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The objective of this study is to analyse at fine scale the annual, seasonal and spatial distributions of several species in the Eastern English
Channel (EEC). On the one hand, data obtained from scientific surveys are not available all year through, but are considered to provide con-
sistent yearly and spatially resolved abundance indices. On the other hand, on-board commercial data do cover the whole year, but generally
provide a biased perception of stock abundance. The combination of scientific and commercial catches per unit of effort (CPUEs), standard-
ized using a delta-generalized linear model, allowed to infer spatial and monthly dynamics of fish distributions in the EEC, which could be
compared with previous knowledge on their life cycles. Considering the scientific survey as a repository, the degree of reliability of commercial
CPUEs was assessed with survey-based distribution using the Local Index of Collocation. Large scale information was in agreement with litera-
ture, especially for cuttlefish. Fine scale consistency between survey and commercial data was significant for half of the 19 tested species (e.g.
whiting, cod). For the other species (e.g. plaice, thornback ray), the results were inconclusive, mainly owing to poor commercial data coverage
and/or to particular aspects of the species biology.
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Introduction
Ecosystem-Based Fisheries Management (EBFM) requires enhancing

knowledge of ecosystem functioning, therefore allowing forecasting

the impact of fisheries on salient ecosystem components (Long et al.,

2015) and to design future management plans and tools including

Marine Protected Areas (Meyer et al., 2007) or fishing closures

(Hunter et al., 2006). This necessitates a stepwise approach, the first

tier of which, and one of the most important, is to gain fine scale

knowledge on the seasonal and geographic distribution of marine or-

ganisms, in general, and fish stocks in particular (Booth, 2000).

Scientific surveys have been implemented for decades to derive

spatially and yearly resolved abundance indices of commercial

fish and shellfish species (e.g. van Keeken et al., 2007). Surveys

provide abundance indices, derived from standardized and con-

trolled protocols, which allow for a wide spatial coverage associ-

ated with a weak selectivity (Verdoit et al., 2003). Survey data,

however, are costly to obtain and therefore rarely provide for ade-

quate seasonal coverage of the resource distribution. In contrast,

information derived from commercial fisheries is generally avail-

able all year through. Consequently, the catch per unit of effort

(CPUE), the most common and easily collected fishery-

dependent index of abundance (Maunder and Punt, 2004), has

the potential to reflect fish distributions. However, commercial

CPUEs can generally not be used directly as abundance indica-

tors. This is because fishers target rather than sample fish densi-

ties, and continuously adapt their activities to prevailing
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conditions, through technological development and tactical adap-

tations (Marchal et al., 2006), including discarding practices on

which information is often limited (Rijnsdorp et al., 2007).

A major challenge for fisheries scientists is then to reconcile

fisheries-independent and -dependent information into abun-

dance indices that consistently mirror the annual, seasonal and

spatial dynamics of commercial marine species. Kristensen et al.

(2014) have reconstructed spatial and seasonal cohorts of cod

(Gadus morhua) in Skagerrak by kriging, in both time and space,

data provided by survey and also by fisheries subject to a survey-

like sampling protocol. To our best knowledge, however, no

method has yet been developed to estimate spatio-temporal dis-

tributions of fish at high resolution, by combining survey and

true commercial fisheries data.

The main objective of this paper is to provide detailed annual,

seasonal, and spatial distributions of major Eastern English

Channel (EEC) commercial fisheries resources, using a novel ap-

proach combining fisheries-independent and -dependent infor-

mation. The gain in knowledge on fine scale temporal and spatial

fish distribution in the EEC will expand the scope of earlier re-

sults (e.g. Vaz et al., 2007), and strengthen the science support to

an EBFM in this area. To that purpose, we (i) inferred the sea-

sonal and spatial abundance distribution based on survey and

commercial abundance data for several species in the EEC, (ii) in-

vestigated the degree of similarity of fine scale spatial distribu-

tions derived from these two data sources, and (iii) investigated

abundance indices derived from these data sources.

Material and methods
Study area
The Eastern English Channel (ICES subdivision VIId) is delimited

by latitudes 49.3�N and 51�N and longitudes 2�W and 2�E
(Figure 1). This shallow area constitutes a corridor between the

northeast Atlantic Ocean and the North Sea, and a strategic re-

gion in the northeast Atlantic, as it hosts a very intense maritime

traffic and human activities such as mixed fisheries, aggregate ex-

traction, and wind farms (Dauvin, 2012). This area is also impor-

tant for several commercially important migratory species, e.g.

red mullet (Mullus surmuletus; Mahé et al., 2005), cuttlefish

(Sepia officinalis; Royer et al., 2006), mackerel (Scomber scombrus;

Eltink et al., 1986), herring (Clupea harengus; ICES, 2015), or

European seabass (Dicentrarchus labrax; Pawson et al., 2007).

Fishing is a key socio-economic activity in the region

(Carpentier et al., 2009), which has also generated a strong pres-

sure on its marine ecosystem (Molfese et al., 2014).

Data
This study is supported by two main data sources: a scientific sur-

vey (the Channel Ground Fish Survey—CGFS; Coppin and

Travers-Trolet, 1989) and observations on-board commercial

vessels (hereby referred to as the OBSMER French programme;

Cornou et al., 2015).

