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Models under location uncertainty are derived assuming that a component of the velocity is uncorrelated
in time. The material derivative is accordingly modified to include an advection correction, inhomogeneous
and anisotropic diffusion terms and a multiplicative noise contribution. This change can be consistently
applied to all fluid dynamics evolution laws. This paper continues to explore benefits of this framework and
consequences of specific scaling assumptions. Starting from a Boussinesq model under location uncertainty,
a model is developed to describe a mesoscale flow subject to a strong underlying submesoscale activity.
Specifically, turbulent diffusion and rotation effects have similar orders of magnitude. As obtained, the
geostrophic balance is modified and the Quasi-Geostrophic (QG) assumptions remarkably lead to a zero
Potential Vorticity (PV). The ensuing Surface Quasi-Geostrophic (SQG) model provides a simple diagnosis
of warm frontolysis and cold frontogenesis.
Keywords: Stochastic subgrid tensor; Uncertainty quantification; Upper ocean dynamics

1. Introduction

Quasi-Geostrophic (QG) models are standard models to study mesoscale barotropic and baro-
clinic dynamics. Assuming uniform Potential Vorticity (PV) in the fluid interior, the Surface
Quasi-Geostrophic (SQG) model helps describe the surface dynamics (Blumen 1978, Held
et al. 1995, Lapeyre and Klein 2006, Constantin et al. 1994, 1999, 2012). Despite its simplic-
ity, the SQG relation provides a good diagnosis to relate mesoscale surface buoyancy fields to
surface and interior velocity fields. Nevertheless, QG and SQG paradigms assume strong rota-
tion and strong stratification (Fr ∼ Ro � 1) and thus neglect the submesoscale ageostrophic
dynamics. In particular, the QG velocity is horizontal and solenoidal. This structure prevents
the emergence and development of realistic submesoscale features such as frontogenesis, re-
stratification, and asymmetry between cyclones and anticyclones (Lapeyre et al. 2006, Klein
et al. 2008). In contrast, the QG+1 (Muraki et al. 1999) and SQG+1 (Hakim et al. 2002)
models capture such phenomenon with a (one degree) higher order power series expansions
in the Rossby number. This comes with an additional complexity. In particular, the SQG+1

model involves a nonlinear PV. Semi-Geostrophic (SG) (Eliassen 1949, Hoskins 1975) and
Surface Semi-Geostrophic (SSG) models (Hoskins 1976, Hoskins and West 1979, Badin 2013,
Ragone and Badin 2016) also offer simple alternatives to the QG framework. Within a weaker
stratification context (Fr

2 ∼ Ro � 1), ageostrophic terms emerges to better represent fronts
and filaments than QG dynamics. The SSG model is formally similar to SQG as it is in the
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same way associated with a zero PV. Yet, SSG involves a space remapping (from geostrophic
coordinates to physical coordinates) together with a nonlinear term in the PV that is often
neglected (Ragone and Badin 2016). These terms – both of order 1 in Rossby – bring relevant
horizontal velocity divergence as in SQG+1 model. Nevertheless, these terms require a more
involved numerical inversion.

In this paper, we derive a linear SQG model enabling to cope with frontal dynamics without
explicitly resolving higher Rossby order. PV is not arbitrarily set to zero, it rigorously results
from a strong submesoscale activity. Indeed, this underlying turbulence makes the turbulent
diffusion comparable to the Coriolis force, and consequently cancels the PV. Such a derivation
is a direct consequence of the dynamics under location uncertainty (Mémin 2014, Resseguier
et al. 2017a,b), for which the velocity is decomposed between a large-scale resolved component
and a time-uncorrelated unresolved component. Derived models then rigorously handle sub-
grid tensors. In particular, they link together small-scale velocity statistics, turbulent diffusion,
small-scale-induced velocity and backscattering effects.

After briefly recalling the main features of models under location uncertainty (section 2), a
modified SQG model is derived (section 3). Finally, the ensuing diagnostic relation is tested
on realistic very-high resolution model outputs (section 4).

2. Models under location uncertainty

Hereafter, we briefly outline the main ideas for the derivation of these stochastic models (for
a more complete description, see Resseguier et al. (2017a)). This relies on a decomposition of
the flow velocity in terms of a large-scale component, w, and a random field uncorrelated in
time, σḂ:

dX

dt
= w + σḂ. (1)

The latter represents the small-scale velocity component. This solenoidal, possibly anisotropic
and non-homogeneous random field corresponds to the aliasing effect of the unresolved velocity
component. To parametrize its spatial correlations, an infinite-dimensional linear operator,
σ, is applied to a space-time white noise, Ḃ. The decomposition (1) leads to a stochastic
representation of the Reynolds transport theorem (RTT) and of the material derivative, Dt

(derivative along the flow (1)). In most cases, this derivative coincides with the stochastic
transport operator, Dt, defined for every field, Θ, as follows:

DtΘ
4
= dtΘ︸︷︷︸

4
= Θ(x,t+dt)−Θ(x,t)

