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Abstract : 
 
The correlation between the flow turbulence and the performances of a marine current turbine is 
studied. First, the incoming flow encountered in the flume tank is characterized in the framework of fully 
developed turbulent cascades in the inertial range. The Reynolds number, the Kolmogorov dissipation 
scale and the integral scale, are estimated from flow measurements. The intermittency of the turbulence 
is characterized in the lognormal multifractal framework, and the influence of the turbulent flow on the 
turbine power is assessed. 

The rotor speed control unit characteristics used for the turbine regulation induces non-negligible effects 
on the turbine behavior under fluctuations loads. Even if the power spectrum does not reveal any scale 
invariance, a multiscale analysis allows us to show the correlations between the turbulence time series 
and the power produced. The classical Mean Square Coherency function shows that for scales larger 
than 10 s, the upstream velocity and power have large correlations. In the framework of the Empirical 
Mode Decomposition method, such correlations are studied using the time-dependence intrinsic 
correlation analysis method. This method allows to zoom into time-frequency scales where the flow 
perturbations induced some modifications in power production. 

 

 

 

 

 

http://dx.doi.org/10.1016/j.renene.2017.05.024
http://archimer.ifremer.fr/doc/00385/49620/
http://archimer.ifremer.fr/
mailto:francois.schmitt@cnrs.fr


2  

Please note that this is an author-produced PDF of an article accepted for publication following peer review. The definitive 
publisher-authenticated version is available on the publisher Web site.  

Highlights 

► A high sampling rate of a turbulent flow velocity highlights its multiscale properties. ► There is no 
power law in the power production Fourier spectrum. ► The intermittency degree of flow velocity 
increases behind the marine current turbine. ► The coherency is higher in the lower frequencies and 
reach its minimum at 1 Hz. ► Local correlation analysis spotted a pattern on the loss of correlation. 

 

Keywords : Marine energy, Turbulence, Multifractal energy cascade, Intermittency, Turbine power 
production, High frequency data rate 
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List of Abbreviations

β Spectral exponent

∆Vτ (t) Flow velocity fluctuations

` Integral scale [m]

ε Small-scale energy dissipation of turbulent kinetic energy [m2/s3]

η Kolmogorov microscale [m]

λ Taylor length scale [m]

Mx Torque related to x-axis [Nm]

P Marine curent turbine power [kW]

µ Intermittency parameter

ν Kinematic viscosity of water [m2/s]

ω Frequency related to h (ω)

ρ Volumetric mass density [kg/m3]

σ2 (u∞) Variances of the upstream longitudinal velocity u∞ (t)

σ2 (v∞) Variances of the upstream transverse velocity v∞ (t)

τ Time increment or time lag [s]

ϕ(t) Phase function of IMF modes

C̃i(t) Hilbert transform applied on the mode function Ci

ζ (q) Scale invariant moment function

A(t) Local amplitude related to z(t)

C Kolmogorov constant related to E(k)

c Cross-correlation

C0 Coefficient in the Langevin equation

C1 Configuration 1 with flow straighteners (lower I)

C2 Configuration 2 without flow straighteners (highest I)

Ci(t) Mode function (IMF)

D Rotor diameter [m]

d Depth of the tank [m]
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E(f) Power spectrum fonction [m2/s2/Hz]

E(k) Energy-spectrum function

f Frequency [Hz]

f` Frequency related to the integral scale [Hz]

fη Frequency related to the Kolmogorov scale [Hz]

H Hust parameter

h (ω) Hilbert marginal spectrum (second moment)

I Turbulence intensity [%]

k Wavenumber

Lq(ω) Hilbert marginal spectrum (for arbitrary q moments)

p (ω,A) Joint probability density function (PDF)

q Statistical moment

R Maximum absolute value of c(τ)

r Rotor radius [m]

Re Reynolds number

Reλ Taylor-based Reynolds number scale

T Integral time scale related to ` [s]

TSR Tip Speed Ratio

u′ Standard deviation of the upstream velocity u∞

U∞ Mean upstream velocity [m/s]

u∞ Upstream longitudinal velocity related to x-axis [m/s]

v∞ Upstream transverse velocity related to y-axis [m/s]

x Distance following the rotor axis

y Distance following the y-axis

z(t) Analytical signal related to Ci

γ2xy Mean Square Coherency

Ωx Axial rotation speed [rad/s]

Exx Power spectral densities related to x(t)

3



ACCEPTED MANUSCRIPT

Exy Cross-power spectral density of x(t) and y(t)

Eyy Power spectral densities related to y(t)

ACF Autocorrelation Function

EMD Empirical Mode Decomposition

FFT Fast Fourier Transform

HHT Hilbert-Huang Transform

HSA Hilbert Spectral Analysis

IMF Intrinsic Mode Functions

PDF Probability Density Function

PSD Power Spectrum Density

1. Introduction

In an energy transition context, tidal energy is a potential energy source to
partially complete the growing global demand. However, the main problem with
this kind of energy (like solar and wind energy) remains the variability of the
electrical power produced at different scales, due to large speed variations [1].5

Such a system needs large mean velocities; this corresponds to a large Reynolds
number and large turbulence effect, with intermittent variations. The rate of
ambient turbulence intensity then has an effect on the behavior of the turbine
[2, 3, 4].

In recent years, the effects of turbulence intensity and the related length10

scales have been considered in studies of marine current turbine performances.
For example, recently it has been demonstrated that the increase of turbulence
intensity reduces the power and thrust coefficients, and that the increase of the
length scale (by adding static grids upstream of the turbine) increases those
coefficients [5]. In the domain of numerical investigation, the influence of the15

turbulence intensity has been considered around a single marine current turbine
and an underestimation of the velocity deficit in the numerical wake has been
demonstrated [6].

In this work, a model of a tidal three-bladed horizontal axis turbine (1:20
scale), is used in the IFREMER wave and current flume tank (Boulogne-sur-20

mer, France). In order to understand the influence of turbulence on the turbine
behaviour, better the torque and the flow velocity have been recorded simulta-
neously in the flume tank, in two locations (upstream and downstream of the
turbine). The power produced has been measured at moderate frequency and
the flow velocity is measured using a Laser Doppler Velocimeter (LDV) with25

a high frequency sampling rate over a long period of time (three hours). The
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objective of this study is to carry out a statistical analysis of the flow time se-
ries, the torque measurements, and to study their coherency. The theoretical
framework is one of multifractal cascades and intermittency studies, a classical
approach in fully developed turbulence [7]. In the following, the experimental30

devices and the databases are presented. Afterwards, the turbulence and the
flow scaling properties are characterized. Finally, correlations are considered
using nonlinear and non-stationary methods such as Empirical Mode Decompo-
sition (EMD) and Time Dependent Intrinsic Correlation (TDIC).

