
Trends
There is an intense debate about the
importance of nongenetic inheritance
for evolution.

Schistosoma mansoni epigenotype
components are important players in
parasite development and host
interactions.

We use S. mansoni as an example to
introduce the notion of ‘inheritance
system’ in which genotype and the
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The Many Facets of Heritable Phenotypic Diversity in Schistosomes
S. mansoni, the agent of human intestinal bilharzia, causes an estimated annual loss of 3–15
million disability-adjusted life-years [1,2]. This digenean flatworm has a complex life cycle with
human and primates as natural definitive hosts and freshwater snails as intermediate hosts.
Small rodents can also be infected and enable maintenance of the life cycle in the laboratory
(Figure 1). S. mansoni originates from the East African lake area and managed to invade the
South American subcontinent during the 15th to 19th centuries via the slave trade [3]. In this new
environment it uses an intermediate host snail species that had segregated from its African snail
host several million years earlier [4]. In this review we intend to summarize some of the principles
of the capacity of S. mansoni to generate sufficient heritable phenotypic diversity to explain this
long and very successful history in adapting to new hosts. Nevertheless, we believe that many of
the principles we will outline can be applied to the African and Asian Schistosoma species. The
need for a better understanding of S. mansoni sister lineages, such as Schistosoma bovis and
Schistosoma haematobium, becomes urgent even in nontropical regions given the recent
infection of human hosts by a hybrid of both in the European continent [5].

Humans are part of this story, and understanding our common past might enable us to shape
our future common history in a way that allows us to manage the disease. Heritable phenotypic
diversity has traditionally been attributed to genetic diversity. We know today that this view is not
wrong but must be complemented by other diversity-generating mechanisms that can be
heritable, such as those regulated by epigenetic elements or symbiotic organisms. It is, for
instance, well known that pathogenicity of Onchocerca volvulus, the agent of river blindness,
depends on infection with the obligatory intracellular bacterium Wolbachia [6], and that the
capacity of parasitoids (e.g., the wasp Dinocampus coccinellae) to modulate insect host
behavior is based on symbiotic viruses [7]. Despite very clear examples of nongenetic-based
inheritance, DNA is still seen as the major inheritance system, with other components playing
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Figure 1. Schematic Representation of the Life Cycle of Schistosoma Mansoni in the Context of a Systems Approach to Inheritance. On the left, a
classical view of the life cycle of S. mansoni. Morphologically different male and female adults mate in the definitive mammalian host, produce embryonated eggs that
release miraciadia when in contact with fresh water. Miracidia seek and penetrate Biomphalaria snails, transform into asexually reproductive sporocysts and eventually
develop into cercariae. These larvae infect the mammalian host and develop, during a complex migration in the host body via schistosomula, into adult worms. This
schematic representation of the life cycle is reduced and does not include a time component, thereby losing its nature as a process.
On the right, the same life cycle representation but with time as vector from left to right, that is, showing its process characteristics. Even if an identical individual could
serve as intermediate- (snail) or definitive- (rodent or human) host, this individual is not the same as when it experienced the first infection.
accessory roles. Some controversy around this topic has arisen with considerable scientific
debate about the importance of nongenetic and, in particular, epigenetic inheritance for
modulating phenotype [8]. The origin of heritable phenotypic variants has been a central
question in evolutionary biology since Darwinian times. Advances in plant breeding and the
generation of pure lines through self-pollination in the beginning of the 20th century led to the
idea of separating the ‘visible’ nature of an organism away from its inheritance system and also to
the development of the genotype (G) – phenotype (P) concept [9]. A consequence of this
concept is the idea that natural selection acts on the phenotype and not on the genotype. This
concept facilitated rapid progress in animal and plant breeding programs but also supported the
view that life history traits depend not only on the pedigree but also on the conditions in which the
offspring was raised.