The CGFS has sampled the entire EEC demersal community

annually since 1988. The survey occurs every year in October,

with a systematic fixed sampling design of 88 trawling stations lo-

cated between 49.3�N and 51.3�N. The sampling gear is a GOV

trawl with 3 m vertical opening, 10 m horizontal opening, and a

20-mm codend. For each haul, all fish caught are sorted, identi-

fied and measured to the nearest inferior centimetre. In case of

large catch, random subsampling is performed while ensuring

representativeness of species and length distributions. For the

current study only survey data from 1998 to 2014 were retained

as this period corresponds to a relatively stable state of the com-

munity structure with no detected regime shift in species spatial

distributions (Auber et al., 2015).

The CGFS provides information for a large panel of economi-

cally valuable demersal fishes and cephalopods, i.e. European sea-

bass, red mullet, cod, whiting (Merlangius merlangus), plaice

(Pleuronectes platessa), cuttlefish, squids (Loligo spp.), and thorn-

back ray (Raja clavata). Other commercially important species

such as common sole (Solea solea), herring or sardine (Sardina

pilchardus), are poorly sampled by the GOV trawl (Carpentier

et al., 2009), and thus have not been considered in this study.

On-board observer programmes allow estimating catch and ef-

fort for a sample of fishing operations. Unlike other fisheries data

collection programmes, e.g. building on port sampling and/or

mandatory logbooks, observer’s data are precisely geo-referenced

and allow inferring the total catch, including the discarded frac-

tion, and more accurate measurements of effective fishing effort.

Although on-board fisheries data can generally not be collected

for all the vessels belonging to a given fleet, and although the

presence of observers may be perceived as overly intrusive to fish-

ers, they offer an opportunity to derive CPUE-based abundance

indicators, at a fine spatial and temporal scale.

The OBSMER programme covers the period 2003–2015. It was

developed to better estimate the discards’ quantity and assess

catch composition. Precise information on ship characteristics

(e.g. homeport, length, engine power), fishing activity (time, lati-

tude, longitude, gear, fishing effort, targeted species assemblage)

and catch composition (landings and discards of fish and com-

mercial invertebrates) are collected for each fishing operation by

scientific observers. For each fishing operation, a subsample of

the catch (including both the part to be landed and the part to be

discarded) is sorted, identified and measured. This data compila-

tion has already been operated to characterize pressures exerted

on communities, discarded fractions of catches, or discarding

drivers (Fauconnet et al., 2015).

Spatio-temporal species distributions estimated using

OBSMER data are primarily expected to corroborate previous

knowledge on these species’ life cycles. In addition, they could
Figure 1. Study area of the Eastern English Channel, corresponding
to the ICES division VIId.
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reflect species distributions as observed using scientific surveys

(considered as a reference) in converging time lapse. However,

because species’ spatial distributions are dynamic and vary from

one time step to another, and because fishers continuously adapt

to prevailing conditions (Eigaard et al., 2014), time and spatial

variations in CPUE reflect two entangled signals prompted by

fisher’s plasticity and stock fluctuations. Using CPUEs to reflect

time changes in stock abundance therefore requires to prelimi-

narily filter out the skipper effect signal it originally contains

(Maunder and Punt, 2004).

Standardizing survey and commercial catch rates
Surveys and commercial fisheries operate at different temporal and

spatial scales, with different gears and strategies, thereby targeting

dissimilar species assemblages and/or size ranges. The first step of

this study was to identify common temporal and spatial scales, then

to select a common pool of representative species and size ranges,

and finally to standardize survey and commercial catchabilities us-

ing a delta-generalized linear model (GLM) approach.

The temporal scale retained is the month, while the spatial

scale considered is cells of 0.3��0.3� (�700 km2). These seasonal

and spatial scales result from a trade-off between having a suffi-

cient amount of data and maintaining a sufficient level of preci-

sion, as described further.

Based on these small-scale spatio-temporal units, a mean

CPUE index in number of individuals caught per hour is calcu-

lated separately from OBSMER data for each month and from

CGFS data (only for October) for a set of demersal species

(Table 1). These species have been selected based on their eco-

nomic importance, relative abundance and/or catchability by the

survey gear being considered. Survey data were only kept from

2005 to 2014 for the cephalopods (i.e. Sepia officinalis and Loligo

spp.), as no length information is available for these species be-

fore 2005. To harmonize the survey and commercial gears’ selec-

tivities of the species being considered, we used a common length

threshold (Ls) above which a species is considered to be correctly

selected by the different gears (Table 1). Ls was graphically deter-

mined from length distribution for each species following the

method used by Ravard et al. (2014): in commercial data most of

the length–frequency were unimodal and Ls was approximately

set for each species at the length of the highest mode of the differ-

ent gears combined. In our study, Ls mainly corresponded to the

official minimum landing sizes for the few species concerned. The

potential case of a different selectivity of large individuals to par-

ticular gears (e.g. Bertignac et al., 2012) is not considered in this

study.

OBSMER data were filtered to avoid abundance overestima-

tion. Thus, for each species and each size, only hauls with all the

subsamples representing at least 5% of the total catch weights

each were kept for further calculations. Furthermore, to obtain a

clear overview of abundance for each demersal species being stud-

ied, only fishing gears sufficiently represented (i.e.>10 observa-

tions for a given species) were kept in the analysis.

Finally, we adjusted the remaining catchability differences by

standardizing CPUE values derived from both OBSMER and sur-

vey data. This was operated by applying a delta-GLM to the

CPUEs of each species under consideration. The delta-GLM first

fits the probability of observing a zero catch as a function of the

explanatory variables, and then fits another GLM to the non-zero

catches (Maunder and Punt, 2004; Meissa et al., 2008; among

others).

The probability of presence is based on the binomial distribu-

tion after a binary recoding (0¼ absence and 1¼ presence). For

hauls with positive CPUE a logarithmic transformation was first

applied on data in order to homogenize variances and to trans-

form the multiplicative effects into additive effects (Meissa et al.,

2008).