Time increment

+ (w?dt+ σdBt) · ∇Θ︸ ︷︷ ︸
Advection

−∇ ·
(

1
2a∇Θ

)︸ ︷︷ ︸
Diffusion

dt, (2)

where the time increment term dtΘ stands instead of the partial time derivative as Θ is non
differentiable. The diffusion coefficient matrix, a, is solely defined by the one-point one-time
covariance of the unresolved displacement per unit of time:

a = σσT =
E {σdBt (σdBt)

T}
dt

, (3)

and the modified drift is given by

w? = w − 1
2(∇ · a)T . (4)
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For a divergent small-scale velocity, this drift would involve an additional component (see
equation (4) of Resseguier et al. (2017a)). The stochastic RTT and material derivative involve
a diffusive subgrid term, a multiplicative noise and a modified advection drift induced by the
small-scale inhomogeneity. This material derivative has a remarkable conservative property.
Indeed, for any field, Θ, randomly transported, i.e.

Θ(X(t+ ∆t), t+ ∆t) = Θ(X(t), t), (5)

Resseguier et al. (2017a) showed that the energy of each realization is conserved:

d

dt

∫
Ω
Θ2 = 0. (6)

The RTT enables us to express the conservation law of mechanics (linear momentum, energy,
mass) with a partially known velocity. Deterministic and random subgrid parametrizations
for various geophysical flow dynamics can then directly be obtained. Stochastic Navier-Stokes
and Boussinesq models can be derived as discussed by Mémin (2014) and Resseguier et al.
(2017a). The latter model involves random transports of buoyancy and velocity, together with
incompressibility constraints.

3. Mesoscale flows under strong uncertainty

From the Boussinesq model, the QG assumptions state a strong rotation and a strong strat-
ification. This is of particular interest to study flows at mesoscale, where both kinetic and
buoyant dynamics are important. More specifically, we focus on horizontal length scales, L,
such as

1

Bu
=

(
Fr

Ro

)2

=

(
L

Ld

)2

∼ 1 and
1

Ro
=
Lf0

U
� 1, (7)

where U is the horizontal velocity scale, Ld
4
= Nh/f is the Rossby deformation radius, N is

the stratification (Brunt-Väisälä frequency) and h is the characteristic vertical length scale. In
the following, both differential operators Del, ∇, and Laplacian, ∆, represent 2D operators.
Moreover, σH• stands for the horizontal component of σ, aH for σH•σ

T

H• and Au for its
scaling.

3.1. Specific scaling assumptions

Similarly to Resseguier et al. (2017b), scalings within the QG framework (7) can authorize the
set up of a non-dimensional stochastic Boussinesq model amenable to further simplifications.

3.1.1. Quadratic variation scaling

Models under location uncertainty involve subgrid terms which have also to be scaled. A
new dimentionless number, Υ , quantifying the ratio of horizontal advection and horizontal
turbulent diffusion is therefore introduced:

Υ
4
=

U/L

Au/L2
=

U2

Au/T
. (8)
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We can also relate it to the ratio of Mean Kinetic Energy (MKE), U2, to the Turbulent Kinetic
Energy (TKE), Au/Tσ, where Tσ is the small-scale correlation time. This reads

Υ =
1

ε

MKE

TKE
, (9)

where ε = Tσ/T is the ratio of the small-scale to the large-scale correlation times. This
parameter, ε, is central in homogenization and averaging methods (Majda et al. 1999, Givon
et al. 2004, Gottwald and Melbourne 2013). The number Υ/Ro measures the ratio between
rotation and horizontal diffusion. For a parameter Υ close or larger than unity, the geostrophic
balance still holds (Resseguier et al. 2017b), whereas for Υ ∼ Ro, this balance is modified.
Throughout this paper, we focus on this specific scaling.

The parameter Υ depends through Au on the flow and on the resolution scale. In order to
specify the scaling and the resulting model, knowledge of the characteristic horizontal eddy
diffusivity or eddy viscosity is needed. Tuning experiences of usual subgrid parametrizations
may provide such information, and Boccaletti et al. (2007) give some examples of canonical
values.

In absence of characteristic values, absolute diffusivity or similar mixing diagnoses could
be measured (Keating et al. 2011) as a proxy of the variance tensor. Small values of Υ are
generally relevant for the ocean where the TKE is often one order of magnitude larger than
the MKE (Wyrtki et al. 1976, Richardson 1983, Stammer 1997, Vallis 2006). Note that here
the TKE may encompass all the unresolved dynamics down to the Kolmogorov scale.

3.1.2. Vertical unresolved velocity

To scale the vertical unresolved velocity, we consider

(σdBt)z
‖(σdBt)H‖

∼ Ro

Bu
D, (10)

where D = h/L is the aspect ratio and the subscript H indicates horizontal coordinates. The
ω-equation (Giordani et al. 2006) justifies such a scaling. For any velocity u = (uH ,w)T , which
scales as (U,U,W)T , this equation reads

f2
0∂

2
zw +N2∆w =∇ ·Q ≈ −∇ · (∇uT

H∇b) ≈ −f0∇ ·
(
∇uT

H∂zu
⊥
H

)
, (11)

where b stands for the buoyancy variable and Q for the so-called Q-vector. In its non-
dimentional version, the ω-equation reads

W

U

(
∂2
zw + Bu∆w

)
≈ DRo∇ ·Q. (12)

The Burger number is small at planetary scales where the rotation dominates (W/U ∼ DRo)
and is large at submesoscales where the stratification dominates (W/U ∼ DRo/Bu). For the
small-scale velocity σḂ, the latter is thus more relevant.