In the late 1940s, Haldane and others [10] extended the G–Pmodel into what is today known as
the G�E concept, meaning that genotype � environment interactions bring about the pheno-
type [11]. It should be noted that, up until the 1950s, ‘gene’ was defined as a ‘unit’ or ‘element’,
and inheritance was implicit since ‘genes’ were contained within gametes [9]. With advance-
ments in molecular biology, this notion changed, and today ‘genes’ are considered by most as
DNA fragments that code for proteins [12]. The epigenotype definition followed the same logic:
when the term was coined by Waddington, it was related to epigenesis, that is, how genotypes
give rise to phenotypes during development [13]. Only recently, however, has epigenetics been
redefined as “the study of mitotically and/or meiotically heritable changes in gene function that
cannot be explained by changes in DNA sequence” [14]. Sometimes, the DNA is compared to
the hardware of a computer and the epigenetic information to the software, that is, a set of
instructions on how to use this hardware (soft inheritance) [15]. We believe that this metaphor is
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not entirely wrong but might be misleading; we propose to revisit the initial notion of G�E and to
extend it by borrowing ideas used within systems biology and by incorporating recent advance-
ments in evolutionary biology [16,17]. If one returns to the original, heritability-based genotype
definition, G can be replaced by ‘inheritance system’. This inheritance system would then be
composed of several elements: the genotype G, the epigenotype I, heritable cytoplasmic
elements (e.g., mitochondria and endosymbionts such as Wolbachia spp.), and symbionts
(e.g., maternal microbiota). For the purpose of this review, we will focus on the dual inheritance
system (G�I) that interacts with the environment E to bring about the phenotype P (conceptual-
ized as (G�I)�E [8_TD$DIFF])P). Wewill now define operationally the elements of this system (G and I) using
their molecular nature, in the case of S. mansoni DNA forG, and chromatin proteins for I. What is
important here is the interaction of the elements in the system: DNA must act on chromatin that
provides feedback to DNA and [1_TD$DIFF] [9_TD$DIFF]vice versa. (G�I)�E is a system, but the production of the
phenotype is a process. An inherent property of a process is the time t it takes to produce its
results. Time can be measured in physical units, but in an ecological and evolutionary context it
might bemore useful to measure it in meiotic generations. This way, the length of the process will
be defined as follows: when referring to ontogenesis, t < 1; parental effects, t = 1; transgenera-
tional effects, tentatively defined with t = 3–10; and phylogeny for hundreds to thousands of
meiotic generations (Figure 1). We now define the three elements of the system, that is, the
genome, epigenome, and the environment, and subsequently explore how they interact to
shape the phenotype of S. mansoni in different time scales. While we shall not formulate our
discussion mathematically, our arguments and definitions related to ‘processes’, ‘system’ and
‘state’ follow Mesarovic and Takahara [18].

Element 1: The Genome (G)
The genome of S. mansoni, and all African schistosomes, is organized into seven autosome
pairs and two sex chromosomes (ZZ male, ZW female). Its total length is roughly 363 mega-
bases of DNA, spanning about 11 000 protein-coding genes [19,20]. Half of the genome is
comprised of repetitive sequences that are predominantly composed of both interspersed and
satellite types [21]. Many of these repetitive elements are transcribed and could be of functional
importance for the phenotype. For example, their potential impact is well illustrated by the
peculiar nature of theS.mansoni sex chromosomes. Currently, noW-specific genes have been
identified, suggesting that both males (ZZ) and females (ZW) contain at least one copy of every
gene. However, there are large blocks of female-specific satellite repeats on the W chromo-
some [22]. Their role is difficult to assess, but it might be that they influence chromatin structure,
either in cis or trans, and operate via the epigenetic element of the inheritance system (see
more below).

In endemic areas, genetic diversity between S. mansoni populations is considered relatively high
[23]. However, when isolates are brought into the laboratory, genetic diversity decreases rapidly
[24]. Diversity is even lower and can be considered quasi-clonal on the level of unique sequences
within these inbred laboratory populations [25]. However, an important source of genetic
diversity – that has not been captured sufficiently before the use of massive sequencing – is
copy number variations (CNVs). For instance, there are about 2000 CNVs between two South
American isolates of S. mansoni that had been maintained in the laboratory for about 30–40
years [26]. In addition, we have also shown that up to about 100 CNVs can occur between
experimentally produced somaclonal lines [25]. Nevertheless, it is currently unknown the extent
by which CNVs influence phenotypic diversity or, indeed, the schistosome inheritance system.

