excluded LON and MON.
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They have a circular property and therefore cannot be used
directly. For instance, longitude −180◦ is geographically
connected to longitude 180◦, but numerically they appear
to be two extreme longitude values to the models. Zeng et
al. (2014, 2015) circumvented this problem by using sine
and cosine transformed components. Their approach could
unintentionally enhance the influence of LON and MON on
fCO2 as one more derived variable from each of them was
added to the model. We excluded LON in the belief that the
combination of SST, SSS, CHL, and MLD contains sufficient
spatial information, but retained LAT for its different sea-
sonal and geophysical meanings in the Northern and South-
ern hemispheres. Replacing MON with dSST also improves
the expression of the effect of season geographically.

3 Data

We extracted monthly fCO2 from the track-gridded database
of the Surface Ocean CO2 Atlas (SOCAT) version 3.01

(Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014).
The database has a 1◦× 1◦ spatial resolution and includes
global measurements from 1970 to 2014. Similar to Zeng
et al. (2014), we excluded some data points by these crite-
ria: (i) fCO2 values smaller than 250 µatm or larger than
550 µatm, (ii) ocean depth smaller than 500 m, (iii) salin-
ity smaller than 25.0, and (iv) year before 1990. A total of
158 052 data points were extracted with these conditions.

The monthly SST data of 1990 to 2015 were extracted
from the Optimum Interpolation (OI) V2 product2 of NOAA
(Reynolds et al., 2002). The monthly SSS climatology was
extracted from the World Ocean Atlas 2013 (WOA13) prod-
uct3 (Boyer et al., 2013), which contains the monthly mean
SSS from 27 June 1896 to 25 December 2012. The monthly
CHL climatology was calculated using the MODIS Aqua and
SeaWiFS climatology4, which covers the period of 2012 to
2015. The mean of the two CHLs was used as the CHL clima-
tology. The mixed layer data were derived from the Monthly
Isopycnal and Mixed-layer Ocean Climatology5 of NOAA
(Schmidtko et al., 2013), which includes the period of 1955
to 2012.

4 Machine learning models

The Appendix and Table 1 summarize the algorithms of the
three models. Here we focus on discussing their usage in
CO2 mapping.

1http://www.socat.info/
2http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.

html
3https://www.nodc.noaa.gov/OC5/woa13/
4https://oceancolor.gsfc.nasa.gov/cgi/l3
5http://www.pmel.noaa.gov/mimoc/

The trend in Eq. (2) cannot be modeled directly by the
models. One approach to dealing with the problem is to
normalize the measurements to a reference year using a
global rate and to only model the nonlinear component. Zeng
et al. (2014) presented a method to model the linear compo-
nent in Eq. (2). Instead of repeating the process, we used
their annual rate of 1.5 µatm to remove the trend from fCO2
to normalize it to the reference year 2005, i.e.,

fCOnormalized
2 = fCO2− 1.5 · (YR-2005). (3)

Although Takahashi et al. (2014) obtained a global mean rate
of 1.9 µatm yr−1, we used 1.5 µatm yr−1 as this rate was ob-
tained by using the gridded fCO2 of SOCAT version 2. The
normalized fCO2 was used to model the nonlinear compo-
nent in Eq. (2). In later discussions, fCO2 means the nor-
malized fCO2 unless explicitly stated. Similarly, we applied
the log transform of Zeng et al. (2014) to CHL prior to data
scaling discussed below, i.e.,

CHL= log10(1.0+CHL). (4)

4.1 SMV

For a given dataset, the SVM requires a prior step to find
the optimal value for the parameter σ in Eq. (A10) and the
parameter γ in Eq. (A11). To shorten the training time, we
randomly chose 10 % of the measurement data in this step
and obtained 0.06 for σ and 10 for γ . Note that these val-
ues are dependent on data scaling, which is necessary in this
case to avoid the overflow problem in solving Eq. (A18). We
scaled all input variables LAT, SST, SSS, CHL, MLD, and
dSST by their minimum and maximum to confine them in
the range (0, 1), i.e.,

v =
v− vmin

vmax− vmin
. (5)

4.2 FNN

Data scaling is not necessary for the FNN, but can improve
its performance. Following Zeng et al. (2014), we scaled the
input variables by their mean and standard deviation as

v =
v− v

s
. (6)

The output variable fCO2 is scaled by

v = 0.1+ 0.8
v− vmin

vmax− vmin
. (7)

This confines the scaled fCO2 to between 0.1 and 0.9 for
better response to changes in input variables. The kernel
function Eq. (A4) has the property that for any input in (−∞,
+∞), the output varies between 0 and 1. For fCO2 close to 0
or 1, a small change in fCO2 requires very large adjustment
of model parameters, which slows down the convergence of
training.
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Table 1. Feature comparison of the three machine learning models.