Relations between the isopicnical tilt and mixing give another justification of the scal-
ing (10). Based on baroclinic instabilities theory, anisotropy specifications of eddy diffusivity
sometimes rely on this tilt (Vallis 2006). Moreover, several other authors suggest that the
eddy activity and the associated mixing mainly occur along isentropic surfaces (Gent and
McWilliams 1990, Pierrehumbert and Yang 1993).

For QG dynamics, the Burger number is of order one and the scalings in DRo and in
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DRo/Bu coincide. In particular, they encode a mainly horizontal unresolved velocity:

(σdBt)z
‖(σdBt)H‖

∼ Ro

Bu
D � D. (13)

This is consistent with the assumption of a large stratification, i.e. flat isopycnicals, if we
admit that the activity of eddies preferentially appears along the isentropic surfaces. As
a consequence, the terms (σdBt)z∂z scale as Ro/Bu(σdBt)H · ∇. In the QG approxima-
tion, the scaling of the diffusion and effective advection terms including σz• are one to
two orders smaller (in power of Ro/Bu) than terms involving σH•. For any function ξ, the
vertical diffusion ∂z(σz•σ

T

z•/2 ∂zξ) is one order smaller than the horizontal-vertical diffu-
sion term ∇ · (σH•σ

T

z•/2 ∂zξ) and two orders smaller than the horizontal diffusion term
∇ · (σH•σT

H•/2 ∇ξ).

3.1.3. Beta effect

The beta effect is weak at mid-latitude mesoscales. Yet, at the first order, it influences the
absolute vorticity. So, we choose the same scaling as Vallis (2006):

βy ∼∇⊥ · u ∼ U

L
= Rof0. (14)

3.2. Stratified Quasi-Geostrophic model under strong uncertainty

Strong uncertainty condition corresponds to Υ having an order of magnitude close to the
Rossby number. More specifically, we assume Ro 6 Υ � 1. In this situation, the random
eddies have larger energy than the large-scale mean kinetic energy. Accordingly, the diffusion
and drift terms are one order of magnitude larger than the advection terms.

In the case of strong ratio Υ , the diffusion is very large and the system is not approximately
in geostrophic balance anymore. The large-scale horizontal velocity becomes divergent, and
decoupling the system is more tedious. For sake of simplicity, in the following we consider the
case of homogeneous and horizontally isotropic turbulence. As a consequence, the variance
tensor, a, is constant in space and diagonal:

a =

aH 0 0
0 aH 0
0 0 az

 . (15)

3.2.1. Modified geostrophic balance under strong uncertainty

For horizontal homogeneous turbulence, the large-scale geostrophic balance is modified by
the horizontal diffusion, whereas the unresolved velocity is in geostrophic balance:

f × u− aH
2

∆u = − 1

ρb
∇p′, (16a)

f × σHdBt = − 1

ρb
∇dtpσ, (16b)

where u is the large-scale horizontal velocity, p′ the time-correlated component of the pressure,
ṗσ = dpσ/dt the time-uncorrelated component, and ρb is the mean density. For a constant
Coriolis frequency, the first equation can be solved in Fourier space. The Helmholtz decom-



March 20, 2017 Geophysical and Astrophysical Fluid Dynamics Geophysical-flows-under-location-uncertainty-
Part-III

6 Geophysical and Astrophysical Fluid Dynamics

position of the velocity reads

u =∇⊥ψ +∇ψ̃, ψ̂ =
(

1 +
∥∥k/kc∥∥4

2

)−1 p̂′

ρbf
, ψ̃ =

1

k2
c

∆ψ, (17a–c)

where kc =
√

2f0/aH and the hat accent indicates a horizontal Fourier transform. This
solution is derived in Appendix A using geometric power series of matrices. The obtained
formula is valid for any right-hand side in (16a). For instance, additional forcing such as an
Ekman stress could be taken into account. In (17), the solenoidal component of the velocity,
∇⊥ψ, corresponds to the usual geostrophic velocity multiplied by a low-pass filter (17b). The
irrotational (ageostrophic) component of the velocity,∇ψ̃, dilates the anticyclones (maximum
of pressure and negative vorticity) and shrinks the cyclones (minimum of pressure and positive
vorticity) at small scales. Indeed, according to (17c), the divergence of the velocity corresponds
to the vorticity Laplacian divided by k2

c . Naturally, this structure is reminiscent of the Ekman
model where divergence and vorticity would be related by a double vertical derivative:

δ = `2Ek
∂2
zζ where

{
δ =∇·u,
ζ =∇⊥ · u,

(18)

and `Ek
is the thickness of the Ekman layer. The turbulent diffusion involved in equation (17c)

is rather horizontal due to the strong stratification assumption (see (10)). In the proposed
stochastic model, the divergent component and the low-pass filter of the system (17) are
parameterized by the spatial cutoff frequency kc, which moves toward larger scales when the
diffusion coefficient aH increases. If both the vorticity and the divergence can be measured at
large scales, the previous relation should enable to estimate the cutoff frequency kc by fitting
terms of equation (17c). Then, the horizontal diffusive coefficient, aH , or the variance of the
horizontal small-scale velocity (at the time scale ∆t), aH/∆t, can be deduced.