Element 2: The Epigenome (I)
For the purpose of this review, we define the chromatin structure as the epigenetic element of the
S. mansoni inheritance system. Chromatin is a complex of DNA and associated proteins.
Histones, the main protein component of chromatin, play an important role in DNA packaging
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but also carry epigenetic information. Other proteins are likely as important as histones for
maintaining the chromatin structure, but very little is known about them in schistosomes. We
will therefore focus on histones and their post-translational modifications (PTM). The fundamental
chromatin unit, a nucleosome, consists of two stabilized histone 3-histone 4 (H3-H4) dimers
flanked by two histone histone 2A-histone 2B (H2A-H2B) dimers, as well as 147 bp of DNA
wound around the complete octamer [27,28]. Each of the core histones contains an N-terminal
20–30 amino acid projection called the histone tail, with amino acids in these tails often covalently
modified by PTMs. More than 60 histone PTMs have been described in eukaryotes, such as
acetylation, methylation, phosphorylation, ubiquitinylation, citrullination, and sumoylation. Histone
modifications can regulate transcription [29] but correlative data indicate that they are probably
implicated in many post-transcriptional processes, including (alternative) splicing [30].

Histone modifications are catalyzed by enzymatic ‘writers’ such as histone acetyl transferases
(HATs) and histone methyltransferases (HMTs) [31], and are known to affect each other. For
instance, methylation of H3 lysine 4 (H3K4) or phosphorylation of H3 serine 10 (H3S10) blocks
methylation of H3 lysine 9 (H3K9) in HeLa cells [32]. If we consider each histone modification as
an element, this interplay between different histone modifications can form distinct states of
chromatin, known as chromatin colors. ChIP-Seq data revealed that S. mansoni has at least six
chromatin colors (Figure 2). Following the Kundaje terminology [32] these chromatin colors
represent (1) active transcription start sites (TSS), (2) flanking TSS, (3) transcription end sites
(TES), (4) heterochromatin, (5) bivalent/poised for activation TSS, and (6) bivalent/poised for
activation gene bodies with the co-occurrence of activating trimethylated H3K4 (H3K4me3) and
repressive trimethylated H3 lysine 27 (H3K27me3). Kundaje et al. [32] used ‘absence of marks’
as a color but we find it to be a feature of active TSS (Figure 2).
H3K4me3 H3K9ac H3K9me3 H3K27ac H3K27me3 H4K20me1 No histone Refs

Ac�ve TSS x x x x x [25,28]

Flanking TSS x x [25,28]

TES x x x [25]

Heterochroma�n x x [28]

Bivalent/poised 
TSS x x [28,46]

Bivalent/poised 
genes x x [28,46]

Figure 2. Chromatin Colors in Schistosoma mansoni. The classical euchromatin/heterochromatin concept was defined based on the way the compounds of the
nucleoplasm could be stained with hematoxylin [61]. The terms were actually defined provisionally but subsequently frequently used to describe an open, transcriptional
competent form of the chromatin (euchromatin) and the repressive, closed form (heterochromatin). Very recently, a new concept has emerged using the idea of several
states (or ‘colors’) of chromatin that are defined by different combinations of histone modifications, nonhistone chromatin proteins, and DNA methylation [62–64]. This
figure summarizes the current knowledge on combinations of histone modifications that ‘stain’ the chromatin of S. mansoni (grey – over representation, white –

underrepresentation) [25,28,46].
Abbreviations: H3K4me3, histone H3 tri-methylated at lysine 4; H3K9ac, histone H3 acetylated at lysine 9; H3K9me3, histone H3 tri-methylated at lysine 9; H3K27ac,
histone H3 acetylated at lysine 27; H3K27me3, histone H3 tri-methylated at lysine 27; H4K20me1, histone H4mono-methylated at lysine 20; TSS, transcription start site;
TES, transcription end site.
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Table 1. Schistosoma mansoni proteins that regulate histone methylationa

Writers (26 proteins) Readers (25 proteins)b Erasers (13 proteins)