2. Experimental Settings35

In this section, the wave and current flume tank where the experimentation
has been carried out is presented. The setup and the devices used during the
experimental campaign in April 2014 are also presented.

2.1. Upstream flow dataset: configurations C1 and C2.

The tests were carried out in the wave and current flume tank of IFREMER40

(French Research Institute for Exploitation of the Sea) in Boulogne-sur-mer
(North of France). The experimental working section is 4 m wide by 2 m deep
and 18 m length (Figure 1) [8]. Two pump-turbines generate a turbulent flow
with a speed range of 0.1 to 2.2 m/s where the boundary layer in the bottom
of the flume tank remains below 25 cm [9]. The upstream intensity rate can be45

regulated by the use of flow straighteners. Two configurations are considered
in this work: configuration C1 with flow straighteners for a low turbulence
rate and C2 without flow straighteners for a high turbulence rate. On both
configurations, the upstream turbulence intensity rate (defined in equation 1)
does not exceed 15%.50

2.2. Upstream and downstream flow measurements.

The flow velocity is measured at a distance of four times the turbine diameter
D as seen in Fig. 2. These measurements are acquired successively at two
different locations, one upstream from the marine current turbine (position M)
and the second one downstream on this model (position N). Furthermore, a55

second downstream measurement is taken at a distance D/2 in the y direction
(position N’ perpendicular to N).

The sensor device is a 2D Laser Doppler Velocimeter system (LDV) [2, 10]
that acquires point velocity values (u,v) related to (x,y) with an irregular sam-
pling rate, that goes up to 800 or 900 Hz. This irregular sampling rate is due60

to the LDV sensor technology. The intersection of two laser beams creates a
measurement volume of 0.015 mm3. The velocity is estimated from the time
of displacement of particles passing through this volume. These particles found
inside the flume tank, are silver-coated hollow glass spheres with an average
diameter of 10 µm. Here, the mean speed is set at 0.8 m/s and the turbulence65

intensity rate I is calculated as follows:
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Travelling crane (6T)

Mobile trolleys

Honeycombs Conveyor belt Pumps

Window

18m

4m

Working section:

Length: 18m
Width: 4m
Height: 2m

Capacity: 700m3

Fluid velocity: 0.1 to 2.2m/s

Figure 1: Presentation of the Ifremer flume tank. Two pump-turbines generate a turbulent
flow with a speed range of 0.1 to 2.2 m/s. The natural upstream turbulence intensity rate
remains below 15%, which can be reduced by the use of flow straighteners placed in front of
the test section.

I = 100
u′

U∞
(1)

where U∞ is the mean upstream velocity and u′ is the standard deviation of
the upstream instantaneous velocity component u(t). In these conditions, the
upstream turbulence intensity rate Iup for configurations C1 and C2 is:70

• Iup(C1) ≈ 4%

• Iup(C2) ≈ 14%

2.3. Marine turbine model dataset.

The tests were carried out using a tidal three-bladed horizontal axis turbine75

at a scale of 1:20. The marine turbine model has a diameter of 0.7 m, the rotor
axis was installed in the center of the flume tank, in order to avoid or minimize
edge effects. This turbine model was used in a previous work [8]. The rotor is
connected to a motor-gearbox assembly consisting of a gearbox, a DC motor,
a ballast load and a motor speed control unit, providing an active rotor speed80

control with a response time below 0.1 s. The torque Mx is directly measured
through a torque sensor between the rotor and the motor at 100 Hz acquisition
frequency. The measured power is thus calculated as follows: P =MxΩx. A 30
second duration of turbulent upstream velocity and turbine power is shown as an
example in Figure 3. Both time series were normalized for a better comparison.85
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Figure 2: Experimental setup (side view): The LDV was situated upstream (M) and down-
stream (N,N’) from a marine current turbine both at a distance of four times the diameter
D. N’ is situated perpendicularly to N, at a distance y=0.5D from the rotor axis in the y
direction.

One can observe a strong variability due to intermittency as discussed in section
4. We define the Tip Speed Ratio (TSR) as the ratio of the speed of the tip of
the blade to the incident upstream flow velocity :

TSR =
|Ωx| r
U∞

(2)

where Ωx is the axial rotation speed, U∞ is the mean upstream velocity and r90

is the rotor radius. The measurements are performed upstream at a distance of
four times the diameter (point M in figure 2) for TSR=4 (which corresponds to
the nominal operating point) and TSR=2.5, with a view to studying the turbine
model behavior for various operation conditions.

3. Characterization of the turbulent flow in the flume tank95

In this section, we characterize the flow scaling properties using a spectral
analysis. These approaches were first discussed and presented in a previous
proceeding [11].

3.1. Power spectra and estimation of the dissipation

The Reynolds number is Re = Ud/ν where ν = 1.5 10−6 m2/s (at 15◦C),100

U = 0.8 m/s (see above) and d = 2 m (depth of the tank), giving Re ∼ 106,
a situation of fully developed turbulence. In the framework of fully developed
turbulence, the Richardson-Kolmogorov energy cascade is developed from large
to small scales [7, 12, 13] as illustred in figure 4. There is an inertial range
from the energy-containing scales to the dissipative scales, over which the power105

spectrum of the velocity field is written in a scaling way with a 5/3 slope:

E(k) = Cε2/3k−β (3)
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Figure 3: A sample of 30 second duration of normalized upstream turbulent velocity and
turbine power, recorded simultaneously for U∞=0.8 m/s, configuration C2 and TSR=4.

where E(k) is the velocity power spectrum, C is a constant (C ≈ 1.5), k is the
wave number and β = 5/3. In turbulence, fixed position measurements recorded
in time are classically related to spatial scales through Taylor’s hypothesis, which110

is valid when the mean flow is large relative to fluctuations [12]. The wave
number k = 2π

l may be related to a frequency f through the mean velocity U∞:

k =
2πf

U∞
(4)

Hence, the velocity power spectra is written with respect to frequency as:

E(f) = C ′ε2/3f−5/3 (5)115

where C ′ = C
(
U∞
2π

)5/3
.

This relation can be used to estimate the dissipation ε using C0 the intercept
such that E(f) = C0f

−5/3 in the inertial range [14, 15, 16]. The result estimate
ε corresponds to the small-scale energy dissipation of turbulent kinetic energy
into heat due to viscous effects:120

ε =

(
C0

C

) 3
2
(

2π

U∞

) 5
2

(6)

With such an approach, the dissipation can be estimated even if the dissi-
pation scale (also called Kolmogorov scale, see figure 4) is not resolved by the
measurements. In section 3.2, we first proceed to a spectral analysis of the flow
velocity data, the estimate of the intercept C0 and the spectral slope β are based125

on a weighted least squares fit. The energy dissipation estimate ε obtained using
this method is then introduced in section 3.3. In addition, an error estimate of ε
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(see appendix A1) has been considered from the standard error of the coefficient
estimate C0.

