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1 Heat conservation within an ocean layer of arbitrary depth

To evaluate the drivers of ocean heat content we consider the temperature conservation

equation integrated from the ocean free surface η to a depth D.

η∫
−D

∂T

∂t
dz +

η∫
−D

∇ · (uT )dz =

η∫
−D

1

ρ0cp

∂Q

∂z
dz (1)

where u is the three-dimensional velocity field, T is ocean temperature, ρ0 is a refer-

ence density, cp is the heat capacity of sea water, and Q represents the combined influence of

radiation and turbulent fluxes of heat. Expanding the first term in (1) and accounting for time-

variations in η and H (Leibniz integral rule) gives the following expression

η∫
−D

∂T

∂t
dz =

∂

∂t

η∫
−D

Tdz − T (η)
∂η

∂t
+ T (−D)

∂(−D)

∂t
(2)

Similarly, we can expand the second term in (1) into contributions from the horizontal

and vertical circulation to give
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η∫
−D

∇ · (uT )dz =

η∫
−D

∇h · (uhT )dz + T (η)
∂η

∂t
− wT |−D (3)

where uh = (u, v) and we have noted that w(η) = ∂η
∂t and wT |−D indicates the prod-

uct wT evaluated at −D. Finally, we can expand the right hand side of (1) to give

η∫
−D

1

ρ0cp

∂Q

∂z
dz =

1

ρ0cp
(Qnet −Q(−D)) (4)

where Qnet is the net air-sea heat flux across the ocean-atmosphere interface. When D

is fixed in time, equations (2)-(4)can be combined to give

∂H

∂t
+ ρ0cp

 η∫
−D

∇h · (uhT )dz − wT |−D
 = Qnet −Q(−D) (5)

H = ρ0cp

η∫
−D

Tdz (6)

where H is ocean heat content integrated to a depth of D. In the case where D is the

ocean bottom (Db), (5) can be simplified to

∂Htot

∂t
= Ctot +Qnet (7)

Ctot = −ρ0cp

η∫
−Db

∇h · (uhT )dz (8)

where Ctot is the total heat transport convergence within an ocean column. When D is

specified to be a time-invariant maximum climatological mixed layer depth (Dmld; see main

text for definition), turbulent mixing across the lower surface can be considered negligible such

that Q(−Dmld) = 0 resulting in

∂Hmld

∂t
= Cmld +Qnet (9)

Cmld = −ρ0cp

 η∫
−Dmld

∇h · (uhT )dz − wT |−D
 (10)
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where Cmld is the heat transport convergence within the layer bounded by the surface

and −Dmld. Note that Cmld also includes the impact of vertical advection across −Dmld.

2 Application of a Kalman filter to quantify ocean heat transport divergences

Our approach is similar to that described by Kelly et al. [2014] but differs in a number

of important ways. Firstly, we consider a near-global domain with a spatial resolution of 1 ×

1 degrees and focus on the drivers of local heat transport convergences, whereas Kelly et al.

[2014] focus on meridional transports across zonal sections in the Atlantic. Secondly, we use

multiple observation-based estimates of Qnet for H to estimate observational uncertainties.

Lastly, Ĉ is treated explicitly within the Kalman filter state transition matrix (along with ˆQnet,

and Ĥ) rather than inferred as an unknown control term. This last step is accomplished by in-

cluding persistence forecasts of Ĉ and ˆQnet using values from the previous month. Uncertain-

ties in the persistence approximation are estimated from an initial no-Kalman solution and act

as a constraint on the variances of Q̂net and Ĉ. By performing this step, we do not have to

make any assumptions about the relative magnitude of variances in Ĉ and ˆQnet.

Kalman smoother estimates of Ĥmld and Q̂net are shown along with smoothed obser-

vational estimates and their associated uncertainties in supplementary figure 1a-b for the same

illustrative location as figure 2 in the main text. In addition, Kalman smoother estimates of

Ĉmld are compared with values calculated using a centered-difference approach without a Kalman

filter (supplementary figure 1c). These comparisons demonstrate that, within our uncertainty

estimates, predictions of Ĥmld and Q̂net are consistent with the imposed observational con-

straints and that Ĉmld is highly correlated with the equivalent value estimated as a residual

without using a Kalman filter.

2.1 Forward models

In order to apply the Kalman filter, equations (7) and (9) are discretized using a centered

difference approximation to give equations of the form

Ht+1 = Ht−1 + ∆t[
1

2
Qnet,t+1 +Qnet,t +

1

2
Qnet,t−1 +

1

2
Ct+1 + Ct +

1

2
Ct−1] + uH (11)

where the subscript t is month and uH is a normally distributed random variable with

variance σ2
H that represents the uncertainty in the forward model. In theory, uH should be zero
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as our forward model is an expression of heat conservation. In practice, uH is specified to be

a very small number for numerical stability. Forward predictions of C and Qnet are then es-

timated assuming persistence of values in the previous month.