Feature SVM FNN SOM

Input space projection Projects the input variable space to a
high-dimensional space that is propor-
tional to the number of training sam-
ples.

Projects the input space to a high-
dimensional space that is proportional
to the number of hidden neurons and in-
put variables.

Projects the input space to a feature
space whose size is determined by the
number of neurons.

Prediction by Continuous interpolation. Continuous interpolation. Picking up labeling samples that have
the closest feature to the input.

Problems May over-fit and over-interpolate. May over-fit and over-interpolate. Discrete interpolation leads to spatial
discontinuity.

Data scaling Helps in solving the linear equation, but
has no effect on the result.

Helps the convergence of training, but
has an insignificant effect on the result.

Significant effect on the result.

Results affected by The parameter values for regularization
and kernel function.

The number of hidden neurons. The number of neurons and data scal-
ing.

We used 64 hidden neurons for the FNN as Zeng et
al. (2014) did. The learning rate in Eq. (A6) was set to 0.25 by
trial-and-error. A small value makes training slow, whereas
a large value may make a training diverge. The constant in
Eq. (A8) was determined dynamically in each iterative train-
ing loop. It was taken as 10 times the mean of absolute dif-
ferences between modeled and observed fCO2. We experi-
enced that this method improves the performance of training.

4.3 SOM

Data scaling is critical for the SOM, as the distance defined
by Eq. (A1) would be affected by variable units. We used
Eq. (6) to scale input variables in training the SOM. Based on
our preliminary correlation analysis, we applied a factor of 2
to enhance the influence of SST and CHL on the distance.
Using such a subjective factor is the only way to make the
correlations between the output and the input variables more
in line with observed correlations.

From the labeling procedure of SOM described in the Ap-
pendix, it is not difficult to see that the number of neuron cells
in SOM affects the labeling and hence the prediction. Unfor-
tunately, there is no guideline for choosing the size. Based
on previous studies (Telszewski et al., 2009; Nakaoka et al.,
2013), we used 20 000 neuron cells, roughly one neuron cell
for one 1× 1 grid cell of sampled areas.

5 Model validation

We examined the goodness of fit by randomly selecting 10
to 50 % of the data points to train the FNN and SVM, and
to label the SOM; and then calculated the correlation coef-
ficient between modeled and observed CO2 of the selected
data points.

The SOM yields the best correlation in the case of 10 % of
randomly selected data points and the correlation decreases
with the number of data points (Fig. 1). The reason is that for

Figure 1. Correlation coefficient between modeled and observed
fCO2 (uatm). The sample size is the number of data points ran-
domly selected to train FFN and SVM and to label SOM.

a given number of neuron cells, the fewer the data points, the
less likely a neuron cell will be labeled by multiple measure-
ments and the more likely that the prediction will find the
same CO2 value used for labeling. Therefore, the goodness
of fit does not necessary mean good SOM modeling.

The correlations obtained by the SVM and FNN do not
vary much with the number of data points. While the SVM’s
correlation decreases monotonically, even though by only a
little, with the number of data points, the FNN’s correla-
tion obtained with 75 000 data points is larger than that with
60 000 data points. The FNN is known for not being able to
find the global optimum in training. This case could be an in-
dication of an imperfect training. The FNN appears inferior
to SVM in all cases. However, imperfect training does not ac-
count for all the differences. If we use the number of model
parameters to be determined by the training as the indica-
tor of the dimension of the model space, the FNN’s dimen-
sion is far smaller than that of the SVM. The former is deter-
mined by the number of hidden neurons and input variables,
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Figure 2. Predicted vs. observed fCO2 (µatm). Ten percent of data
points were selected randomly to train FNN and SVM and to label
SOM, and the rest was used for validation.

whereas the latter is determined by the number of training
data. For 6 input variables, 15 000 training data, and 64 hid-
den neurons, the number of parameters is 509 for the FNN
and 15001 for the SVM.