Classe Isoformsc Gene Id Class Isoforms Gene Id Class Isoforms Gene Id

SET 1 Smpd_078900 Tudor 1 Smp_064830 KDM 1 Smp_150560

SET 1 Smp_070170 Tudor 1 Smp_081570 KDM 1 Smp_160810

SET 1 Smp_138030 Tudor 2 Smp_097090 KDM 1 Smp_162940

SET 1 Smp_144180 Tudor 2 Smp_150850 JMJD 1 Smp_161400

SET 1 Smp_161010 Tudor 1 Smp_175680 JMJD 1 Smp_132170

SET 1 Smp_210660 Chromo 1 Smp_027300 JMJD 1 Smp_147870

SET 1 Smp_160700 Chromo 1 Smp_041760 JMJD 1 Smp_137240

SET 1 Smp_137060 Chromo 1 Smp_079650 JMJD 1 Smp_196270

SET 1 Smp_055310 Chromo 1 Smp_078280 JMJD 1 Smp_156290

SET 1 Smp_027300 Chromo 1 Smp_130470 JMJD 1 Smp_019170

SET 1 Smp_062530 Chromo 1 Smp_144550 JMJD 1 Smp_034000

SET 1 Smp_210650 Chromo 1 Smp_149240 JMJD 1 Smp_128500b

SET 2 Smp_140390 Chromo 1 Smp_174840 JMJD 1 Smp_180990b

SET 2 Smp_150850 Chromo 2 Smp_179650

SET 1 Smp_043580 MBT 2 Smp_006250

SET 1 Smp_000700 MBT 1 Smp_074050

SET 1 Smp_124950 MBT 1 Smp_159100

SET 3 Smp_121610 PWWP 1 Smp_041750

SET 1 Smp_149380b PWWP 1 Smp_105690

SET 1 Smp_131300b PWWP 1 Smp_125340

DOT1 1 Smp_165000 PWWP 1 Smp_137060

PRMT 3 Smp_029240 PWWP 1 Smp_154860

PRMT 1 Smp_211290 PWWP 1 Smp_163470

PRMT 1 Smp_070340 PWWP 1 Smp_170390

PRMT 1 Smp_171150 PWWP 1 Smp_125050

PRMT 1 Smp_025550

aAdapted from [31].
bNew histone methylation epigenetic components identified in S. mansoni (genome assembly v5.2).
cPutative number of alternatively spliced products derived from each Smp (genome assembly v5.2).
dSmp = Schistosoma mansoni protein.
eAbbreviations: Chromo, chromatin organization modifier domain containing protein; DOT1, disruptor of telomeric silencing
1, also called Kmt4; KDM = histone lysine demethylase; JMJD, Jumonji domain-containing protein; MBT, malignant brain
tumor domain-containing protein; PRMT, protein arginine methyltransferase; PWWP, proline-tryptophane-tryptophane-
proline motif-containing protein; SET, SET domain-containing protein (initially characterized in Su(var)3-9, Enhancer-of-
zeste and Trithorax of Drosophila melonogaster).
Histone covalent PTMs need to be appropriately recognized and carefully regulated to ensure
that chromatin remains responsive to environmental alterations. These activities are fulfilled by
epigenetic ‘readers’ and ‘erasers’, respectively [33]. S. mansoni genome mining represents an
excellent starting point for identifying these participants (as recently reviewed for histone
acetylation in depth by Cabezas-Cruz et[2_TD$DIFF] al. [31]) and can be used to advance this understudied
area of parasite biology. For example, schistosome genome analyses (genome version 5.2)
predict that histone methylation is cooperatively regulated by 25 ‘readers’, 13 ‘erasers’ and 26
‘writers’ (Table 1). The interplay of these and all other nucleosome regulators is undoubtedly
complex and carefully controlled during schistosome development, which makes them
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incredibly interesting targets suitable for drug discovery [31]. As an example, the S. mansoni
genome encodes a single Jumonji-domain containing histone demethylase (Smp_137240)
isoform with sequence similarity to Homo sapiens JMJD6, the only eraser discovered to date
with sole responsibility for demethylating H3/H4 arginine residues [34]. This finding, while
awaiting experimental validation, provides an exciting new epigenetic target for future schisto-
some drug discovery initiatives should compounds be identified that selectively (based on amino
acid divergence at the substrate binding site) inhibit the schistosome and not the human
homolog. In the context of a functional schistosome inheritance subsystem, the cooperation
of methylation (and other PTMs) readers, writers, and erasers in chromatin remodeling remains
essential for the flexible transmission of signals between environment and genome as well as to
ensure that genomic imprints/modifications are reversible.