Energy-containing scales 

Dissipative 
scales 

Figure 4: Richardson-Kolmogorov’s energy cascade between integral scale frequency f` and a
Kolmogorov’s scale frequency fη .

3.2. Spectral Analysis130

The spectral analysis for LDV flow velocity measurements presents some
difficulties because the sampling rate is irregular. We must not forget that this
is due to the estimation of the flow velocity measured through the LDV system
measurements. This is not present in the torque data recorded regularly at
100 Hz. Since the classical Fast Fourier Transform (FFT) needs a regular time135

interval, an interpolation on LDV data is applied for obtaining regular time
sampling. This interpolation allows to obtain the power spectrum and get the
C0 factor following the Kolmogorov’s power law necessary for an estimation of
the dissipation ε.

For the nominal operating point (TSR=4), the turbulent flow spectra for140

upstream and downstream cases, for configuration C1 and C2 are shown in
figure 5a represented in a log-log plot; the inertial range is visible for each plot.
Figure 5b represents compensated power spectra fβE(f), in order to emphasize
the scaling ranges (the scaling exponent β is available in appendix A1). For all
cases, except the upstream one for Iup = 3.98%, one finds a scaling range for145

frequencies f ∈ [0.4; 200] Hz, corresponding to a scale ratio of 500, which is a
rather large value. The upstream C1 case shows a much narrower scaling range,
from about 1.5 to 5 Hz. It is interesting to notice that for the configuration C1,
the flow behind the turbine is more turbulent (Idown = 33.27%) and is recovered
a spectrum similar to the case Iup = 14.04%. This is consistent with previous150

results [8]. Furthermore, the spectrum of the configuration C2 is above the C1

one which indicates more energy for the larger turbulence intensity. On the
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Figure 5: (a) Power spectral density for flow longitudinal velocity measurements, in front
and behind the marine current turbine for TSR=4. One can observe the −5/3 power law.
(b) Compensated spectra fβE(f), in order to better visualize scaling ranges: one founds a
scaling range for f ∈ [0.4; 200] Hz with a scale ratio of 500 for all cases except the configuration
C1 (Iup), where the scaling range is narrower f ∈ [1.5; 5] Hz.

contrary, the downstream case (Idown) shows that there is slightly more energy
in the configuration C1.

In figure 6 some of the previous flow velocity spectra are superposed on155

the marine turbine power spectra. The spectra for the power series have been
vertically shifted to be superposed on the velocity one. This shows that at low
frequencies, for large time scales, the power dynamics are similar to the flow
velocity variations. At a frequency of 0.3 Hz (3 s), the two curves separate and
between 0.3 and 12 Hz there is a strong decrease of the spectral energy of the160

power fluctuations. Thus, the Kolmogorov 5/3 power law given in equation (5)
is not observed in the turbine power spectra. In previous works, it has been
shown that the power production respected the 5/3 power law for wind turbines
[17, 18, 19, 20]. It seems that in the present case, the effect of the turbulence
was filtered by the speed control unit used to control the rotational speed of the165
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Figure 6: Power spectra of flow velocity superposed on power fluctuation spectra in (a) the
C1 configuration and in (b) the C2 case. The curve for the power time series does not have
the same unit as the ones for the velocity; it is hence vertically shifted to be superposed on
the velocity at low frequencies. The 5/3 scaling is not found for the spectra of the power
generated. There are many spikes at high frequencies corresponding to excitation of discrete
frequencies. The largest and wider spike corresponds to 3f0 where f0 = 1.4 Hz is the rotating
frequency. The factor 3 comes for the fact that there are 3 blades.

marine turbine model.
We can observe in figure 6a), the marine turbine’s rotational speed at a

frequency spike f0 = 1.4 Hz. This is only noticed for configuration C1, possibly
because the turbine control speed may be less affected by the lowest turbulence
intensity. The spectra for the power series on both turbulence intensity cases170

(C1 and C2) shows a second spike 3f0 which corresponds to the blade pass
frequency. Such energy spikes (f0 and 3f0) have been observed in the thrust
force spectrum in the case of a shallow turbulent flow [21]. In this study, the
turbulent flow spectrum follows the energy cascade and there exists a correlation
between this energy cascade and the power spectra. An analogue dataset has175

been considered recently: there is a constant rotational speed, two synchronous
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measurements and a turbulent open channel [22]. Both spikes are visible for
the power PDS and the flow spectrum respects a 5/3 power law in the lower
frequencies. For the high frequencies, the marine turbine model seems, as in the
present study, to lack a clear inertial range.180

3.3. Flow scaling properties

From the value of ε (equation 6), the integral scale ` is calculated as follows
[23]:

` ∼ u′
3

ε
(7)

where u′ = σ(u∞) =

√
〈u∞ − U∞〉2 is the standard deviation of the upstream185

instantaneous velocity (u∞(t) is the instantaneous value at position M and
U∞ = 〈u∞(t)〉 and 〈.〉 denotes time average). An integral time scale T = `/U∞
is associated to `.

The Taylor length scale is [23]:

λ =

√
15ν

ε
u′ (8)190

Kolmogorov’s dissipation scale is the smallest scale of turbulence defined by :

η =

(
ν3

ε

)1/4

(9)

where ν = 1.5 10−6 m2/s is the kinematic viscosity of water at the fluid tem-
perature (Θ = 15◦ celsius). The Taylor-based Reynolds number scale writes:

Reλ =
u′λ

ν
(10)195

The Taylor-based Reynolds number obtained here belongs to a range of values
which is found in the coastal waters [24].

All these values are obtained from the spectral estimate of ε. Tables 1
and 2 show the main results for upstream and downstream time series. The200

Lagrangian integral length L [25, 26] estimated via the integral of the autocor-
relation function (ACF) is shown in appendix B2. The correlation coefficient
ACF is integrated for a time lag τ situated between τ = 0 and the value of
τ where ACF=0. It is compared to the length scale estimated using spectral
analysis. In most cases they are of the same magnitude.205

i) Upstream flow properties.
As expected, the results shown here are similar for TSR=2.5 and 4. Indeed, the
change in operating point does not affect the flow velocity variations. For a low
turbulence rate in configuration C1, ε is a hundred times lower than the value for210

C2. The magnitude of the ε value obtained here is similar to the one obtained

12
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Table 1: Turbulent flow characterization (upstream, y=0). The Iup values correspond to the
value measured using upstream LDV measurements