A better indicator of the performance of the models would
be the goodness of prediction. To emulate the situation that
the sampled area was only a small portion of the global
ocean, we evaluated the goodness of prediction by train-
ing FNN and SVM and labeling SOM with 10 % of ran-
domly selected data to make a prediction for the rest of the
data. Figure 2 shows that the SVM yielded the best cor-
relation (R2

= 0.72), the FNN fell behind (R2
= 0.67), and

the SOM performed the worst (R2
= 0.54). The differences

between predicted and observed fCO2 are 0.1± 17.4 µatm
for SVM, 0.1± 18.9 µatm for FNN, and 0.2± 23.3 µatm for
SOM. Compared to the variation of fCO2 measurements,
these differences are small and their uncertainties are on the
same order of magnitude as the variation of measurements.
Let us examine the standard deviation (SD) of fCO2 in those
grids with at least three data points. The track-gridded fCO2
in SOCAT version 3.0 includes an SD ranging from 0.1 to
71.2 µatm and the mean is 5.2 µatm. Calculating the SD of
normalized fCO2 in the same grids and in the same months
of all years yielded a mean of 12.5 µatm in the range of 0.1 to
103.1 µatm. The normalization had little effect on the SD as
the calculation for non-normalized fCO2 gives a mean SD
of 14.6 µatm in the range of 0.1 to 107.5 µatm.

From the algorithm of SOM in the Appendix, it is not dif-
ficult to see that the SOM does not make extrapolation –
the model always approximates new inputs by the measure-
ments used for training and approximates fCO2 by the mea-
surements used for labeling; therefore, the predicted fCO2
values are within the observed fCO2 range (Fig. 2a). Fig-
ure 2c shows that the extrapolated fCO2 by the SVM, if
any, did not exceed the observed range. To investigate the ex-
trapolation risk, we used 200 000 data points randomly gen-
erated for SST, dSST, SSS, MLD, and CHL in the range
of (0, 40 ◦C), (−20, 20 ◦C), (20, 50), (1, 1500 m), and (0
log(mg m−3), 2 log(mg m−3)), respectively. These ranges are
larger than the corresponding observed ranges of (0, 34 ◦C),
(−13, 16 ◦C), (24, 40), (1, 1000 m), and (0 log(mg m−3), 1.2
log(mg m−3)). The SVM and FNN produced fCO2 in the
range of (267, 468 µatm) and (199, 596 µatm), respectively,
for the simulated samples. Compared to the observed fCO2
range of (240, 560 µatm), the experiment indicates that the
over-extrapolation risk of the SVM is low.

6 Differences

Figure 3 shows fCO2 maps in February and July 2005,
which is the reference year for normalization. In the map-
ping, we randomly selected 50 % of the data to train the FNN
and SVM and to label the SOM. All models captured the
major features of observed fCO2 distribution. The SOM ex-
hibits obvious discontinuity because of its discrete character-
istics of picking up fCO2 values from the labeled SOM. For
year 2005, the mean fCO2 difference is−0.05± 12.73 µatm
for FNN−SVM and −0.6± 18.80 for SOM−SVM. The un-
certainty is the standard deviation of the mean difference be-
tween predicted and observed values. The statistics indicates
that FNN agrees better with SVM than SOM does.

Although the differences among models might be on the
order of 10 to 20 µatm, the effect on the global ocean CO2
flux estimate is small (Fig. 4). The fluxes are calculated us-
ing the wind speed from ECMWF’s interim product (Dee
et al., 2011). Our estimate for the oceanic uptake is on the
higher end among those in Wanninkhof et al. (2013) and Le
Quéré et al. (2015). For example, Wanninkhof et al. (2013)
reported that the median sea–air anthropogenic CO2 fluxes
centered on year 2000 ranged from 1.9 to 2.5 PgC yr−1

among the seven models. In comparison, our estimates by
the three models are about 2.4 PgC yr−1. The mean differ-
ence of CO2 flux is 0.02 PgC yr−1 between the FNN and
the SVM (FNN−SVM) and 0.06 PgC yr−1 between the SOM
and the SVM (SOM−SVM). They are small in comparison
with those differences among the models in Wanninkhof et
al. (2013) and Le Quéré et al. (2015). Note that the flux es-
timate is highly dependent on wind products as shown by
Wanninkhof et al. (2013) and Zeng et al. (2014).
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Figure 3. Distributions of modeled and observed fCO2. The composite map for observations includes fCO2 in 1990–2014. Half of ran-
domly selected data points were used to train FNN and SVM and to label SOM to make predictions. (a) shows February and (b) shows
July.

www.ocean-sci.net/13/303/2017/ Ocean Sci., 13, 303–313, 2017
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Figure 4. Modeled global CO2 fluxes. A negative value indicates
oceanic uptake.

On the spatial scale of tens of degrees, the three mod-
els show good mutual agreement for modeled fCO2 dis-
tributions among them. However, each model shows distin-
guished fine structures, which are determined by the biogeo-
chemical processes in the ocean, by model parameters ob-
tained from training, and by the characteristics of the models.
We believe that the modeled monthly fCO2 distributions are
true to the degree given by the model validations.