The Environment (E)
The generation of an infective phenotype is a developmental and evolutionary process. A
process is defined by the changes of states of a system, where a state is defined by its
components, at time t. The notion of a system implies a conceptual boundary between the
interior and exterior (environment) of a system. One can then distinguish between external
variables that constitute a stimulus or perturbation to the system: the internal or state variables
and the variables that are observed as a response [35]. Any other observations are parameters
to the state variables. If we take the parasite as a system, food intake for instance is a stimulus,
and changes in the parasite's physiology are a system's response. Between the stimulus and
response, three classes of processes interact – cell signaling, gene expression, andmetabolism.
The systems biology approach models such processes as molecular interaction networks.
Taking a cell signaling network as an example, receptor-binding ligands provide the stimulus to
the subcellular network, and changes in gene expression is the response. The environment of
the cell, such as osmolarity and temperature (amongst others), provides the context in which
intracellular reactions take place.

With the parasite as the system, the environment interacts with this system again through
temperature, pH, and osmolarity but also through biochemical and physical signals that come
from the host. In a conventional systems approach, the environment would only be captured
indirectly. Environmental variables are usually assumed to be constant so that their influence can
be indirectly captured by parameter values that link biochemical variables. This approach is
sufficient to explain, for instance, how a change in osmolarity provokes hatching of S. mansoni
miracidia when the embryonated eggs contact freshwater. However, this approach will fail when
it attempts to describe development of larvae into adult worms and to explain sex differentiation
during this transition. Several studies have shown that the parasite depends on endocrine and
immune signals of themammalian host to accomplish development (reviewed in [36]). In addition
to the host environment, both sexes depend on each other's microenvironment and mating
status (i.e., paired versus unpaired) for the maturation of both male and female parasites [37]. A
recent study has reinforced this observation of pairing-dependent transcriptome alterations and
further demonstrated that about 4000 gonadal expressed genes are regulated by the presence
of the opposite gender [38]. The maturation process is reversible when individuals are separated
for sufficiently long time. In this case (such as the example of the hatching of the miracidia), it is
not just the parasite's behavior that is affected by external variables, but also how the envi-
ronment interacts with the parasite to develop different phenotypes. In this context, the concept
of homeodynamics, discussed by Lloyd et al. [39] seems appropriate. It emphasizes “a capacity
for bistable switching threshold phenomena”, that is, the system can transition between steady
states and continuously transform its behavior without losing its overall structure. Whether the
cell is the (sub)system, or the parasite, a dynamic system can respond to a stimulus in one of two
ways – to either resist external influences, maintaining an internal state (e.g., remain a cercaria
head after skin penetration or maintain the status of immature females after mating), or following
290 Trends in Parasitology, April 2017, Vol. 33, No. 4



a stimulus by changing the internal state (develop into a schistosomulum or develop into a
mature female, respectively). In both cases, the temporary or permanent departure from a
steady state is explained in terms of feedback mechanisms. The inheritance system would,
therefore, receive a multitude of signals from the outside world but remain relatively stable until
the ‘right’ stimulus arrives and triggers a switch in function. Therefore, ‘stabilizing’ factors must
exist that maintain a current while ‘switching’ factors allow for choosing alternative trajectories at
bifurcations. The art of experimental parasitology would consist of identifying these factors and
all the elements of the inheritance system (such as the aforementioned epigenetic writers,
readers, and erasers) that are receptive to these factors, as well as the threshold values for
switching.

In addition, not all phenotypic variants that are produced will survive and, especially for larval
forms, the environment will impose a strong selective pressure and reduce the number of
phenotypes whose inheritance systems go from one developmental stage to the other and
through subsequent generations.