Scaling flow properties

U∞[m/s] Iup[%] TSR ε[m2s−3] `[m] T [s] η[mm] Reλ

C1 0.80 3.98 4 5.01 10−5 0.654 0.81 0.457 492
C2 0.79 14.04 4 5.68 10−3 0.244 0.31 0.140 561

C1 0.79 4.05 2.5 5.19 10−5 0.671 0.83 0.453 502
C2 0.80 13.96 2.5 5.74 10−3 0.240 0.30 0.139 556

in a previous work using PIV and LDV measurements [27]. The integral scale `
represents the largest eddy size inside the flume tank. This length is about 0.2 to
0.6 m with an intensity rate of 14.04% and 3.98% respectively. The Lagrangian
integral length L shows a similar behavior as seen in appendix B2 (0.6 to 0.9215

m for 14.04% and 3.98% respectively). Those structures contain the majority
of the kinetic energy contained in the flow. The associated time scale T for the
highest intensity rate is 0.3 and 0.8 seconds for the lowest one. We found that
time scale TC2

is less than TC1
: the flow straighteners may destroy upstream

turbulence eddies and produce this time scale effect. A recent work shows this220

relation between grid dimension and the turbulence intensity rate, that varies
with the distance to the marine current turbine [5]. Kolmogorov’s scale η is the
scale at which the fluid is affected by viscosity: as expected, this scale decreases
with an increase in the intensity of the turbulence. The Kolmogorov scale val-
ues are estimated between 0.14 to 0.45 mm, an order of magnitude usually225

found in the marine environment [24, 13]. The Reλ which are found here can be
reached using DNS studies [23], and correspond also to values found in the field.

ii) Downstream flow properties.
We consider here two downstream measurement points: one in the rotor axis230

(y = 0) and the second one at y = 0.5D from this axis. The magnitude values
are different from results obtained upstream since the mean velocity value U∞
decreases behind the marine turbine model, as expected. The eddies composing
the flow are indeed decomposed by the turbine blades in several eddies with lower
size, hence the decrease of the integral scale `. We observe that `C2 > `C1 with 97235

mm and 11 mm respectively and the time scale decreases as well: TC2
> TC1

.
There is an inversion in the ratio of both integral scales compared with the
upstream case. The Lagrangian length scales L are 0.45 to 0.18 m for C2

and C1 respectively, this may indicate an under estimation of the values ` for
the downstream measurements. The Kolmogorov scale is lower as well with240

ηC2 > ηC1 , η increase with the decrease of Idown. The Taylor-based Reynold’s
number is lower behind the marine turbine.

The flow scaling properties have been estimated from the mean value of
the energy dissipation ε. The method presented here is based on a spectral
analysis and particularly on the estimation of the intercept C0 which depends245

13



ACCEPTED MANUSCRIPT

Table 2: Turbulent flow characterization (downstream, TSR = 4). Here Idown are measured
using downstream measurements, explaining the values very different from upstream estima-
tions.

Scaling flow properties

U∞[m/s] Idown[%] y ε[m2s−3] `[m] T [s] η[mm] Reλ

C1 0.33 33.27 0 99.7 10−3 0.011 0.01 0.068 112
C2 0.66 21.49 0 26.4 10−3 0.097 0.16 0.095 393

C1 0.60 22.94 0.5D 47.3 10−3 0.050 0.08 0.082 279
C2 0.71 20.09 0.5D 17.9 10−3 0.148 0.24 0.105 487

on the inertial range. Since this range is noticed for high turbulence intensity
for upstream and downstream cases, this method can be used in a natural
environnement (for I > 14%). Nevertheless, the lowest intensity rate presents
a narrow scaling range where β = 1.82 > 5/3 (see table A1 in appendix); the
estimate ε is consequently valid in a narrower range of frequencies. This can be250

explained by the non respect of isotropy hypothesis in which the ratio of the
power density spectra does not respect the condition E(v∞)/E(u∞) =4/3 as
observed in Fig. 7 [25] (see reference [28] for further information about the local
isotropy at high Reynolds numbers). Moreover, one can observe in appendix
tables A1, B2 that despite the consideration of the standard error (ε+,ε−), the255

accuracy of the method is reliable since the results are defined within a narrow
interval.
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Figure 7: The isotropy hypothesis is valid if E(v∞)/E(u∞) = 4/3 in the inertial range which
is not the case of the configuration C1 (with flow straighteners). One finds a similar scaling
range for frequencies f ∈ [0.1; 100] Hz as observed in Fig. 5b. The u∞ time series has been
resampled to the v∞ frequency rate.
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4. Multiscaling comparison of the flow upstream and downstream

It is well known that fully developped turbulence is characterized not only by
the 5/3 power spectra in the inertial range, but also by intermittent fluctuations260

in this range [7, 13]. Here the word intermittency means that the dissipation
possesses large fluctuations having power law correlations. This is usually stud-
ied using structure functions ∆Vτ (t) = V (t + τ) − V (t), and considering the
scaling properties, in the inertial range, of their statistical moments of order
q > 0 [7, 13]:265

〈|∆Vτ |q〉 ∼ τ ζ(q) (11)

where ζ(q) is the scaling exponent moment function. For the Brownian mo-
tion ζ(q) = q/2, for fractional Brownian motion ζ(q) = qH is linear, for non-
intermittent turbulence ζ(q) = q/3: all these correspond to so-called monofrac-
tal processes, which are non intermittent. In the case of intermittency, ζ(q) is270

non-linear and concave and this corresponds to so-called multifractal processes.
The knowledge of this exponent provides information on the statistical fluctu-
ations (and their probability density) over the whole inertial range [7, 13]. In
this section we use this framework to compare the intermittency properties of
the flow upstream and downstream of the marine turbine.275

Here, the intermittency is characterized by using a multiscale method called
Empirical Mode Decomposition which has been shown in previous works to be
efficient for retrieving the exponent ζ(q) [13, 29, 30].

4.1. Method : Empirical Mode Decomposition

The Empirical Mode Decomposition and Hilbert-Huang Transform belong280

to a same method that was introduced at the end of the 1990s by Norden
Huang and co-workers [31]. The method decomposes nonlinear, non-stationary
time series into a sum of different time series called modes, each one being
narrow-banded and having a characteristic frequency [31]. The modes are called
Intrinsic Mode Functions (IMFs) (see figure 8) and satisfy the following two285

conditions: (i) the difference between the number of local extrema and the
number of zero-crossings must be zero or one; (ii) the running mean value of
the envelope defined by the local maxima and the envelope defined by the local
minima is close to zero.