7 Summary

The main features of the three machine models are listed in
Table 1. The SVM is recommended when the computer has
enough memory to store the matrix in Eq. (A18), which is
proportional to the square of the number of training data. The
SVM performs the best, but the training time could become
very long when the number of training data is too large to
be handled by a computer without using virtual memory. For
any given dataset, using the SVM requires a prior step to find
the optimal value for the parameter σ in Eq. (A10) and the
parameter γ in Eq. (A11).

The FNN model does not perform as well as the SVM,
but the number of training data does not affect its training
as much as the SVM’s. The training time can become long
when a large number of hidden neurons are used and many
iterations are needed to achieve convergence. It takes a longer
time to train the FNN than the SVM for a small number of
data points. However, the FNN is simpler to use as it re-
quires no prior step. However, it may have the risk of over-
extrapolation.

The SOM is recommended only when the other two mod-
els have over-fitting or over-interpolation problems. The
SOM performs the worst and is not as straightforward as the
others as its result depends too much on data scaling and the
number of neurons. An advantage of the SOM is that once
trained, re-labeling the SOM with new CO2 measurements
and making a new prediction is fast. Although the SOM does
not have the over-extrapolation problem of the FNN, it may
produce nonsense predictions due to its strong dependence
on data scaling.

In areas where there was no measurement on a large scale,
predictions made by the models must be treated conser-
vatively, as SVM and FNN may produce extrapolated re-
sults and SOM may extract CO2 from unexpected provinces.
Figure 3 shows that the modeled CO2 east of the African
coast near the Equator in July 2005 (Fig. 3) appeared much
higher than the nearby measurements, which were made in
July 1995 and adjusted to 2005 using the global rate of
1.5 µatm yr−1. However, considering the large variations of
the rate from region to region (Takahashi et al., 2014) and
of the repeated measurements discussed in Sect. 5, the mea-
surements were not sufficient to support rejecting the mod-
eled CO2. Similar CO2 hotspots occurred in the Southern
Ocean west of South America in February 2005, around
the latitudinal zone of 50◦ S. The modeled CO2 distribu-
tions by Takahashi et al. (2014) also showed CO2 hotspots
around the latitudinal zone of 30◦ S in the same month and
region. Their model used a completely different interpola-
tion scheme based on a diffusion–advection transport model
for surface waters. In principle, this hotspot CO2 was pro-
duced by our models using measurements somewhere else
where the biogeochemical properties were similar to those in
the hotspot areas. As the SOM does not make extrapolation,
the SVM has a low possibility of over-extrapolation, and the
hotspots appeared in all models, the risk of accepting them
would not be high.

Data availability. The software and data used by this study are
available at https://figshare.com/s/38488b7003b03e2103c9.

The registered DOI of the package is
doi:10.6084/m9.figshare.4877390.
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Appendix A: Self-organizing map

A self-organizing map (SOM) is a type of artificial neu-
ral network that is trained using unsupervised learning (Ko-
honen, 1984). The SOM in our application comprises grid
points on a two-dimensional plane. Each grid point, also
called a neuron cell, has the same number of parameters
as the input variables, which include LAT, SST, SSS, CHL,
MLD, and dSST in our case. Training the SOM is to use
samples of input variables to adjust the parameters to make
neighborhood neuron cells with similar parameter values that
reflect certain biogeochemical features of the surface ocean.

We used the batch learning algorithm (Abe et al., 2002) to
train the SOM as the result does not depend on the sequential
order of training samples. The parameters were initialized
randomly in the range (−1, 1). In each iterative training loop,
each training sample is associated with a neuron cell to which
the distance defined as follows is smaller than to other neuron
cells:

d = |f(p− x)| , (A1)

where p denotes the vector of neuron cell parameters, x the
vector of input variables, and f the scale matrix that we in-
troduced to change the influence of certain variables on the
distance. The components of f are all 0 except for those on the
diagonal, which are set to 1 by default. In our application, the
data for each input variable were scaled to be unitless by its
mean and standard deviation to eliminate the effect of units
on the distance.

The associated neuron cell is called the best matching cell
(BMC). After the BMCs for all training samples are found,
the parameters are updated by

pi =

∑
khikxk∑
khik

, (A2)

where i and k denote indexes of neuron cells and training
samples, respectively. The neighborhood function that deter-
mines the weight factor h is defined as

hik = exp(−
|r ik|

q
), (A3)

where |r ik| denotes the geographic distance between the ith
neuron cell and the BMC of the kth training sample and q is a
factor that decreases linearly with the iteration loop. In other
words, the procedure adjusts the parameters of neuron cells
toward those training samples whose BMCs are close to them
and the amount of adjustment decreases exponentially with
the geographic distance between neuron cells and linearly
with the training loop.