3.2.2. Modified SQG relation under strong uncertainty

To derive a QG model, we use the other equations of the stochastic Boussinesq model at
the 0-order. After some algebra (see Appendix C), we obtain directly zero PV in the fluid
interior:

PV =

(
∆ +

(
1 +

∆2

k4
c

)
∂z

(
(f0/N)2 ∂z

))
ψ = 0, (19)

where kc =
√

2f0/aH . The assumptions used here correspond to the same used for a classical
QG model (Vallis 2006), except that the dissipation, due to the noise, is strong. It is a striking
result. Instead of finding a model in the form of a classical QG model, developments, through
a strong uncertainty, directly leads to the description of surface dynamics, a SQG model.
It means that the subgrid dissipation prevents the development of the interior dynamics.
Without this dynamics, no baroclinic instabilities can grow (Lapeyre and Klein 2006). If the
stratification is vertically invariant, this static linear equation can be solved by imposing a
vanishing condition in the deep ocean (z → −∞) and a specified boundary value at a given
depth (z = η). The horizontal Fourier transform of the solution then reads

ψ̂(k, z) = ψ̂(k, η) exp

 N‖k‖2

f0

√
1 +

∥∥k/kc∥∥4

2

(z − η)

 . (20)
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At z = η, the modified SQG relation is

b̂(k, η) = N‖k‖2
√

1 +
∥∥k/kc∥∥4

2
ψ̂(k, η), (21)

where b stands for the buoyancy. In the following, we will refer to (21) as the SQG re-
lation under Strong Uncertainty (SQGSU ). For low wave number or moderate uncertainty

(
∥∥k/kc∥∥2

2
∼ Ro/Υ � 1), we retrieve the standard SQG relation. The expression of the stream

function as a function of the buoyancy is expressed as the convolution with a Green function,
GSQG = ‖x‖−1/(2πN), and the velocity decays rapidly as the inverse of the square distance
to the point vortex center. On the other hand, for very high wave numbers or very large uncer-

tainty (
∥∥k/kc∥∥2

2
∼ Ro/Υ � 1), the velocity tends very quickly to zero. For strong uncertainty

or small scales (
∥∥k/kc∥∥2

2
∼ Ro/Υ ∼ 1),

b̂ =

√
2N

kc

(∥∥k∥∥2

2
+ O
‖k‖→kc

(∥∥k/kc∥∥2
− 1
)2)

ψ̂. (22)

Accordingly, we may see the SQGSU relation as an intermediary between two relevant models
in geophysics: the SQG dynamics where the tracer (the buoyancy) is proportional to ‖k‖2ψ̂
and a two-dimensional flow dynamics where the tracer (the vorticity) is proportional to

∥∥k∥∥2

2
ψ̂.

In the latter case, the streamfunction can be expressed as the convolution of the buoyancy with
the Green function, G2D = kc/(2

√
2πN) ln ‖x‖, and the velocity decays slowly as the inverse of

the distance to the point vortex center. Nevertheless, contrary to the two-dimensional flow and
the SQG models, the 2D velocity u is divergent (see (17c)). The total horizontal velocity can
be computed from the buoyancy, through the Helmholtz decomposition (17a), the modified
SQG relation (21) and (17c). As derived, the vertical velocity is finite and given by the main
balance of the buoyancy equation

w =
f0

N2

1

k2
c

∆b. (23)

Note that this equation is not derived from a non-hydrostatic vertical momentum equation.
Equation (23) is directly obtained from the thermodynamic equation. It expresses the fact
that, under strong stratification and strong horizontal diffusion, the buoyancy anomalies are
mainly created by vertical advection. This relation is similar to the result of Garrett and Loder
(1981), except the proportionality coefficient. Indeed, Garrett and Loder (1981) consider verti-
cal diffusion and neglect the horizontal one. Invoking the thermal wind relation and the strati-
fication structure, vertical variations are then associated with horizontal buoyancy variations.

In the present development, the vertical velocity scales as Ro/(ΥBu) DU ∼
∥∥k/kc∥∥2

2
DU/Bu.

It is prominent at small scales and proportional to the variance tensor, such as the divergent
component of the horizontal velocity.