Qnet,t+1 = Qnet,t + uQ (12)

Ct+1 = Ct + uC (13)

The uncertainties uQ and uC are specified using output from an initial no-Kalman so-

lution and act as a prescribed constraint on the variance of our solutions for Qnet and C.

2.2 Kalman filter equations and state matrices

The equations and solutions to the Kalman RTS smoother are described in detail by Wun-

sch [1996]. In matrix form, our forward model is written

xt+1 = Atxt + Γtut (14)

where x is a state vector, A the state transition matrix, Γ an identity matrix (as we as-

sume that uncertainties in our forward model are uncorrelated), and u the uncertainties asso-

ciated with our forward model. Observational constraints are introduced through the follow-

ing relationship

Etxt + nt = yt (15)

where E is the observation operator matrix, x the state vector, n the uncertainty in ob-

servations, and y an observation vector. For our model, these matrices take the following form

xt =

[
Ht Ht−1 Qnet,t+1 Qnet,t Qnet,t−1 Ct+1 Ct Ct−1

]T
(16)

ut =

[
uH 0 uQnet

0 0 uC 0 0

]T
(17)
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yt =

[
Hobs
t Qobsnet,t

]T
(18)

Et =

 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

 (19)

A =



0 1 ∆t
2 ∆t ∆t

2
∆t
2 ∆t ∆t

2

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0



(20)

3 Local Ekman forcing of heat content variability

Here, we derive an expression for the local impact of Ekman heat transport convergences

(Cek) on ocean heat content variability. Following the same approach that Gill and Niller [1973]

applied to Ekman density fluxes, we decompose Ekman heat transport convergences into two

separate contributions: (i) an upper ocean contribution due to Ekman layer transports across

horizontal temperature gradients (Cmldek ) and (ii) an ocean interior contribution due to Ekman

pumping across vertical temperature gradients (Cintek ). Vertically integrating Ekman heat trans-

ports from the surface to the bottom of the Ekman layer (zek) and noting that ∇ · uek = 0

results in the following expression

Cmldek = −ρ0cp

0∫
−zek

(uek · ∇T ) dz (21)

If we also assume that vertical temperature gradients within the Ekman layer are neg-

ligible such that T (0) = T (−zek), this expression simplifies to

Cmldek = −ρ0cp (Uek · ∇Tek) (22)

where ∇Tek is the horizontal gradient of temperature in the Ekman layer and
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Uek =

 0∫
−zek

uekdz,

0∫
−zek

vekdz

 =
τ × ẑ

ρof
(23)

where τ = (τx, τy) is wind stress at the ocean surface and f is the Coriolis parame-

ter. In the ocean interior, Ekman pumping leads to the vertical displacement of isotherms that

can be expressed as an equivalent heat flux, Cintek . We estimate this flux by integrating the heat

transport convergence induced by vertical Ekman pumping velocities from the base of the Ek-

man layer, −zek, to the ocean floor, −Db.

Cintek = −ρ0cp

−zek∫
−Db

w
∂T

∂z
dz (24)

This expression can then be evaluated for the following boundary conditions

w(−zek) =
1

ρ0
curl

(
τ

f

)
= wek (25)

w(−Db) = 0 (26)

under the constraint that w changes linearly with depth such that

∂w

∂z
=

wek
Db − zek

(27)

Expansion of equation (24) using an integration by parts and substitution of the bound-

ary conditions then allows the following simplifications

Cintek = −ρ0cp

wT |−zek−Db
−

−zek∫
−Db

T
∂w

∂z
dz

 (28)

Cintek = −ρ0cp

(
wek · Tek − [Db − zek] · T̄ · wek

Db − zek

)
(29)

T̄ =
1

Db − zek

−zek∫
−Db

Tdz (30)

Cintek = −ρ0cpwek · [Tek − T̄ ] (31)
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where Tek is the temperature of the Ekman layer and T̄ is the depth-averaged temper-

ature in the ocean interior. Combining equations (22) and (31) gives the following total ex-

pression for Cek

Cek = Cmldek + Cintek = −ρ0cp
(
Uek · ∇Tek + wek · [Tek − T̄ ]

)
(32)
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Figure 1. (a-b) Kalman smoother estimates of Ĥmld and Q̂net along with smoothed observations their

associated uncertainties. (c) Kalman smoother estimate of Ĉmld and estimated uncertainty compared with

values calculated using a centred-difference approach without a Kalman filter.
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