Each IMF has a characteristic scale which is the mean distance between290

two successive maxima (or minima). After the decomposition, the Hilbert-
Huang Transform is then applied to each mode time series separately. Here,
all the details of the method are not provided and one can refer to the original
reference for more information, or to reference [13] for an approach focusing on
scaling properties. Let us only recall that for a mode function Ci(t), its Hilbert295

transform is noted C̃i(t) and an analytical signal

z(t) = Ci(t) + jC̃i(t) (12)

is constructed (where j2 = −1). Within such an approach, z can also be written

z(t) = A(t)ejϕ(t) (13)
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where A(t) is the local amplitude and ϕ(t) = arctan(C̃i(t)/Ci(t)) is the phase300

function of IMF modes. Hence, the local frequency is given by ω(t) = 1
2πϕ

′(t).
The combination of the Empirical Mode Decomposition method with the Hilbert
Spectral Analysis (HSA) is then a time-amplitude-frequency method also known
as Hilbert-Huang Transform (HHT). The Hilbert spectrum H(ω, t) represents
the original signal at a local level. This can be used to define the joint probability305

density function (PDF) p(ω,A) of the frequency ω and amplitude A, which are
extracted from all modes together. The Hilbert marginal spectrum is defined
as a second moment of the amplitude:

h(ω) =

∫ ∞
0

p (ω,A)A2dA (14)

This is applied to the velocity signal. The Hilbert spectrum is shown compared310

to the Fourier spectra. Also, the Fourier spectra of each mode taken separately
are represented in figure 9.

Each mode is associated to dissipation, inertial range and integral scales (the
first application of this method to turbulent data was published in Ref. [29]).
Another application of this method is to get the intermittency properties as315

discussed in the next section.
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Figure 8: The empirical mode decomposition (EMD) algorithm applied to the turbine power
time series, for configuration C2 upstream flow velocity case, showing the even mode functions
(IMF).The studied signal is the sum of the residual and all the modes.

4.2. Intermittency through the Arbitrary order Hilbert spectral analysis: method-
ology

The EMD method and the HHT method enable the turbulent flow fluctua-
tions of the velocity field to be analysed. This methodology can also be used in320

order to analyze the intermittency properties of such fluctuations.
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Figure 9: The IMF spectra for each characteristic frequency and the resulting Hilbert spectrum
H(ω, t) (solid line). This method is compared with the classical Fourier analysis where a
vertical shift is applied for better visualization purposes (dotted line). Both methods show
the corresponding −5/3 power law over almost three decades.

Equation (14) corresponds to a second statistical moment. This relation can
be generalized to arbitrary moments (q > 0) for the study of the fluctuations
intermittency [13, 29, 30]:

Lq(ω) =

∫ ∞
0

p (ω,A)AqdA (15)325

In the inertial range, the following scaling relation is found [13, 29]:

Lq(ω) = ω1−ζ(q) (16)

This relation provides a way to estimate the scaling exponents. There are many
models for intermittency fluctuations, leading to different analytical expressions
for ζ(q) [13]. Here for simplicity, the generic lognormal case is chosen, which330

is generally considered to provide a reasonable fit of ζ(q) in turbulence. It
can be written as a quadratic function. Here, the Hurst index H = ζ(1) is
used (this characterizes the non-conservation of the mean fluctuations) and the
intermittency parameter 0 < µ < 1:

ζ(q) = qH − µ

2

(
q2 − q

)
(17)335

where µ can be retrieved from the ζ(q) function by using µ = 2H − ζ(2) =
2ζ(1) − ζ(2). In this way the (H,µ) values in the frame of a lognormal model
can be found. The intermittency parameter µ defines physically the intermittent
burst of the studied data. The larger value of µ indicates and characterizes the
variability of the flow in the small scale dissipation.340
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Table 3: Intermittency parametters, upstream, y = 0

TSR H = ζ(1) ζ(2) µ

C2 4 0.34±0.02 0.66±0.02 0.018

C2 2.5 0.31±0.01 0.61±0.02 0.007

Table 4: Intermittency parametters, downstream, TSR=4

y axis H = ζ(1) ζ(2) µ

C1 0 0.29±0.02 0.51±0.03 0.059
C2 0 0.33±0.01 0.62±0.02 0.037

C1 0.5 D 0.35±0.02 0.63±0.03 0.077
C2 0.5 D 0.34±0.01 0.65±0.01 0.032

4.3. Application to the data: intermittency comparison upstream and down-
stream.

This approach can be used in the inertial range, showing scale invariance
over a rather large range of frequencies. It cannot be applied to the power
fluctuations since they do not display such a range. It is not applied to the345

C1 case with Iup = 3.98% either, which showed a inertial range which was too
narrow. In the other cases, however, the inertial range was quite wide and the
exponents are estimated over the same frequency range from 0.4 to 200 Hz.

The direct application of this methodology can be observed in figure 10. If
ζ(q) is nonlinear and concave, the process is intermittent [7, 32] and the more350

concave it is, the more intermittent the time series is. The non-intermittent
curve q/3 is represented for comparison. Figure 10 shows the intermittent mo-
ment function obtained in the frequency range from 0.4 to 200 Hz, using the
EMD-HSA methodology. Several comparisons of intermittency properties are
performed: TSR value for the upstream case (figure 10a) and the influence of355

position as well as the influence of turbulence intensity in the downstream case
(figure 10b). For the upstream case, the two curves are, as expected, quite
close to each other for TSR=2.5 and 4 (figure 10a). The same curve should be
obtained, but the measurements are done during two different experiments and
there are statistical variations, which may explain the slight difference observed.360

This is also true for the magnitude values of the scaling flow parameters U , ε
and ` as seen in table 1 and 2 globally. There is more intermittency downstream,
since the curves in figure 10b are more concave than in figure 10a. Such results
may be explained by the fact that the passing flow creates more turbulence
behind the marine turbine model in particular for C1 in the rotor axis (y = 0).365

The parameters H and µ in the lognormal model are estimated from these
curves using the methodology presented in sections 4.2. The values obtained
are given in tables 3 and 4. The values of H and µ from these tables are also
represented in figure 11 in a H − µ plane. Several conclusions may be drawn
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from these tables and this figure:370

• there is some variability for the upstream measurements (cases TSR=2.5
and 4), but globally, the value of H is between 0.31 and 0.34 and µ is
small;

• downstream, the values of H are also close to 1/3, but the values of µ are
globally larger than for the upstream cases due to wake effect.375

• for the larger turbulence intensity (C2), the values of (H,µ) are very close
in the wake axis (y = 0) and slightly outside (y = 0.5D), whereas for C1,
the value of H seems to be quite different in both cases.

The previous intermittency analysis is an important complement to the
Fourier Analysis. Indeed, the characterization of the flow fluctuations due to380

turbulence is necessary in order to understand the marine current turbine power
intermittency.