(G�I)�E in S. mansoni Ontogenesis: The Cercaria to Adult Transformation
Schistosomes undergo dramatic changes in their phenotype during their development from
larvae into adults. Cercariae, for instance, are phenotypically completely different from adults.
Naturally, the underlying expression pattern of genes and repetitive elements changes during
this metamorphosis [40]. These transcriptional modifications are driven or accompanied by
reorganization of the chromatin structure. One of the most surprising findings concerning these
chromatin modifications was the discovery of a bivalent histone methylation on H3K4 and
H3K27. H3K4me3 is a typical mark of active TSS while H3K27me3 is a repressive mark found in
heterochromatin. Bivalent methylation is known to be a hallmark of a subset of genes in
vertebrate embryonic stem cells and some cancer types (reviewed in [41]) where it holds
transcription in a poised state allowing for rapid transcription upon exposure to external signals.
The same is true for the cercarial genes with these modifications: these genes show very low
levels of transcription, but become activated within a few hours when the H3K27 methylation is
removed during the first developmental steps of the cercaria to schistosomulum transition [28].

Most of the parasitic flatworms are simultaneous hermaphrodites, in the sense that the
individuals display both male and female reproductive organs. Schistosomatidae are an excep-
tion to this rule as they are gonochoric and have separate sexes (they are dioecious, that is,
individuals are either male or female). The sex of schistosomes is genetically determined by ZZ
(males) or ZW (females) sex chromosomes. There is, however, (i) no phenotypic dimorphism
between males and females in the larval stages, and sexual dimorphism appears only in the
vertebrate host, during schistosomula development; and (ii) there are apparently no female-
specific genes. Accordingly, sexual differentiation does not[3_TD$DIFF] rely [10_TD$DIFF]solely on heritable factors (i.e.,
the sex chromosome) but also depends on environmental cues from the host as perceived
differently by males and females [42,43]. Occasional cases of hermaphroditism in S. mansoni
adult wormswhich developed in nonpermissive hosts further illustrate the importance of the host
microenvironment for Schistosoma sexual differentiation [44,45]. Now, what role do epigenetic
components play in this differentiation process? Sex-specific chromatin changes occur during
sexual development from cercariae to adults and indicate an epigenetic component associated
with the switch to sexual commitment [46]. From an evolutionary perspective, schistosome sex
chromosomes display the characteristic features of sex chromosome evolution. Accumulation of
repeats and heterochromatization of sex-determining regions occur before suppression of
recombination between the heterochromosome and its homologue, likely restricting recombi-
nation of key loci involved in female fertility and male sterility, or vice versa [47]. Whether the
accumulation of repeats is a cause or a consequence of heterochromatization remains an open
question; however, other structural changes, such as chromosomal translocation or inversion,
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Outstanding Questions
What is the role of epigenetic partici-
pants such as DNA methylation, histo-
nes, nonhistone chromatin proteins,
noncoding RNA, and nuclear topology
in regulating S. mansoni gene expres-
sion and developmental biology?

Which are the chromatin signatures of
each life stage of S. mansoni?

Which are the chromatin signatures of
the recently described proliferating
somatic cells of S. mansoni?

What new tools can be applied to study
flatworm epigenetics?

How can a systems biology framework
best be integrated with parasitology
research?
can also suppress recombination. In schistosomes, heterochromatization of the W chromo-
some has been known for a long time and was even used as a marker for sex identification in
morphologically indistinguishable cercariae [48,49]. Further studies have shown that W-specific
sequences are almost entirely composed of satellite-type repeats located in the heterochromatic
region of the Schistosoma W chromosome. What makes Schistosoma sex chromosomes
unique in comparison to other metazoan model species is that some of these W-specific
repetitive DNA sequence elements are transcribed in the miracidial and cercarial stages but
never in the adults, and this change in transcription level is accompanied by changes in the
chromatin structure at these loci [22]. These repeats carry a euchromatic signature in miracidia
and lose their euchromatic character progressively during the development into adults. In this
sense, during the cercariae to schistosomula transition (when sexual dimorphism appears) the
repeats heterochromatize. These findings led us to propose a scenario based both on genetic
(W-specific repetitive elements) and epigenetic elements (reversible changes in chromatin
structure) to explain the emergence of sex chromosomes in Schistosoma over evolutionary
times [22]. In this model, transcription of satellite repeats leads in cis to heterochromatization of
portions of the W-chromosome and/or in trans to chromatin structure changes on the Z-
chromosome and/or the autosomes.