The delta-GLM for OBSMER data contains a maximum of six

explanatory variables:

logitðp>0
i;a;m;yÞ ¼ badm þ ky þ qgsþ ms (1)

log ðIAi;a;m;yÞ ¼ badm þ ky þ qg t þ ms þ ei;a;m;y (2)

where p>0
i;a;m;y is the mean presence probability and IAi,a,m,y the

CPUE of a species caught by vessel i of length s rigged with gear g

(e.g. bottom otter trawl, trammel net), fishing in (0.3��0.3�) area

a, year y, and month m. ba is the area effect of the fishing opera-

tion (treated as factor), dm is the month effect of the fishing oper-

ation, qg is the gear effect, ky is the annual effect, ts is the

sediment effect, which accounts for small scale habitat variability

and is decomposed into five categories s: mud, fine sand, coarse

sand, gravel and pebble, based on a sediment map of EEC from

Larsonneur et al. (1982), and �i,a,m,y a term of residual error.

Sediments are kept because they proved to have the strongest

influence on the distribution of species in the shallow Eastern

English Channel, compared with, e.g. depth, temperature, and sa-

linity (see Carpentier et al., 2009). Engine power information was

also available but only vessel length was kept as these two

Table 1. List of species considered in this study, with their minimum
total length Ls (cm), above which individuals are considered to be
equally selected by survey and commercial gears, and minimum
landing size (MLS) during the 2003-2014 period in Eastern English
Channel when relevant.

Species Ls (cm) MLS (cm) Common name

Chelidonichthys cuculus 22 – Red gurnard
Chelidonichthys lucerna 26 – Tub gurnard
Dicentrarchus labrax 36 36 European seabass
Gadus morhua 35 35 Atlantic cod
Limanda limanda 21 – Common dab
Loligo spp. 14a – Squids
Merlangius merlangus 24 27 Whiting
Microstomus kitt 25 – Lemon sole
Mullus surmuletus 20 – Red mullet
Mustelus asterias 60 – Starry smooth-hound
Platichthys flesus 29 – European flounder
Pleuronectes platessa 25 27 European plaice
Raja clavata 49 – Thornback ray
Scyliorhinus canicula 54 – Lesser-spotted dogfish
Sepia officinalis 13a – Common cuttlefish
Spondyliosoma cantharus 17 – Black seabream
Trisopterus luscus 25 – Pouting
Trisopterus minutus 13 – Poor cod
Zeus faber 21 – John Dory
aMantle length.
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variables are usually highly correlated for bottom otter trawlers

(r¼ 0.94 using OBSMER data), the main size-varied vessels of the

available commercial data.

CGFS survey data are always collected in October (i.e. no

month effect) with the same research vessel (i.e. no vessel or gear

effects), hence the previous formula was reduced to the following,

with a maximum of three explanatory variables:

logitðp>0
a;yÞ ¼ ba þ ky þ ms (3)

log ðIAi;a;m;yÞ ¼ ba þ ky þ ms þ ea;y (4)

Models’ retained explanatory variables were selected for each

species based on Akaike information criterion (AIC). Model se-

lection was largely influenced by the previous choice of the spatial

resolution for area variable.

In none of the models (1–4) an interaction term between area

(or area-by-month) and year effects was considered. This requires

some clarifications given such an interaction term could poten-

tially reveal spatial shifts in fish distribution over time.

In the analysis of commercial CPUE indices, spatio-temporal

interactions were partly covered by introducing an area-by-

month term. It was, however, not possible to explore the effect of

introducing the higher-ranked interaction area-by-month-by-

year, partly owing to the limited amount of observations available

but also to opportunistic fisher’s behaviour, which in combina-

tion resulted in a variable inter-annual coverage of the OBSMER

dataset. In the analysis of survey abundance indices, only area-by-

year effects could potentially be considered, since the CGFS is

operated in October only. Auber et al. (2015) concluded that al-

though October EEC fish communities were subject to a substan-

tial spatial shift in 1997, no significant change was observed

during 1998–2014, i.e. the period being considered in this analy-

sis. Still, we did investigate a model including a spatio-annual ef-

fect. According to the AIC none of the presence/absence models

and only 3 out of the 19 abundance models showed improved

goodness-of-fit performances when an area-by-year interaction

term was added (poor cod, starry smooth-hound, and thornback

ray), without statistically significant differences in the distribution

outputs (Supplementary Tables S1 and S2). Furthermore, 14 out

of the 19 presence/absence models did not converge with an area-

by-year interaction term.

Final predictions are obtained by the product of presence

probabilities and CPUE. Knowing the sediment characteristics of

each area, the total abundance in each cell is computed by reallo-

cating the environmental effects in proportions to sediment types

coverage.

Finally a limit of 10 observations per cell in both OBSMER

and CGFS was determined as the threshold above which the

square was kept in the analysis, resulting from a trade-off be-

tween a sufficient coverage of the EEC and a consistent number

of observations (Figure 2). By applying this limit and our spatial

resolution to survey data, 88% of the EEC is covered (for

OBSMER data, this percentage is variable among month and

species). In comparison, using cells of 0.4��0.4� instead of

0.3��0.3� leads to the representation of 90% of the Eastern

English Channel, while using smaller cells of 0.2��0.2� only al-

lows representing 68% of the Eastern English Channel. Thus our

choice seems to be the best trade-off between precision and

coverage.