5. Multiscale correlations of flow velocity and output power produc-
tion

In this section, the marine turbine performance inside the flume tank is385

studied taking into account the flow properties established in sections 3 and
4. The application of correlation methods such as the Mean Square Coherency
(MSC) and the Time-Dependent Intrinsic Correlation (TDIC) will enable a focus
on the interactions linking the input (flow velocity) with the output (power)
in the aim of understanding the marine turbine behavior better. With these390

results, we will be able to explain the spectre differences encountered at high
frequencies in figure 6.

5.1. Method : Mean Square Coherency

The cospectrum is the Fourier transform of the covariance function. The
Mean Square Coherency spectrum calculated from the cospectrum gives real395

values between 0 and 1 to indicate how well two time series x(t) and y(t) match
each other. This function is defined as [33]:

γ2xy =
|Exy (f)|2

Exx (f)Eyy (f)
≤ 1 (18)

where Exy is the cross-power spectral density of x(t) and y(t). Exx and Eyy
are the related power spectral densities. It corresponds for all f , 0 ≤ γ2 ≤ 1.400

For an ideal linear system with a single input x(t) and a single output y(t), the
coherence will be equal to one. If the MSC is equal to zero, it is an indication
that x(t) and y(t) are unrelated.

One necessary condition in order to apply the MSC method is that the time
series x(t) and y(t) must have the same sampling interval and length so, for405

this study, the flow velocity measurements are resampled to the same sampling
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Figure 10: Representation of the function ζ(q) estimated over the frequency range from 0.4 to
200 Hz, using the EMD-HSA methodology. (a): upstream case, with a comparison between
TSR=2.5 and 4; (b): downstream case, with a comparison between turbulence intensities (C1

and C2) and position (position N and N’ in figure 2).

frequency of the marine current turbine (100 Hz) before applying the cross-
spectrum analysis.

Furthermore, the precision of this method must take into consideration the
time lag between the flow velocity measurement and the marine turbine power410

production. Indeed, the marine turbine model is situated at a distance of four
times its diameter (see figure 2), hence a time lag between the first measurement
of one flow particle and the impact of such a particle on the marine turbine model
must be considered.

In order to estimate this time lag, the classic cross correlation is used between415

both time series. If two time series vectors are named x(t) and y(t), we define
the cross-correlation as:

c (τ) =
〈x (t) y (t+ τ)〉

σxσy
(19)
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R = max |c (τ)| (20)420

where τ is the time lag. When the coefficient c reaches its maximum value (R),
the related τ corresponds to the time in which the particle reaches the tidal
turbine (see values in appendix B2). The same methodology is considered for
the downstream case, where the correlation results in the downstream case are
less accurate. Indeed, the measured flow particles may not correspond to the425

one impacting the marine turbine model due to turbulence generated by the
wake behind the model. Finally, both measurements were normalized. Here,
the power measurements were normalized through the Cp coefficient defined as:

Cp =
P

1/2ρπr2U3
∞

(21)

430

Cpn = Cp − 〈Cp〉 (22)

The flow velocity is normalized as follows:

Un =
u(t)− 〈u〉
〈u〉

(23)

The correlations are considered between Un and Cpn in the following sections.

5.2. Global correlations between upstream and downstream flow velocity and ma-435

rine turbine power

The results of the MSC application are shown in figure 12. In both figures,
the coherency is lower for the downstream cases (γ2xy < 0.4) than for the up-
stream ones. For the upstream cases, the coherency γ2xy may be divided into
three zones: (1) the coherency reaches its maximum; (2) the coherency decreases440
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(f ∈ [5 10−2; 100]) until reaching a value near 0 (zero correlation) in zone (3).
The following comments may be made:

• The coherency spectra presents a maximum value for C1 configuration (on
both TSR) in the lower frequencies;

• In both cases for C1 configuration, the proportionality is close to 1, but445

for the TSR=4 (operating point) case, a larger (more than a decade) and
more constant γ2xy value is obtained;

• There are more fluctuations in zone (1) for TSR=2.5 showing an impact
of the choice of the TSR on the coherency obtained between both time
series at low frequencies;450

• The transition to zone (2) is observed for f > 10−1 Hz, hence 10 seconds
for both TSR. The transition time scale varies from TSR=2.5 to TSR=4
with t ≈ 7s and t ≈ 20s (f ≈ 1.4 10−1 Hz and f ≈ 5 10−2 Hz respectively).
A larger TSR seems to keep the proportionality longer.

The maximum proportionality is thus restricted to the largest time scales455

(lower frequencies), the decrease of coherency in the zone (2) shows that the
considered time series are, on average, no longer related in short time scales.

However, a classical cross-correlation such as the MSC can be misleading
since it does not reveal possible localized correlation events [34]. The Time-
Dependent Intrinsic Correlation method presented in the next section will enable460

access to such local time correlation events.

5.3. Method: Time-Dependent Intrinsic Correlation

The Time-Dependent Intrinsic Correlation (TDIC) method belongs to the
EMD framework. It was first proposed in [34]. For recent examples of the appli-
cation of this method see also [13, 35, 36]. After the decomposition of both time465

series into modes (IMFs) using EMD, the time dependent correlation between
each pair can be computed. Let us consider the Intrinsic Mode Functions of two
time series S1(t) and S2(t) :

Sp(t) =
N−1∑
i=1

Cpi (t) + rpn(t); p = 1, 2 (24)

where the Cpi (t) are i-th IMF of Sp(t) and rpn(t) are the residues. The instan-470

taneous period of each IMF Cpi (t), is denoted T pi . At each time tk, the size of
the sliding window is given by

tw = [tk − td/2 : tk + td/2] (25)

Contrary to traditional sliding windows, tω is adaptive, because it depends on
td = max(T 1

i (tk), T 2
i (tk)), the maximum instantaneous period for two IMFs,475

where T 1
i and T 2

i are the instantaneous periods ensuring that at least one cycle
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Figure 12: (a) Coherency spectrum between flow velocity and power. Upstream cases, TSR=4,
y = 0: for large scales (f < 10−1 Hz, time scale larger than 10 seconds), the proportionality
is close to 1. Then it decreases to reach a minimum at 1 Hz, hence 1s. Downstream cases,
TSR=4, y = 0: both time series are uncorrelated.
(b) Coherency spectrum between flow velocity and power. Upstream cases, TSR=2.5, y = 0:
for large scales (f < 3 10−3 Hz, time scale larger than 5 minutes), the proportionality is under
0.8. Then it decreases to reach a minimum at 1 Hz, hence 1s. Downstream cases, TSR=4,
y = 0.5D: both time series are uncorrelated.

is included when computing the correlation. Having given the size of the sliding
window, the TDIC of each pair of IMFs is defined at each time tk as follows:

Ri(tk|tw) = Corr(C1
i (tw)C2

i (tw)) at any tk. (26)