(G�I)�E in Transgenerational Effects and Adaptive Evolution
Host–parasite interactions are characterized by strong mutualistic selective pressure. Parasites
must find their hosts, adhere, penetrate, and survive not only a rapid change from external to
internal environment but also the attack of the host's immune system. As digenean parasites,
schistosomes must preserve in the definitive host the capacity to infect the intermediate snail
host. One of the essential factors of infection success in Biomphalaria glabrata snails is a class of
polymorphic glycoproteins called S. mansoni polymorphic proteins (SmPoMuc). Their putative
function and their interrelation with the snail immune response was recently exhaustively
reviewed [50]. Several lines of evidence indicate that these proteins are important for penetration
into the snail and/or for the very early developmental steps. Miracidia possess a large repertoire
of SmPoMucs despite having only about 10 SmPoMuc genes. Transcriptional polymorphism is
produced via strain-specific chromatin structure differences. By influencing this structure by
pharmacological inhibition of histone-modifying enzymes (HME) or by strain hybridization,
heritable SmPoMuc expression polymorphism is generated that translates into an increase
in snail infection rate [51,52]. A relative recent threat that the parasite faces is exposure to
anthelminthic drugs. Despite this, drug resistance can emerge rapidly in natural populations [53]
and can be generated within few generations in the laboratory [54]. Genetic mutations that
confer the resistance to hycanthone and oxamniquine have been identified [55,56], but hycan-
thone-resistant worms that do not carry the corresponding mutations were also found. These
individuals showed a large panel of epiallelic changes compared to unexposed worms [57],
indicating that hycanthone resistance or tolerance can also have an epigenetic basis. Today's
most widely used antischistosomiasis drug is praziquantel (PZQ). Evidence for PZQ failure has
been reported several times but there appears to be variability in the heritability of this trait when
field isolates are used (reviewed in [58]). Interestingly, parasites that survive PZQ exposure do not
show allele frequency distortions, suggesting that nongenetic inheritance could play a role in
PZQ resistance [59].

Concluding Remarks and Future Perspectives
When the G�E [8_TD$DIFF])P concept was introduced originally, one of the immediate practical con-
sequences was that (animal) breeding programs should be carried out in a range of different
environments [11]. Equally, the major consequence of our systems approach to inheritance is
that, if one wishes to understand the heritability of a trait, all elements of the inheritance system
must be analysed comprehensively using a range of different genotypes and epigenotypes (and
292 Trends in Parasitology, April 2017, Vol. 33, No. 4



other elements of the inheritance system). This is, however, almost never feasible. To cope with
the caveat, one should remember that the elements of the inheritance system are operationally
defined and depend on the experimenter. It is legitimate to exclude (operationally) some of the
elements from the experiment providing one does not exclude them from the conclusions and
generalizations, for example, the finding that genetic variants have a strong association with a
phenotype does not exclude similar or even stronger epiallelic associations and vice versa.
Nevertheless, while the practical range of different genotypes and epigenotypes one can test will
be low, it will be interesting to see how both alleles and epialleles are linked to phenotypes. In the
simplest case, either epigenotype or genotype is kept invariant, and genetic or epigenetic loci
responsible for the phenotypic trait are mapped using quantitative trait locus (QTL) or epiQTL,
but it is conceivable that both approaches can be combined as long as epialleles and alleles are
in different loci. Another consequence is that time matters: the process of the generation of the
phenotype makes it implicit that it can only be understood over time. For the experimenter this
means that correlations of genomes, epigenomes (or transcriptomes) with phenotypes are of
limited value if one does not capture the dynamics of heritable and phenotypic changes. Instead
of producing more replicates for one time point it might be more useful to produce time series
with fewer replicates. Time matters also because the genotype and the epigenotype can have
very different (epi)mutation and reversion rates [25,60]. Naturally, their relative importance in
processes that are very long or very short will be different. It might, therefore, be useful to focus
on epigenetic elements for short processes (ontogenic, and less than five meiotic generations)
and on genetic elements for longer processes. Whatever strategy is used, the different elements
of the inheritance system must be studied in an integrative and comprehensive approach (see
Outstanding Questions) to better understand phenotypic variation and infection success of
schistosomes.
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