Importantly, the explained variables presented above are likely

to include inherent spatial dependence (spatial autocorrelation

SAC; Legendre, 1993), owing to the nature of the data at hand. As

a result, the values of the dependent variables are unlikely to be

conditionally independent as assumed in these models. The SAC

inherent to both CGFS and OBSMER data was here accounted

for by applying the Moran’s Eigenvectors (MEV) mapping

method following the protocol described by Cormon et al. (2014)

with R packages {spdep} (Bivand et al., 2013), {spacemakeR}

(Dray, 2013), and {packfor} (Dray et al., 2013). The concept of

this method is to allow the translation of the spatial arrangement

of the data into a set of explanatory variables through the eigen-

vector decomposition of data coordinate connectivity matrix pre-

viously built (Dormann et al., 2007). For OBSMER data, MEV

are computed and selected for each month separately, and then

integrated in the whole model set of parameters. Temporal de-

pendencies were not examined in the study.

Figure 2. Mean percentage of cells kept in the analysis according to the minimal threshold of hauls set per cell. Dotted lines represent the
standard deviation along the 19 species. Dashed vertical line represents the chosen limit of 10 observations.
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Assessing the similarity between fisheries- and survey-
based spatial abundance
The data treatment described above allows to produce monthly

maps of species abundance distribution. While the global seasonal

patterns obtained can be compared with disparate knowledge

available for some species, the degree of reliability of the fine scale

spatial distribution derived from commercial data can be ad-

dressed through comparison to survey-based maps.

To quantitatively determine how similar spatial distribution

derived from commercial and survey data are at fine scale, we es-

timated, for October, the local overlap between distributions, us-

ing the geostatistical index Local Index of Collocation (LIC,

Woillez et al., 2009):

LIC ¼ Rzobsmer ið Þzsurvey ið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rz2

obsmerðiÞ � Rz2
surveyðiÞ

q (5)

where zobsmer(i) and zsurvey(i) are the computed abundances in

area i, as provided by OBSMER and CGFS data, respectively. LIC

was computed using R package {RGeostats} (Renard et al., 2014).

This spatial indicator is considered appropriate to assess local

overlapping between two densities of population, without taking

the mean abundance into account (Woillez et al., 2009).

This index theoretically ranges between 0, showing absolutely

no match between the two spatial distributions (zobsmer(i)¼ 0 if

zsurvey(i)> 0, zsurvey(i)¼ 0 if zobsmer(i)> 0, V i), and 1, demonstrat-

ing a perfect match between them (zobsmer(i)¼ zsurvey(i), V i).

The significance of index values was assessed using random

permutations of OBSMER abundance values against constant

CGFS ones. This procedure is repeated 5000 times, and the spatial

distributions derived from commercial data were considered to

overlap spatial distributions derived from the CGFS survey when

the actual LIC value was above the 95th percentile of the LIC ran-

domly permutated values.

The Horn’s index (Horn, 1966) was also tested for the study,

but it provides approximately the same results and is less efficient

with extreme values of abundance, thus only results based on LIC

are presented.

Finally, to assess the sensitivity of our results to the set of areas

being considered, a jackknife resampling was operated for all spe-

cies, by removing sequentially each area, and by evaluating its im-

pact on LIC significance.

Comparing yearly abundance indices
Additionally to the spatial abundance, the model provides a year

effect that can be used to derive an inter-annual abundance index

in both survey and OBSMER data following the method of Lo

et al. (1992). The time series ranges from 1998 to 2014 for survey

data (2005–2014 for cephalopods series) and from 2003 to 2015

for OBSMER data. It is obtained by varying only the year parame-

ter on the computation of CPUEs, and taking the mean of all

areas in natural space to avoid variance disparities. Pearson’s cor-

relation index was computed to quantify the correlation between

abundance indices from the two data sources.

Results
Monthly spatial distribution patterns
In the delta-GLM applied to commercial CPUEs, every parame-

ters were kept, with an exception for the sediment parameter in

the presence/absence model of cuttlefish (Supplementary Table

S3). However, area-by-month was replaced by month alone in

the presence/absence models of starry smooth-hound, flounder,

and John Dory. In the delta-GLM applied to survey CPUEs, the

parameters selection is more variable (Supplementary Table S4).

For example, the year parameter is not kept in both presence/ab-

sence and abundance models for tub gurnard, and the sediment

one is not kept for three species: cod, pouting, and tub gurnard.

The area parameter was always significant and kept. The monthly

spatial distribution of cuttlefish derived from the delta-GLM

models applied to commercial and survey CPUEs is presented in

Figure 3. This species has been chosen for illustration because it is

one of the main species in terms of yields in the EEC (Royer

et al., 2006). These maps are partial and do not cover the same

areas over all months, owing to varying fisheries distributions.

The map presented for October results from survey-based infor-

mation, hence explaining its wider spatial coverage. Some infor-

mative spatial patterns can be evidenced for cuttlefish: their

quasi-absence in the EEC from January to March, a coastal aggre-

gation along the French coast in May–June, and a more offshore

distribution in October–November indicate the existence of a sea-

sonal migration pattern for this species.

Comparison of fine scale spatial distributions from
survey data and commercial data
The fine scale match between the spatial abundances estimated

from fisheries and survey has been quantified for each species by

computing the LIC value, and testing its significance with 5000

random permutations of CPUE abundances. Of the 19 tested spe-

cies, 9 had a LIC significance above 95%, 6 between 75 and 95%,

and only 4 under 75% (Figure 4). Considering 95% significance

threshold, survey-, and fisheries-based spatial distributions were

therefore found to overlap for half of the species under investiga-

tion. Although the distribution of LIC values resulting from the

permutation tests is variable among species, the results highlight

that almost all species with a LIC above 0.6 showed high signifi-

cance (except John Dory for which the LIC value of 0.67 falls just

below the third quartile of permutations), while species with a

LIC value smaller than 0.6 showed no significant overlap (except

cod with a LIC of 0.52). It can also be noted that John Dory, the

only species showing no significant overlap despite a LIC above

0.6, shows a very low variability of LIC in the permutation test.