For the validation of this method, examples of analyses on synthetic data are480

presented in [34].
Each TDIC corresponds to a mean frequency fm(Un) for the normalized flow

velocity cross-correlated with the normalized power mean frequency fm(Cp),
where fm(Un) and fm(Cp) must be close. The accuracy of this method demands
a non negligible time calculation for its adaptive window tω. Here the focus is485

given on TDIC for modes having characteristic frequencies at specific values.
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The MSC method indicates in figure 12, a loss of correlation in the frequency
range f ∈ [10−2; 100] Hz that corresponds to the frequency range in which the
power density spectra of the flow velocity and the power production are no
longer related (see figure 6).490

Hence, the multiscale correlation is applied here in the range t ∈ [1; 100] s
(f ∈ [10−2; 100] Hz). Furthermore, the upstream time series are only considered
since the MSC method has noted a lower coherency spectra for downstream
data. The time lag τ presented in section 5.1 is considered also (see appendix
B2).495

5.4. Application to data: Multiscale correlation applied on upstream time series

TDIC cross-correlation generates a graphic triangle for each pair of modes
fm(Un) and fm(Cp). Figures 13 and 14 display examples of such a triangle: the
vertical axis represents the sliding size window (in seconds) where correlations
can be observed and the horizontal axis shows the time. The color bar indi-500

cates correlation, the red color indicates positive correlation (R = 1) meanwhile
negatively correlated events (R = −1) are shown in blue. The white regions in
the triangles represent zones where data do not pass a Student statistical test
events [34, 35].

Among upstream data, the MSC method indicates the lower proportionality505

in zone (1) for the configuration C2 with TSR=2.5. The focus is given on the
transition between zone (1) and (2) as seen in figure 12. The TDIC method has
been applied at a mean frequency around 1.3 10−1 Hz, hence ∼ 7s (figure 13
at the top). On the one hand, there are local positive correlations represented
with red color for tω < 15s. Such correlations possess a duration of t≈ 15510

s. On the other hand, there is a blue predominant color showing a negatively
correlated zone for tω < 15 s and during a larger period t≈ 20 s. This time
interval corresponds to the transition between energy-containing scales and the
inertial scales as seen in figure 5. The turbine is no longer responsive to the
flow velocity fluctuations: large velocities correspond to low values of the power515

produced.
A tip speed ratio at the nominal operating point (TSR=4) does not affect

this pattern of positive and negative correlations for the configuration C1, the
pattern is actually more visible. Indeed in figure 13 (bottom), the TDIC triangle
shows the conservation of the larger uncorrelated zone whose duration is t≈ 30520

s for a sliding window tω under 25 s. The related mean frequency fm ≈ 5 10−2

Hz corresponds to figure 12, to a more abrupt decrease of proportionality where
γ2xy ≈ 1. This sudden decrease of coherency and the high uncorrelated area
could be interpreted as a reflection of the performance of the turbine.

Furthermore, the exposed pattern is repeated with a higher turbulence in-525

tensity (configuration C2). For TSR=4, the triangle at the mean frequency
fm = 4 10−2 Hz (figure 14, bottom) shows a large blue area that corresponds
to the abrupt loss of coherency. The lower speed ratio triangle (TSR=2.5) for
a mean frequency of 1.6 10−1 Hz (figure 14, top) presents a slightly different
behavior. There is not a particular colored area but an in phase and out-of-530

phase area for a sliding window tω under 15 seconds. This alternating behavior
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probably generates the green and yellow zones that show a low Ri value. In-
deed, the top of the triangle Ri ≈ −0.2 indicates a globally uncorrelated area,
it corresponds to the maximum of the sliding windows tω.

The TDIC method can highlight rich dynamics in turbulence and the effects535

that such dynamics generate on a marine current turbine. Here, the focus is
given on the loss of coherency defined in section 5.2 but the TDIC method has
been applied for multiple frequencies not shown in this work also. Some pat-
terns remain visible, for instance, the correlated zones which change positively
and negatively (fm ≈ 2.3 10−1 Hz) where those areas are gradually decreasing540

and creating a large green area showing zero correlation. Nevertheless, other
patterns are difficult to define due to the amount of characteristic frequencies
resulting from EMD decomposition.

The TDIC method is a convenient tool for multiscale cross-correlation anal-

Figure 13: TDIC plots for C1 configurations: (Top) TSR=2.5, fm(Un) = 1.39 10−1 Hz,
fm(Cp) = 1.30 10−1 Hz. (Bottom) TSR=4, fm(Un) = 5.01 10−2 Hz, fm(Cp) = 5.47 10−2

Hz.
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ysis using the time scale parameters obtained through the EMD method. The545

complete analysis of the turbine behavior needs nevertheless, non negligible cal-
culation time and a way of measuring the impact of local correlations on other
mean frequencies for each mode. Here, the focus was on the transition where the
proportionality is lost on average, which shows that the TDIC gives a new un-
derstanding of such a correlation process with successive zones of correlated and550

anti-correlated periods. But the analysis of other frequencies could put clarify
complex dynamics observed in the coherency fluctuations (γ2). This multiscale
analysis through TDIC has been done for all modes of power and turbulent flow
measurement. The obtained information contains important information on the
turbulence dynamics that may be further studied as a perspective work.555

Figure 14: TDIC plots for C2 configuration: (Top) TSR=2.5, fm(Un) = 1.53 10−1 Hz,
fm(Cp) = 1.76 10−1 Hz. (Bottom) TSR=4, fm(Un) = 4.22 10−2 Hz fm(Cp) = 4.56 10−2

Hz.
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6. Conclusion

In this paper, turbulence analysis and multiscale correlation between the
upstream and downstream flow velocity, and marine turbine power production,
have been provided. Two synchronous measurements of flow velocity situated
upstream and downstream of the marine current turbine model with a high560

sampling rate over a long period were first analyzed. The links between the input
turbulent flow and the marine current turbine power are complex, showing that
the extraction of energy from a turbulent flow needs a better understanding
of the non-linear and non-stationary process in a multiscale way. The well
controlled laboratory conditions and a spectral analysis approach highlight the565

multiscale fluctuations and the interactions between the flow variations and the
marine turbine power.

Through the Fourier spectra, an estimation of ε was provided for each turbu-
lence time series, upstream and downstream of the model. Via this estimation,
the turbulent flow properties were characterized and the length scales character-570

izing the structure of the turbulent flow were established. This method however,
has a few limitations. It can be applied only when the 5/3 power law is respected
and so, due to the restricted range of frequencies, the estimation is less accurate
for the lower turbulent intensity rate C1. The narrow inertial range observed
in this case could be explained by the non respect of the isotropy hypothesis575

where the ratio of the power density spectra E(u∞) and E(v∞) is less than
4/3. Indeed, the flow straighteners conserve the structures in the longitudi-
nal direction x and consequently reduce or destroy the transversal structures
following y and z directions which causes anisotropy in the configuration C1.
Furthermore, those scaling properties correspond to a global average estimate580

due to the isotropy hypothesis in Kolmogorov’s framework and the estimation
corresponds to a one point measurement. This estimation does not include the
transverse velocity v∞ since this velocity component (v̄∞ ≈ 10−3 m/s) could be
negligible compared to the principal incident flow ū∞ ≡ U∞ ≈ 0.8 m/s.