Figures 1 and 2 show the static link between the 3D velocity and buoyancy for two isolated
vortices and a front, respectively. As obtained, the solenoidal component is similar to the
classic SQG velocity. In figure 1, the non-rotational component forces the anticyclone (warm
spot) to spread, and the cyclone (cold spot) to shrink. Note that our study focuses on the
ocean dynamics. For atmospheric applications, the vertical axis should be inverted and the sign
of the temperature anomaly changed (Ragone and Badin 2016). In figure 2, the irrotational
component is weak on the warm side of the front, but strongly strengthens the cold side.
As modeled in the SQG+1 (Hakim et al. 2002) and Surface Semi-Geostrophic (SSG) (Badin
2013, Ragone and Badin 2016) models, a frontolysis (resp. frontogenesis) develops on the
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Figure 1. Value of the interior buoyancy created by a warm spot and a cold spot at the surface. The two components of
the velocity are also shown. The upwelling and shrinking of the cyclone (cold spot) and the downwelling and spreading
of the anticyclone (warm spot) are clearly visible (Colour online).

Figure 2. Value of the interior buoyancy created by a front at the surface. The two components of the velocity are also
shown. The divergence effects will strengthen the front on the cold side (frontogenesis) and smooth the front on the
warm side (frontolysis). The vertical velocity is here much weaker than in the case of isolated spots (Colour online).

warm (resp. cold) side of the front. In Figure 1, a downwelling of warm water and a upwelling
of cold water appear. As the vertical velocity comes from the thermodynamic equation and
not from the vertical momentum equation, it is the cause of the buoyancy anomaly not its
consequence. Whereas the irrotational horizontal component is stronger close to a front than
within an eddy, the vertical velocity associated with a front is found much weaker than the
one associated with an isolated eddy.

4. Diagnostic under strong uncertainty

As derived, under strong uncertainty, the eddy diffusion is substantial and modifies the
geostrophic balance (17). The velocity becomes divergent and (17c) offers a diagnostic of this
divergence. This diagnostic states that the divergence should be proportional to the Laplacian
of the vorticity:

δ =
1

k2
c

∆ζ, where

{
δ =∇·u,
ζ =∇⊥ · u.

(24)
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To evaluate the relevance of this diagnostic, outputs of a realistic 3D high-resolution oceanic
simulation are used. During winter, the eddy activities are usually stronger, especially close to
energetic currents. For this reason, the Gulf-Stream during winter season is a test-bed region
for high-resolution simulation (Gula et al. 2015).

Figure 3 shows the temperature of the first and of the 58th day. Simulations are three-
dimensional and involve a fine spatial and temporal resolutions. Equation (17c) is a surface
mesoscale diagnostic valid far from the coasts. Consequently, the surface fields are filtered
temporally and spatially. The final time step is one day and the final resulting spatial resolution
is 3 km. Figure 3 displays the original surface field and the filtered cropped fields.

Figure 4 compares the reference divergence field to our estimate, the Laplacian of the
vorticity. An overall agreement clearly emerges. Nonetheless, the small scales of our estimate
are more energetic than the small scales of the real divergence field. For this reason, the spatial
fields are further filtered at a resolution of 30 km. Except for some small spots, estimation
and reference are similar. In particular, fronts – associated with two length scales: one at
sub-mesoscales and one at mesoscales – are highlighted.

Figure 5 specifies the relevance and the limitations of the proposed diagnostic. The spectra of
the two fields unveil a very good match at mesoscale range (L > 60km i.e. κ < 10−4), whereas
they differ at sub-mesoscales. This difference is certainly not surprising, the estimation being
derived for large scale components. Note, the velocity divergent component is far from being
zero in the mesoscale range. Compared to the solenoidal component, its spectrum is certainly
much flatter and smaller in this range. Nevertheless, the mesoscale divergence is stronger than
the sub-mesoscales divergence. The ratio of Fourier transform modulus further confirms the
accuracy of our diagnostic at mesoscales and makes clear the difference at sub-mesoscales. The
−1 slope may suggest that a fractional diffusion would be preferable to a Laplacian diffusion
at those scales.

The complementary analysis is the coherence, which is a measure of the phase relationship
between two fields. Specifically, the coherence is the Fourier modes correlation coefficient:

Re

 δ̂(k) ∆̂ζ(k)∣∣δ̂(k) ∆̂ζ(k)
∣∣
 , (25)

where Re denotes the real part. The coherence is the cosinus of the phase shift, θ, between
the two fields. Here, we directly show the phase shift averaged on angular spatial frequencies.

For our estimate the phase-shift is about 0.8 ≈ π/4. It means that a linear transformation
of the large-scale vorticity can explain more than half of the divergence. As a comparison,
the same analysis was done with the SQG relation, using temperature anomaly instead of
buoyancy (not shown). The phase shift was similar.

From figure 4, one further gets a rough estimation for the multiplicative constant of the
proposed diagnostic: k2

c ≈ 10−7 m−2. It suggests a spatial cutoff k−1
c ≈ 3 km and a diffu-

sion coefficient aH/2 ≈ 1000 m2.s−1. This value is canonical, according to Boccaletti et al.
(2007), which upholds the proposed approach. To confirm the validity of our strong uncertain
assumption, it can be evaluated:

Ro

Υ
∼
∥∥∥∥ kkc

∥∥∥∥2

2

∼ aH
2f0

κ2 ∼ 0.1, (26)

with 2π/κ = 60 km.
The unresolved energy can also be estimated. From a mesoscale point of view, motions in-
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Figure 3. Temperature (in Celsius degree) for the first (top) and 58th day (bottom) at high temporal and spatial
resolution (∆t = 12h and ∆x = 750m) (left) and after filtering (∆t = 1 day and ∆x = 3km) (right). The black line on
the top pictures highlight the region selected for the diagnostic (Colour online).

duced with diurnal cycles can be approximated as delta-correlated processes. Hence, an estima-
tion of the unresolved horizontal velocity amplitude shall follow from

√
aH/∆t ≈ 10−1m.s−1,

with ∆t = 1 day. Considering the present simulation, this is consistent with the sub-mesoscale
velocity field.