Thornback ray, poor cod, plaice, and pouting had the lowest

LIC values, under 0.4. Cephalopods species, cuttlefish, and squids,

had intermediate LIC values of 0.50 and 0.54, respectively, and

both were between the median and the 95th percentile. Finally, of

the four flatfish species, i.e. common dab, lemon sole, European

flounder, and plaice, only common dab and lemon sole had a sig-

nificant LIC.

Sensitivity to areas
In order to assess the sensitivity of the results obtained, a jack-

knife resampling was performed and results were analysed in re-

gard to some characteristics of sensitive areas (Table 2). Of the 10

species for which no overlap could be evidenced, red mullet was

the only one for which LIC became significant by removing one

area. Red mullet original LIC significance value compared with

permutations was close to 0.05, and dropped below that threshold

with the removal of either the first or second top abundance areas
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as derived from CGFS information (ranked 8th and 4th building

on OBSMER data).

Among the nine species for which the LIC was significant for

all areas being considered, the LIC of seven species became not

significant when removing one area (Table 3). The LIC of tub

gurnard, common dab, lemon sole, starry smooth-hound, and

lesser-spotted dogfish were thus sensitive to the absence of one

particular area, ranked first or second in abundance. The LIC of

cod and black seabream became not significant with the removal

of one area among a list of 6 and 8, respectively. Their original

p-values, close to the 0.05 threshold (i.e. 0.046 and 0.043), can

partially explain the high number of sensitive areas.

Rebuilding of yearly abundance index
The year effect derived from each delta-GLM analysis can be con-

sidered as a yearly abundance index for each species. Figure 5

Figure 3. Monthly spatial abundance distribution estimated from OBSMER and CGFS for cuttlefish. ‘X’ represents areas where no cuttlefish
was ever fished during a month in the database.
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displays two examples of different levels of fit between survey and

commercial data, ranging from good visual fit, for cod, to poor fit

for black seabream. Cod abundance index shows consistent fluc-

tuations in both survey and commercial data, with higher abun-

dance from 2007 to 2009 followed by 4 years of lower abundance.

Black seabream abundance index derived from survey displayed a

general decrease from 2004 until 2014. In contrast, the index de-

rived from commercial CPUEs shows an increase over this pe-

riod. Pearson’s correlation index was computed to quantify the

link between the two abundance indices produced for each spe-

cies (Table 4). The results indicated that spatial overlap repre-

sented by LIC’s significance is not necessarily related to

concordant abundance indices time series, as most of the species

with a significant LIC value have an intermediate correlation

(Supplementary Figure S1). Black seabream, with a significant

LIC, has even the third lowest value for Pearson’s correlation

metrics.

Discussion
Seasonal distribution patterns of the main fishing
resources in the EEC
Our results show the usefulness of fisheries data to infer, in com-

bination with surveys, the spatial and seasonal distributions of

several species. The spatial and seasonal distribution of cuttlefish,

one of the main commercial species for French fleets (Royer

et al., 2006), is in agreement with literature. Indeed, from the ex-

amination of landings data, cuttlefish adults are known to start

migrating in October to spend winter in the Central and Western

English Channel, and to be inshore in the Eastern English

Channel during summer for feeding and reproduction (Royer

et al., 2006). Other remarkable life distribution can be derived

from the maps (see Supplementary Figures S2–S19), like the high

winter abundance of squids in the EEC, confirming previous

knowledge (Royer et al., 2002), or the quasi-absence of red mullet

in the East of the EEC in the beginning of the year while it con-

centrates in the East central part of the EEC in the end of the

year, which adheres to the conclusions of Mahé et al. (2005)

based on fishers’ interviews. On the contrary the spatial distribu-

tion of other species remains more stable through the year, e.g.

red gurnard in the centre of the EEC, or European flounder in-

shore except during the winter period, as described by Skerritt

(2010). Finally, punctual abundance or absence can be detected,

like the high concentration of cod along the English coast in June

and in the Dover Strait in November, or the high presence of

black seabream in the centre of the EEC in February, contrasting

with its absence in the eastern part, consistent with Pawson

(1995).

Coherence between fisheries-dependent and -independ-
ent abundance indices
In addition to the accordance between the global seasonal pattern

produced here and the available literature, our results also show

that half of the species’ spatial distributions exhibited good coher-

ence at fine scale across the two data sources. This conclusion

built on an analysis of the LIC overlap metric, the statistical sig-

nificance of which was quantified using a permutation test. Prior

to this study, LIC values were compared with and have been

found very close to Horn index values. The Horn index is another

overlap metric that is commonly used in trophic ecology, and for

which a value >0.6 is usually considered significant, without fur-

ther testing (Scrimgeour and Winterbourn, 1987). Our results

cross-checked this approach. Except for John Dory (i.e.