A study of the intermittency has been also carried out on flow measurements585

in the inertial range. The scale invariance enable the ζ(q) function to be esti-
mated. This function, non-linear and concave, reveals the intermittency degree
of the flow variations through the intermittency parameter µ. The wake of the
marine turbine contains the highest levels of intermittency as expected. Down-
stream flow measurements are indeed more concave and so more intermittent590

than the upstream ones. Nevertheless, there is some variability in these param-
eters for the upstream cases with different TSR coefficients due to the slightly
different descriptive statistics on both experimental campaigns.

The flow properties parameters (ε,`,η,T ) together with the scaling parame-
ters (H,µ) being established, the focus is on the marine turbine behavior inside595

this turbulent flow. The spectral analysis shows two zones. For lower frequencies
(f < 2 10−1 Hz), the simultaneous time series appear to be strongly related. On
the other hand, for larger frequencies, the marine turbine power does not follow
the power law found on the turbulent flow spectra and shows non-responsive
harmonics. The effects of the turbulence could be reduced by the speed control600
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unit which maintains a constant TSR on the marine turbine. This rotational
speed control is less affected by the lowest turbulence intensity since the peak
corresponding to the rotor frequency can be observed in the configuration C1.

A classic cross correlation like the MSC gives information about the pro-
portionality of two time series: γ2 = 1 represents highly correlated and γ2 = 0605

highly uncorrelated time series. Here, the frequency limit in which the ma-
rine turbine is no longer responsive to the turbulence effects is clearly observed.
Three zones were delimited: the largest time scales showing the highest corre-
lations, the loss of the coupling, being more progressive for TSR=4 than for
TSR=2.5. For time scales around 1 second, both time series are strongly un-610

correlated. This time scale could correspond to the rotor frequency f0 = 1.4
Hz shown in figure 6, and it is possible that from this frequency, the turbine is
no longer affected by the flow velocity fluctuations. Such frequency is lower for
TSR = 4 than 2.5: hence, the operating point maintains the proportionality in
larger time scales.615

The analysis of the multiscale correlations has been completed using the em-
pirical mode decomposition method combined with Hilbert Huang transform.
The EMD decomposition is less influenced by deterministic forcing than other
scaling methods. Through EMD decomposition and the TDIC method, cor-
relation variations were observed and quantified. TDIC analysis may clarify620

complex dynamics more precisely than the classical correlation analysis. The
loss of correlation may be produced by the existence of local successive se-
quences of positive and negative correlations. For example, sequences of low
power produced associated to large velocities. The presence of such sequences,
could produce the zero global correlations observed for larger mean frequencies625

fm. The TDIC method could also give to the turbine designers, time-frequency
information and detailed multiscale turbine performances behavior.

The performance of the correlation methods can be increased with a complete
analysis of the time correlation whose implementation remains difficult due to
technical limitations. Indeed, the response time of the marine current turbine630

should be correlated to the integration of the forces over the blades section
S = π (D/2)

2
and applied on the rotor axis. Furthermore, the focus was on the

main flow component u in spite the three dimensional flow velocity components
(u, v and w) since the LDV sensor is limited by 2 simultaneous measurements
at once. The simplification presented here has nevertheless, enable us to notice635

the loss of proportionality to a time of around 10 s where the turbine speed
control unit is able to regulate variations below 0.1 s.

In future works, the focus will be on downstream measurements with equiv-
alent experimental setup, to be analyzed with the same methods. This data
will provide information about the wake characteristics of marine turbines cur-640

rent. The structure and origin of local correlation-decorrelation events will be
considered further.
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Appendix A. Standard error of the energy dissipation (ε+,ε−)

Table A1: The spectral analysis of the flow velocity Iup(C1, C2) and Idown(C1, C2) is con-
sidered in order to estimate the parameters C0 and β (the y-intercept and spectral slope
respectively). From the standard error of the coefficient C0, the small-scale dissipation ε is
narrow between the range ε+ and ε−.

Conf . TSR y C0 β ε ε+ ε−

Iup(C1) 4 0 6.6 10−5 1.82 5.01 10−5 5.13 10−5 4.91 10−5

Iup(C2) 4 0 1.52 10−3 1.62 5.68 10−3 5.76 10−3 5.61 10−3

Iup(C1) 2.5 0 6.83 10−5 1.82 5.19 10−5 5.32 10−5 5.08 10−5

Iup(C2) 2.5 0 15.4 10−3 1.62 5.74 10−3 5.80 10−3 5.68 10−3

Idown(C1) 4 0 2.11 10−3 1.66 99.7 10−3 1.02 10−1 9.80 10−2

Idown(C2) 4 0 2.94 10−3 1.67 26.4 10−3 2.66 10−2 2.62 10−2

Idown(C1) 4 0.5D 3.73 10−3 1.69 47.3 10−3 4.76 10−2 4.71 10−2

Idown(C2) 4 0.5D 2.59 10−3 1.66 17.9 10−3 1.81 10−2 1.78 10−2

Appendix B. Standard error of the Kolmogorov microscales of length.

Table B2: The values ε+ and ε− enable an error estimate of the inertial length scale (`−,`+)
and an error estimate of the Kolmogorov scale (η−,η+) to be calculated. The integral length
scale estimated from the autocorrelation method L is indicated as a comparative parameter
whose magnitude is similar to `. The time scale τ corresponds to the time in which a flow
particle reaches the tidal turbine when the cross-correlation reaches its maximum value. This
time lag τ has been taken in account for the increase of the cross-correlation accuracy.

Conf . I[%] τ [s] L[m] `+[m] `−[m] η+[mm] η−[mm]

Iup(C1) 3.98 3.77 0.918 0.640 0.668 0.455 0.460
Iup(C2) 14.04 3.58 0.604 0.241 0.248 0.140 0.141
Iup(C1) 4.05 4.03 0.882 0.656 0.687 0.451 0.456
Iup(C2) 13.96 4.08 0.538 0.238 0.243 0.139 0.140

Idown(C1) 33.27 6.36 0.179 0.010 0.11 0.0682 0.0688
Idown(C2) 21.49 4.01 0.448 0.097 0.098 0.0953 0.0957
Idown(C1) 22.94 3.07 0.193 0.05 0.051 0.0824 0.0827
Idown(C2) 20.09 3.48 0.406 0.148 0.15 0.105 0.105
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