5. Conclusion

To develop models under location uncertainty, the highly-oscillating unresolved velocity
component is assumed to be uncorrelated in time. Consequently, the expression of the ma-
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Figure 4. Divergence (s−1) and Laplacian of the vorticity (m−2.s−1) for the first and the 58th day at a 30-km resolution.
According to our modified geostrophic balance under strong uncertainty, the latter is an estimation of the mesoscale
divergence up to a multiplicative constant (Colour online).

terial derivative and hence most fluid dynamics models are modified, taking into account an
inhomogeneous and anisotropic diffusion, an advection correction and a multiplicative noise.
In this work, we simplify a Boussinesq model under location uncertainty assuming strong
rotation, stratification, and subgrid turbulence. From this last assumption, the geostrophic
balance is modified, and a horizontal divergent velocity explicitly appears. Furthermore,
the QG approximation implies a zero PV. In other words, the strong uncertainty prevents
interior dynamics at mesoscales. This provides a new derivation of the SQG model from the
Boussinesq equations. The ensuing SQG model with divergent velocity is denoted SQGSU .
It exhibits physically relevant asymmetry between cold and warm areas, and suggests a
diagnostic of the mesoscale divergence from the vorticity, as successfully tested on very
high-resolution simulated data.

A more complete model could encompass white noise components for temperature, salin-
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ity and density. At mesoscales, a thermal wind relation should relate these time uncorre-
lated components to the unresolved velocity. Therefore, these additional terms should provide
the vertical structure of the unresolved velocity, without increasing the complexity of the
parametrization.

Finally, besides solar forcing, the restratification is certainly a complicated process related
to frontal dynamics. In the Mixed Layer (ML), the ML instabilities are often triggered by
non-hydrostatic motions. They generate very-small-scale baroclinic instabilities and slump-
ings of the fronts (Boccaletti et al. 2007). For such phenomena, subgrid parameterizations
are necessary. They must act to horizontally homogenize and restratify the ML. In such a
context, the SQGSU model may constitute a simple solution or, at least a first step to develop
models under location uncertainty in this direction. To encode the weak stratification of the
ML, stochastic Semi-Geostrophic (SG) and Surface Semi-Geostrophic (SSG) models could
also be derived. According to our scaling of the vertical unresolved velocity (10), a weaker
stratification should then enhance the vertical mixing compared to the SQGSU model. The
modified geostrophic balance (17) would involve both horizontal and vertical diffusions. More-
over, since the stratification is weaker in the SG scalings, each term of the buoyancy equation
(3D transport, 3D turbulent dissipation and stratification) would have the same scaling.
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Appendix A: Modified geostrophic balance

Under strong horizontal homogeneous turbulence, the large-scale geostrophic balance is mod-
ified by the horizontal diffusion:

f × u− 1
2aH∆Hu = ξ, (A.1)

where u is the resolved horizontal velocity and ∆H
4
= ∂2

x+∂2
y the horizontal Laplacian. On the

right-hand side, ξ is the pressure gradient. Let us note that f × u = fJu with J =

(
0 −1
1 0

)
and that JT = J−1 = −J . For a constant Coriolis frequency, the previous equation can be
solved in the horizontal Fourier space:

û =
(
fJ + 1

2aH
∥∥k∥∥2

2
Id
)−1

ξ̂ =
(
Id −

∥∥k/kc∥∥2

2
J
)−1

(
− 1

f
ξ̂
⊥
)
, (A.2)

with kc =
√

2f/aH . Also −(1/f)ξ⊥ = −(1/f)Jξ is the solution without diffusion. Expanding
the right-hand side operator in Taylor series and using the properties J2p = (−1)pId and
J2p+1 = (−1)pJ , we obtain(

Id −
∥∥k/kc∥∥2

2
J
)−1

=

+∞∑
p=0

(∥∥k/kc∥∥2

2
J
)p
, (A.3)

=

+∞∑
p=0

(−1)p
∥∥k/kc∥∥4p

2
Id +

+∞∑
p=0

(−1)p
∥∥k/kc∥∥4p+2

2
J , (A.4)

=
+∞∑
p=0

(
−
∥∥k/kc∥∥4

2

)p (
Id +

∥∥k/kc∥∥2

2
J
)
, (A.5)

=
1

1 +
∥∥k/kc∥∥4

2

(
Id +

∥∥k/kc∥∥2

2
J
)
. (A.6)

This leads to the following solution for the modified geostrophic balance:

û =
1

1 +
∥∥k/kc∥∥4

2

(
− 1

f
ξ̂
⊥
)

+

∥∥k/kc∥∥2

2

1 +
∥∥k/kc∥∥4

2

(
1

f
ξ̂

)
. (A.7)

Appendix B: Non-dimensional Boussinesq equations

To derive a non-dimensional version of the Boussinesq equations under location uncertainty
(Resseguier et al. 2017a), each term of the evolution laws is scaled (Resseguier et al. 2017b):
the horizontal coordinates x̃h = Lxh, the vertical coordinate z̃ = hz, the aspect ratio D = h/L
between the vertical and horizontal length scales. A characteristic time t̃ = Tt corresponds to
the horizontal advection time U/L with horizontal velocity ũ = Uu. A vertical velocity w̃ =
(h/L)Uw is deduced from the divergence-free condition. We further take a scaled buoyancy b̃ =
Bb, pressure φ̃′ = Φφ′ (with the density scaled pressures φ′ = p′/ρb and dtφσ = dtpσ/ρb), and
the earth rotation f∗ = fk. For the uncertainty variables, we consider a horizontal uncertainty
ãH = Au aH corresponding to the horizontal 2 × 2 variance tensor; a vertical uncertainty



March 20, 2017 Geophysical and Astrophysical Fluid Dynamics Geophysical-flows-under-location-uncertainty-
Part-III

16 Geophysical and Astrophysical Fluid Dynamics

vector ãzz = Awazz and a horizontal-vertical uncertainty vector ãHz =
√
AuAwaHz related

to the variance between the vertical and horizontal velocity components. The resulting non-
dimensional Boussinesq system under location uncertainty becomes:

Nondimensional Boussinesq equations under location uncertainty

Momentum equations

dtu+ (w · ∇)udt+
1

Υ 1/2
(σHdBt · ∇H)u+

(
Ro

BuΥ 1/2

)
(σdBt)z∂zu

− 1

2Υ

∑
i,j∈H

∂2
ij

(
aiju

)
dt+ O

(
Ro

ΥBu

)

+
1

Ro
(1 + Roβy)k ×

(
udt+

1

Υ 1/2
σHdBt

)
= −Eu ∇H

(
φ′dt+

1

Υ 1/2
dtφσ

)
, (B.1a)

dtw + (w · ∇)wdt+
1

Υ 1/2
(σHdBt · ∇H)w +

(
Ro

BuΥ 1/2

)
(σdBt)z∂zw

− 1

2Υ

∑
i,j∈H

∂2
ij

(
aijw

)
dt+ O

(
Ro

ΥBu

)

=
Γ

D2
bdt− Eu

D2
∂z

(
φ′dt+

1

Υ 1/2
dtφσ

)
, (B.1b)

Buoyancy equation

dtb+

(
w∗Υdt+

1

Υ 1/2
(σdBt)

)
· ∇b− 1

2

1

Υ
∇H ·

(
aH∇b

)
dt+ O

(
Ro

ΥBu

)
+

1

(Fr)2

1

Γ

(
w∗Υ/2dt+

(
Ro

Bu

)
1

Υ 1/2
(σdBt)z

)
= 0, (B.1c)

Effective drift

w∗Υ =
(
u∗Υ , w

∗
Υ

)
T
,

=

((
w − 1

2Υ
∇ · aH

)
,

(
w −

(
Ro

2ΥBu

)
∇H · aHz + O

(
Ro

ΥBu

)2
))

T

, (B.1d)

Incompressibility

∇ ·w = 0, (B.1e)

∇·
(
σdBt

)
= 0, (B.1f)

∇H · (∇H · aH)T + 2
Ro

Bu
∇H · ∂zaHz + O

((
Ro

Bu

)2
)

= 0. (B.1g)
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Here, the time-correlated components and the time-uncorrelated components in the mo-
mentum equations have not been separated. The terms in O (Ro/Bu) and O (Ro/Bu)2 are
related to the time-uncorrelated vertical velocity. These terms are too small to appear in the
final QG model (Bu = O (1) in QG approximation) and not explicitly shown. We only make
appear the big O approximations. Traditional non-dimensional numbers are introduced : the
Rossby number Ro = U/(f0L) with f0 the average Coriolis frequency; the Froude number
(Fr = U/(Nh)), ratio between the advective time to the buoyancy time; Eu, the Euler num-
ber, ratio between the pressure force and the inertial forces, Γ = Bh/U2 = D2BT/W the
ratio between the mean potential energy to the mean kinetic energy. To scale the buoyancy
equation, the ratio between the buoyancy advection and the stratification term has also been
introduced:

B/T

N2W
=

B

N2h
=

U2

N2h2

Bh

U2
= Fr2Γ. (B.2)

Besides those traditional dimensionless numbers, this system introduces Υ , relating the
large-scale kinetic energy to the energy dissipated by the unresolved component:

Υ =
UL

Au
=

U2

Au/T
. (B.3)

Appendix C: QG model under strong uncertainty

For the case Υ close to the Rossby number, the diffusion term is not negligible anymore and
the geostrophic balance is modified. As the terms of the geostrophic balance remain large
(Ro 6 Υ � 1), the scaling of the pressure can still be done with the Coriolis force. This leads
to an Euler number scaling as