LIC¼ 0.67) and cod (i.e. LIC¼ 0.52), every species’ distribution

with a LIC above 0.6 were significant. The unexpected outcome

obtained for John Dory reveals a shortcoming of the method we

applied to assess overlap significance. Indeed, when abundance is

homogeneously spread in the entire study area (here the EEC),

LIC can be above 0.6 and still non-significant when compared

with values resulting from the permutation test. Actually, the LIC

(as well as the Horn index) random permutation test can only be

efficient with areas of contrasted abundance, as demonstrated by

lemon sole or common dab with one area of high abundance

contrasting with relatively low values. Therefore, for the evenly

distributed John Dory spatial distributions derived from survey

and fisheries data can be considered to be close.

Concerning the remaining half of species with lower coher-

ence, a number of reasons can be invoked to explain the discrep-

ancies observed. The results of jackknife analysis demonstrated

Figure 4. Actual local index of collocation of the 19 species
investigated in the Eastern English Channel (bold black line),
compared with the distribution of 5000 randomly simulated LICs
(permutation test). Minimum and maximum simulated LIC are
represented by the short segments. Grey boxes represent Q1,
median, and Q3 ranges of simulated LICs. The white box represents
the range of values between Q3 and the 95th percentile of simulated
LICs.
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the impact of some influential areas on the result of the LIC,

which cannot be observed depending on the fishers’ spatial distri-

bution in October, and highlight the sensitivity of using fine scale

comparison when high abundance areas are not available.

Another issue is a possible non-proportionality between CPUE

and abundance (Hilborn and Walters, 1992). Indeed, commercial

fisheries are expected to concentrate their activities into attractive

areas (Gillis, 2003). This issue was addressed by standardizing

CPUEs using a delta-GLM, and by filtering out spatial auto-

correlation. Owing to the limited amount of data, however, SAC

correlations could not be computed separately for each year. This

could be a concern, as species presence in a precise area/season

may vary from one year to another. Thus, a more realistic ap-

proach could consist of computing SAC separately for each year,

which could not be achieved in this study owing to the low num-

ber of observations in the dataset. For similar reasons, the CPUE

delta-GLM could not be applied to each gear separately. Instead,

observations from the different gears were analysed through the

same model, where gear type was treated as an explanatory vari-

able. This approach allowed to estimate the overall impact of

gears on CPUE. However, more specific effects of gear types on

CPUEs (e.g. selectivity, saturation) could not be fully addressed.

In particular, the selectivity of large individuals could be a

Table 2. Jackknife results and main data attributes for species that did not initially demonstrate significant overlap between OBSMER and
Channel Ground Fish Survey (CGFS) distributions.

LIC p-Value JK % abundance OBSM % abundance CGFS

Seabass 0.49 0.156 0 (24) – –
Squids 0.54 0.440 0 (20) – –
Red mullet 0.58 0.063 2 (23) 5.8 (4/23)3.7 (8/23) 12.4 (2/23)19.2 (1/23)
Flounder 0.47 0.118 0 (21) – –
Plaice 0.32 0.194 0 (24) – –
Thornback ray 0.22 0.703 0 (22) – –
Cuttlefish 0.50 0.248 0 (21) – –
Pouting 0.39 0.108 0 (23) – –
Poor cod 0.10 0.768 0 (21) – –
John Dory 0.67 0.259 0 (24) – –

LIC: original value of Local Index of Collocation. p-Value: situation of the LIC value related to the distribution of permutation tests (values below 0.05 indicate
significant overlap). JK: number of areas which prevented from having significant overlap (with total number of areas). % abundance OBSMER & CGFS: percent-
age of abundance represented by these sensitive areas among all OBSMER and CGFS areas, respectively (with ranking among all areas).

Table 3. Jackknife results and main data attributes for species that
did initially demonstrate significant overlap between OBSMER and
Channel Ground Fish Survey (CGFS) distributions.

LIC p-Value JK % abundance % abundance

Red gurnard 0.83 6e�04 0 (24) – –
Tub gurnard 0.79 0.016 1 (24) 11.1 (2/24) 11.3 (1/24)
Cod 0.52 0.046 6 (24) 1.9 (2/24) 0.7 (19/24)

0.0 (23/24) 1.2 (14/24)
45.3 (1/24) 10.6 (2/24)

0.2 (20/24) 0.5 (20/24)
3.8 (7/24) 2.3 (12/24)

OBSM CGFS
0.0 (24/24) 3.4 (10/24)

Common dab 0.66 0.019 1 (23) 22.2 (1/23) 43.1 (1/23)
Whiting 0.71 0.030 0 (23) – –
Lemon sole 0.65 0.021 1 (22) 25.5 (1/22) 27.1 (1/22)
Starry smooth-

hound
0.62 0.046 1 (22) 14.9 (3/22) 25.9 (1/22)

Lesser-spotted
dogfish

0.63 0.020 1 (24) 27.9 (1/24) 12.2 (2/24)

Black seabream 0.67 0.043 8 (23) 0.2 (18/23) 1.0 (17/23)
0.0 (20/23) 0.1 (22/23)
0.0 (21/23) 0.1 (21/23)
0.2 (17/23) 0.3 (20/23)
0.0 (22/23) 0.0 (23/23)
7.8 (5/23) 12.6 (3/23)
0.0 (23/23) 1.6 (13/23)

14.8 (2/23) 12.7 (2/23)

LIC: original value of Local Index of Collocation. p-Value: situation of the LIC
value related to the distribution of permutation tests (values below 0.05
indicate significant overlap). JK: number of areas which allowed having
significant overlap (with total number of areas). % abundance OBSMER &
CGFS: percentage of abundance represented by these sensitive areas
among all OBSMER and CGFS areas respectively (with rank among all areas).

Figure 5. Annual abundance index estimated from Channel Ground
Fish Survey (CGFS; dotted line) and OBSMER (solid line) for (a) cod
and (b) black seabream.