The trained SOM needs to be labeled by fCO2 for making
predictions. The values of fCO2 measurements are assigned
to their BMC. Predicting fCO2 for a set of input variables is
realized by finding the BMC labeled with fCO2 and extract-
ing its mean fCO2 value.

A1 Feedforward neural network

A feedforward neural network (FNN) is an artificial neural
network that is trained using supervised learning. Our FNN
comprises three layers (Zeng et al., 2014): an input layer, a
hidden layer, and an output layer. The number of neurons
in the input layers is determined by the number of input vari-
ables, i.e., LAT, SST, SSS, CHL, MLD, and dSST in our case.
The output layer has only one neuron for fCO2. Each neu-
ron in the hidden layer uses the following kernel function to
transform all input variables:

yh =
1

1+ exp
(
−(b+wT x)

) , (A4)

where w denotes the vector of weight parameters and b the
offset parameter. The yh of all hidden neurons become the in-
puts of the output neuron, which uses the same kernel func-
tion to transform yh to produce fCO2.

The training updates the offset and weight parameters,
which are initialized randomly in the range (−1, 1), by min-
imizing the cost function

f
(
w′
)
=

1
2
eT e =

1
2
|ym− yo|2, (A5)

where w′ is the extended vector that includes b and w; ym
and yo stand for the vectors of modeled and observed fCO2,
respectively. In the gradient descent training algorithm, up-
dating w′ at the training iteration t can be expressed as

w′ (t)= w′ (t − 1)−αg (A6)

where α is the learning rate (a positive number smaller than
1), and g the first-order derivative of the cost function

g =∇f
(
w′
)
= JT e, (A7)

where J is the Jacobian matrix whose components are deriva-
tives of e with respect to w′ using the back propagation
method. We used the efficient Levenberg–Marquardt algo-
rithm (Wilamowski et al., 2010), which derives the gradient
as

g =

(
JT J+µI

)−1
JT e, (A8)

where µ is a constant.

A2 Support vector machine

A support vector machine (SVM) is a supervised learning
model that was conceptualized in the 1960s for classification
problems and later extended to regression analysis (Basak et
al., 2007). We used the so-called least-square support vector
machine for regression (Pelckmans et al., 2002) which, sim-
ilar to FNN, seeks to minimize the error between model out-
puts and measurements. The SVM models the dependence of
fCO2 on LAT, SST, SSS, CHL, MLD, and dSST as

y = cT ϕ (x)+ b (A9)

www.ocean-sci.net/13/303/2017/ Ocean Sci., 13, 303–313, 2017
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where x stands for a set of measurements of the input vari-
ables, c the vector of coefficients, b the offset parameter, and
φ the kernel function. In this investigation, we used the radial
basis kernel function, i.e.,

ϕ(xi)
T ϕ
(
xj
)
= exp

(
−

∣∣xi − xj ∣∣2
2σ 2

)
, (A10)

where σ is a parameter whose optimal value depends on the
data used for training. The subscription of x indicates a sam-
ple of input variables.

Given a set of training samples {xk,yk}Nk=1, the goal of
training SVM is to minimize the cost function

F (c)=
1
2

(
cT c+ γ eT e

)
(A11)

where

ek = yk − cT ϕ (xk)− b (A12)

and γ is a constant whose optimal value depends on the data
used for training. The Lagrangian solution for the optimiza-
tion problem of Eq. (A11) is given by

L(c,e,b,α)=
1
2
(cT c+ γ |e|)

−

∑N

k
αk

{
cT ϕ (xk)+ b+ ek − yk

}
, (A13)

where αk is a Lagrangian multiplier. The optimal conditions
of Eq. (A13) are

∂L

∂ck
= 0 → ck = αkϕ (xk) , (A14)

∂L

∂b
= 0 →

∑N

k
αk = 0, (A15)

∂L

∂ek
= 0 → αk = γ ek, (A16)

∂L

∂αk
= 0, → ckϕ (xk)+ b+ ek − yk = 0. (A17)

After eliminating c and e from the above conditions, the
following equation is obtained:[

0 uT

u �+ γ−1I

][
b

α

]
=

[
0
y

]
, (A18)

where u is a vector with all components being 1, and the
components of � are

�ij = ϕ(xi)
T ϕ
(
xj
)
. (A19)

Once Eq. (A18) is solved, making a prediction is done by

y(x)=
∑N

k
αkϕ(xk)

T ϕ (x)+ b. (A20)
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