Eu ∼ 1

Ro
. (C.1)

Keeping a small aspect ratio D2 � 1, we obtain

Eu

D2
∼ 1

RoD2
� 1

Ro
>

1

Υ
. (C.2)

As the Rossby number and the ratio Υ are both small in the vertical momentum equation,
the inertial terms are dominated by the diffusion term which is itself negligible in front of
the pressure term. The hydrostatic balance is hence conserved. The buoyancy scaling still
correspond to the thermal winds relation:

Γ ∼ Eu ∼ 1

Ro
. (C.3)

Considering the scaling (σdBt)z/‖(σdBt)H‖ ∼ DRo/Bu for the vertical small-scale velocity,
the non-dimensional evolution equations are now given by:
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Momentum equations

Ro

(
dtu+ (u · ∇)udt+

1

Υ 1/2
(σHdBt · ∇)u+ O

(
Ro

ΥBu

))
− Ro

2Υ

∑
i,j∈H

∂2
ij

(
aiju

)
dt+ (1 + Roβy)k ×

(
udt+

1

Υ 1/2
σHdBt

)

= −∇H

(
φ′dt+

1

Υ 1/2
dtφσ

)
, (C.4)

b dt+ O

(
RoD2

Υ 1/2

)
= ∂z

(
φ′dt+

1

Υ 1/2
dtφσ

)
. (C.5)

Buoyancy equation

Ro

Bu

(
dtb+∇b ·

(
udt+

1

Υ 1/2
(σdBt)H

)
+ ∂zb wdt

)
− Ro

2Υ

∑
i,j∈H

∂2
ij (aijb) dt+ wdt− 1

Υ

Ro

Bu
(∇ · aHz)T dt

+
Ro

Bu

1

Υ 1/2
(σdBt)z + O

(
Ro

2

ΥBu
2

)
= 0. (C.6)

Incompressibility

∇ · u+ ∂zw = 0, (C.7)

∇·
(
σdBt

)
H

+
Ro

Bu
∂z
(
σdBt

)
z

= 0, (C.8)

∇ · (∇ · aH)T + 2
Ro

Bu
∇ · ∂zaHz + O

((
Ro

Bu

)2
)

= 0. (C.9)

The operators Del, ∇, and Laplacian, ∆ represent 2D operators. If Ro ∼ Υ , the system is
not anymore approximately in geostrophic balance. The large-scale velocity becomes divergent
and decoupling the system is more involved. For sake of simplicity, we thus focus on the case
of homogeneous and horizontally isotropic turbulence. As a consequence, the variance tensor
a is constant in space and diagonal:

a =

ah 0 0
0 ah 0
0 0 az

 . (C.10)

The time-correlated components of the horizontal momentum at the 0-th order can be written
as

−1
2aH∆u0 + k × u0 = −∇φ′0, (C.11)

Then, equation (A.7) of Appendix A expresses the result in Fourier space. In the physical
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space, the solution reads

u0 =∇⊥
(

1 +
∆2

k4
c

)−1

φ′0︸ ︷︷ ︸
=ψ0

+∇
(

1 +
∆2

k4
c

)−1
∆

k2
c

φ′0︸ ︷︷ ︸
=ψ̃0

with kc =

√
2

aH
, (C.12)

which is the Helmholtz decomposition of the horizontal velocity u0 into its rotational and
divergent component with a stream function ψ0 and a velocity potential ψ̃0. Differentiating
the buoyancy equation at the order 0 along z, we obtain

1
2aH∆∂z

(
b0
Bu

)
= ∂zw0 = −∇ · u0 = −∆ψ̃0 = −∆2

k4
c

ψ0. (C.13)

The time-correlated part of the 0-th order hydrostatic equation relates the buoyancy to the
pressure φ′0:

1
2aH∆∂z

(
b0
Bu

)
= 1

2aH∆∂2
zφ
′
0 = 1

2aH∆∂2
z

(
1 +

∆2

k4
c

)
ψ0. (C.14)

Gathering these two equations leads to(
∆ +

(
1 +

∆2

k4
c

)
∂z

(
(f0/N)2 ∂z

))
ψ = 0. (C.15)

Using the horizontal Fourier transform, it writes(
−
∥∥k∥∥2

2
+
(

1 +
∥∥k/kc∥∥4

2

)
∂z

(
(f0/N)2 ∂z

))
ψ̂ = 0. (C.16)

Under an uniform stratification, with a fixed value at a specific depth (z = η), and a vanishing
condition in the deep ocean (z → −∞), a solution is

ψ̂(k, z) = ψ̂(k, η) exp

 N‖k‖2

f0

√
1 +

∥∥k/kc∥∥4

2

(z − η)

 . (C.17)

Accordingly, the buoyancy is:

b̂ = ∂zφ̂
′ = f0

(
1 +

∥∥k/kc∥∥4

2

)
∂zψ̂ = N‖k‖2

√
1 +

∥∥k/kc∥∥4

2
ψ̂. (C.18)