2422 P. Bourdaud et al.

Downloaded from https://academic.oup.com/icesjms/article-abstract/74/9/2415/3858384
by Ifremer, Bibliothèque La Pérouse user
on 14 December 2017

Deleted Text: Due
Deleted Text: due


challenge, as the trawl selectivity ogive is sigmoid-shaped, while

that of gillnets could be bell-shaped, or bi-normal, reducing the

catch of larger individuals (Dickson et al., 1995). Among other

potential limits, the soaking time of gillnets is much longer com-

pared with trawls, and it is more subject to saturation effect,

which could result in an asymptotic relationship between catches

and fishing time (Hickford and Schiel, 1996).

Still, the lack of overlap between the spatial distributions de-

rived from fisheries-dependent and -independent abundance in-

dices for some species could also be explained by their actual

biological and ecological characteristics. These could have strong

impact on abundance estimations, particularly if only few obser-

vations are available within an area. Based on a scientific proto-

col, the CGFS sampling strategy is fixed and the timing of the

survey almost does not vary from one year to the other. However,

the EEC ecosystem constitutes for several species a migration

path between the North Sea and the Atlantic Ocean, and this can

lead to biased estimates of abundance based on survey conducted

at a fixed period. For example, red mullet migrates during fall

from the southern part of the North Sea to the Western English

Channel (Mahé et al., 2005), but its migration timing appears

variable across years (Carpentier et al., 2009), which could lead to

high variance in some areas and thus causes difficulties to obtain

a clear static mean distribution.

Pouting, poor cod, thornback ray, and plaice have the lowest

LIC in our results. Various species are known to change their be-

haviour between day and night (Pitcher, 1992), which may affect

our results (Fréon et al., 1993). Indeed, pouting are known to

have diel activity patterns, forming shoals near wrecks, or rocks

during the day and disperse during the night for feeding (Jensen

et al., 2000). Thornback rays predate also at night and burry in

the sand during the day (Wilding and Snowden, 2008). There is

evidence that poor cod is mainly caught at night (Gibson et al.,

1996). Concerning plaice, differences in catches between day and

night are less clear and vary across studies (de Groot, 1971;

Arnold and Metcalfe, 1995). Surveys like CGFS occur only during

daylight, while about half of the fishing operations are conducted

during the night. Including explicitly the time of the day in our

model would be a way forward, which would require a larger set

of data (Benoı̂t and Swain, 2003). Finally, variability in species

distribution can occur by environmentally driven spatial and an-

nual shifts (Verdoit et al., 2003). As previously evoked, with suffi-

cient data, dealing with these shifts would require interaction

parameters, introduced by fixed effects (with associated restric-

tions, e.g. Thorson and Ward, 2013) or random effects (with cor-

responding bias-correction, e.g. Thorson and Kristensen, 2016).

The high number of presence/absence models that did not con-

verge with an area-by-year interaction can be explained by the

small number of observations for each occurrence (i.e. on average

2 per area-by-year), often 0 or 1 for a substantial part of the new

parameters. Increasing the number of iteration failed to improve

model convergence.

In the coming years, the growing collection of data may allow

for accommodating such processes, but also fine-scale targeting

(e.g. Thorson et al., 2016), and hence lead to more reliable abun-

dance estimates per area for a broader coverage of the EEC. A

next step could then be to derive spatially explicit estimations of

fish lengths, building on innovative approaches (e.g. Petitgas

et al., 2011; Nielsen et al., 2014). These could help to distinguish

between mature and non-mature individuals, which are driving

fish movement (Pittman and McAlpine, 2001).

Uses of data collected on-board commercial vessels
Another objective of this study was to provide annual series of

abundance indices. The comparison between fisheries-dependent

and -independent time series suggested contrasted results across

species.

For species like cod (Figure 5a) and lemon sole, both the spa-

tial and annual abundance distributions derived from fisheries

and survey data were reasonably consistent. However, consistent

annual trends across the two data sources were not necessarily

linked with spatially overlapping distributions, e.g. cuttlefish or

red mullet. Potential reasons for the lack of spatial overlap for

such species were discussed above.

For other species, a good spatial overlap between fisheries-

dependent and -independent abundance distributions was not

necessarily associated with synchronous time series (e.g. black

seabream, Figure 5b). This could be owing to data limitations,

but also to some hyperstable relationship between abundance and

CPUE (Hilborn and Walters, 1992), that could not be completely

filtered out by our standardization approach. In addition, the

species which present a good spatial overlap can be subject to

intra-annual fluctuations of abundance owing to high exploita-

tion, migrations, and recruitment (Gillis and Peterman, 1998)

that could strongly impact the mean annual abundance value.

Finally, abundance indices derived from fisheries data could be

an appropriate source of information to provide seasonal and

spatial distributions, particularly during periods where surveys do

not operate. A better overview of species migrations is first a

progress in current knowledge on species ecology, which could

further be linked with seasonally explicit abiotic and biotic envi-

ronmental conditions. Secondly, such information could be

linked with fishers’ movement throughout year, which could

Table 4. Correlation between Channel Ground Fish Survey (CGFS)
and OBSMER annual abundance indices assessed by Pearson’s
correlation index (Pearson).

Common name Pearson LIC

Poor cod 0.81 0.10
Cod 0.72 0.52*
John Dory 0.71 0.67
Red mullet 0.66 0.58
Plaice 0.65 0.32
Lemon sole 0.63 0.65*
Cuttlefish 0.51 0.50
Common dab 0.24 0.66*
Red gurnard 0.20 0.83*
Whiting �0.01 0.71*
Starry smooth-hound �0.05 0.62*
Thornback ray �0.08 0.22
Squids �0.12 0.54
Pouting �0.13 0.39
Lesser-spotted dogfish �0.22 0.63*
Black seabream �0.23 0.67*
Flounder �0.27 0.47
Seabass �0.50 0.49

LIC values are also reported for 18 species Eastern English Channel species.
Tub gurnard is not represented because the year effect was not significant
(p> 0.05) in the survey model.
*Species for which spatial overlap was significant (p< 0.05).
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enhance our knowledge on fishers-resource interactions. Thirdly,

seasonally and spatially resolved information such as that output

from this study could also serve to calibrate complex end-to-end

models such as Atlantis (Fulton et al., 2007), OSMOSE (Shin and

Cury, 2001), ISIS-Fish (Pelletier et al., 2009), or Ecospace

(Walters et al., 1999), and enhance their capacity to evaluate

ecosystem-based management strategies (e.g. closed areas and

seasons). Finally, further studies could validate the assumptions

that on-board commercial data give a better overview of spatial

distributions than survey for a small portion of species (e.g. pout-

ing). However, the distributions derived for species presenting

strong variability in selectivity or behavioural pattern (e.g. diel

variations or migrations) should be interpreted with caution.

In addition to spatial distributions, annual abundance indices

derived from fisheries data could potentially complement the

survey-based series used in stock assessments. This would require,

as a follow-up to this study, to structure those fisheries-based an-

nual indices by length and/or age, and perhaps to try to obtain

such indices on a shorter duration than year. Previously,

fisheries-based abundance indices should be closely examined, on

a case-by-case basis, cognisant of the life cycle, and exploitation

features of the species under investigation.

Conclusion
This study shows the potential of combining fisheries-dependent

and -independent data to increase our knowledge on the seasonal

and spatial distribution of several marine species. Even if the

comparisons realized during this study showed that fisheries-

dependent data did not always mirror the time and spatial

survey-based distribution of some species, they still remain a valid

source of information. Fisheries-dependent data are relatively

abundant, opportunistic, and cheaper than survey data, and their

use should be encouraged, especially to reflect abundance distri-

butions in areas and seasons that are not covered by surveys.

Moreover, some species are poorly sampled by surveys owing to

their diel behaviour, and the use of at-night observations on-

board commercial vessels could help better inferring their spatial

distributions. The method we used here is relatively simple com-

pared with, e.g. log-Gaussian Cox model method developed by

Kristensen et al. (2014). Still, the quality of the resulting outputs

we presented was assessed, and these provide valuable informa-

tion on spatial and temporal species distributions, which concur

with existing ecological knowledge. This approach would benefit

from a better spatial representation along the English coastline,

and further cooperation, data sharing and on-board observation

program strengthening could substantially enhance our under-

standing of the spatio-temporal distribution of marine species in

the Eastern English Channel.

Supplementary material
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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their financial supports. We also thank Antoine Balazuc (Comité

Régional de Pêches Maritimes du Nord Pas de Calais-Picardie)

for his valuable inputs. Finally we wish to thank James Thorson,

the anonymous referees and editor for helping us the improve

manuscript.

References
Arnold, G. P., and Metcalfe, J. D. 1995. Seasonal migrations of plaice

(Pleuronectes platessa) through the Dover Strait. Marine Biology,
127: 151–160.

Auber, A., Travers-Trolet, M., Villanueva, M. C., and Ernande, B.
2015. Regime shift in an exploited fish community related to nat-
ural climate oscillations. PLoS ONE, 10: e0129883.

Benoı̂t, H. P., and Swain, D. P. 2003. Accounting for length- and
depth-dependent diel variation in catchability of fish and inverte-
brates in an annual bottom-trawl survey. ICES Journal of Marine
Science, 60: 1298–1317.

Bertignac, M., Fern�andez, C., and Methot, R. 2012. Preliminary spa-
tially disaggregated stock assessment of Northern Hake, a widely
distributed stock of the Northeast Atlantic. ICES CM 2012/N:04.

Bivand, R., Altman, M., Anselin, L., Assunca~o, R., Berke, O., Bernat,
A., Blanchet, G., et al. 2013. spdep: Spatial Dependence:
Weighting Schemes, Statistics and Models. CRAN—R package
version 0.5-68.

Booth, A. 2000. Incorporating the spatial component of fisheries data
into stock assessment models. ICES Journal of Marine Science,
57: 858–865.

Carpentier A., Martin, C. S., and Vaz, S. (Eds). 2009. Channel
Habitat Atlas for marine Resource Management, final report/Atlas
des habitats des ressources marines de la Manche orientale, rap-
port final (CHARMphase II). INTERREG 3a Programme,
IFREMER, Boulogne-sur-Mer, France. 626 pp. & CD-rom.

Coppin, F., and Travers-Trolet, M. 1989. CGFS: Channel Ground
Fish Survey, http://dx.doi.org/10.18142//11 (last accessed April
2015).

Cormon, X., Loots, C., Vaz, S., Vermard, Y., and Marchal, P. 2014.
Spatial interactions between saithe (Pollachius virens) and hake
(Merluccius merluccius) in the North Sea. ICES Journal of Marine
Science, 71: 1342–1355.

Cornou, A.-S., Quinio-Scavinner, M., Delaunay, D., Dimeet, J.,
Goascoz, N., Dube, B., Fauconnet, L., and Rochet, M.-J. 2015.
Observations �a bord des navires de pêche professionnelle. Bilan de
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