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INTRODUCTION
Ocean dynamics and the induced 3-dimensional structure and variability are so complex that it is very difficult 
to develop objective and efficient diagnostics of horizontally and vertically coherent oceanic patterns. However, 
identifying such patterns is crucial to the understanding of interior mechanisms as, for instance, the integrand 
giving rise to Global Ocean Indicators (e.g. heat content and sea level rise). We believe that, by using state of 
the art machine learning algorithms and by building on the increasing availability of ever-larger in situ and 
numerical model datasets, we can address this challenge in a way that was simply not possible a few years 
ago. This letter aims to present the principles and first results of an approach introduced by Maze et al (2017) 
based on what we coined a «Profile Classification Model» or PCM that focuses on vertically coherent patterns 
and their spatial distribution.

 The goal of a PCM is to automatically extract out of a collection of profiles a synthetic statistical 
description, i.e. a model, of typical profiles present in the collection. Once a PCM is built, i.e. trained, one can 
use this model to determine, with probabilities, the typical class any new profile most resembles. Therefore,  
it becomes possible to assign to a given typical class of profiles appropriate parameters for a specific diagnos-
tic (e.g.: a finely tuned density threshold for mixed layer depth computation, a depth range for a pycnocline or 
mode water identification), or simply to use the PCM distributions to analyze the climatology or variability of 
the coherent patterns in space and/or time. 

 Hereafter, we present the PCM method, its first results and four possible applications for a variety of 
ocean analysis problems.
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METHOD 
 The obvious difficulty is in the construction of the PCM. The 
goal is to automatically determine typical profiles. This can 
be achieved from one simple idea: if a profile is typical, then 
it will be redundant (although with small variations) in a suffi-
ciently large and heterogeneous collection of profiles. Hence, 
a typical profile will have a high probability of occurrence 
and creates a peak in the probability density function (PDF) 
of the collection of profiles. We thus can determine typical 
profiles by creating a model for the peaks of the collection 
PDF. To do so, we used Gaussian Mixture Models that belong 
to the class of unsupervised classification methods (Bishop 
et al 2006). It determines the most likely decomposition of 
a PDF into a finite sum of Gaussian modes. Each Gaussian 
mode property provides a model, i.e. a description, for a 
typical profile, including a mean profile (the center of the 
mode) and a spread/pattern (the squared covariance matrix 

of the mode). One should note that a PCM based on a Gaussian 
Mixture Model identifies vertically coherent patterns because 
the multi-dimensional Gaussian mode covariance matrix has 
no reason to be diagonal, which allows for complex vertical 
relations.

RESULTS 
 We trained a PCM, based on a Gaussian mixture model, with 
about 100,000 Argo temperature profiles located in the North 
Atlantic Ocean. Using a series of subset of the collection 
with uniform space/time distribution, we determined both 
objectively and through trial/error that 8 typical profiles 
characterize the interior large scale temperature structure 
of the North Atlantic between the surface and 1400m. These 
typical profiles, together with their spread, are shown in 
Figure 1. To follow the data mining vocabulary, we may also 

FIGURE 1
The 8 typical temperature profiles of the 
North Atlantic. Temperature profiles are 
centered/standardized at each depth level 
and black dashed lines indicate the 5%-95% 
spread of the class. Map insets show the 
location of profiles attributed to each class.

refer to typical profiles as class of profiles. 

 Two classes (#1/#4) show cold anomalies throughout the 
water column with amplitude decreasing with depth. One 
class (#3) has nearly zero anomalies, and a large spread 
throughout the water column. One class (#2) has warm ano-
malies near the surface (50m) and cold ones below 200m. 
The remaining four classes have warm anomalies throughout 
the water column, one without depth dependence (#7), the 
other three (#5/#6/#8) with clear maxima at different depths 
(1000m, 100m and 400m respectively). 

 Another key point of the Maze et al (2017) study is that the 8 
typical profiles were identified without using the information 
of latitudes, longitudes and times of profile samplings. So, 
we furthermore investigated the locations in time and space 
of profile classes (note that to classify a profile, we compute 
the probabilities it has to be similar to each of the typical 
profiles and select the class maximizing these probabilities). 
On the one hand we found no correlation between the time 
of samplings and the classes (not shown). This means that 
whatever the season (the largest source of temporal va-
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riance in the dataset) the same collection of typical profiles 
characterizes the dataset. On the other hand, we found a 
key result in locating in space the class of profiles. Figure 1 
insets show the location map of profiles attributed to each 
class. One can see that each class delineates a specific 
and physically coherent region of the ocean. This is a truly 
remarkable result because it demonstrates objectively that 
a given region corresponds to a unique vertical temperature 
pattern. In other word, the vertical stack of water masses 
and thermoclines is specific to a region of the North Atlantic 
Ocean. 

 A more detailed description of typical profiles, how they 
relates to known water masses and thermoclines and a 
sensitivity analysis can be found in Maze et al (2017).

APPLICATIONS
 The PCM results briefly presented above pave the way for 
many possible applications in data analysis and physical 
studies. Below we briefly review four of these promising 
applications.

Study of a region with natural boundaries

 Let’s take the class #1 that delineates the North Atlantic 
subpolar gyre. We can apply a PCM to a gridded interpo-
lation of Argo data and naturally delineate the subpolar 
region without using rectangular boxes, complex polygons 
or surface data from another, possibly incoherent, source. 
Here we used the Argo-based PCM to classify the ISAS13 
time series of optimally interpolated Argo temperature data 

(Gaillard et al, 2016). Figure 2-A and B show the 2002-2015 
grid point average and monthly variance of the local tem-
perature profile probabilities classified in class #1. Map A 
clearly shows the natural contouring of the subpolar gyre, 
while map B indicates that the gyre variability is mostly lo-
cated along its boundaries with a narrow band in the North 
West Corner Region and a wider band in the Iceland Basin 
in the North Atlantic Current region. Furthermore, using 
the PCM property that the sum of profile probabilities to 
belong to each of the 8 classes, namely ), goes to one, we 
can decompose the local water column heat content into 8 
fractions attributed to each class c: 

Eq.(1)  

𝑂𝐻𝐶𝑧(𝒄,𝜃) = ∬𝑥,𝑦(p(c|x,y,t) ∫z
z  = 0

𝜌0𝐶𝑝𝜃(𝑥,𝑦,𝑧,𝑡)𝑑𝑧)𝑑𝑥𝑑𝑦
without losing heat because  

∑8c=1 p(c|x,y,t)=1, hence ∑8c=1𝑂𝐻𝐶𝑧(𝒄,𝜃) = 1.

 Figure 2-C shows in blue the detrended interannual time 
series of . We won’t explain here the structure of the events 
shown in this time series but rather focus on its decomposition 
into the variability arising from local temperature variations 
vs. gyre horizontal extent. We can indeed approximate Eq.(1) 
for class #1 by the sum of two terms where either the class 
extent or the temperature are being set to their time average:
Eq(2) 

𝑂𝐻𝐶𝑧(𝒄̅=𝟏,𝜃) = ∬𝑥,𝑦(𝑝(𝒄=𝟏|𝑥,𝑦,𝑡)∫𝑧

𝑧=0𝜌0𝐶𝑝𝜃(𝑥,𝑦,𝑧,𝑡)𝑑𝑧)𝑑𝑥𝑑𝑦

Eq(3)

𝑂𝐻𝐶𝑧(𝒄=𝟏,𝜃̅ ) = ∬𝑥,𝑦(𝑝(𝒄=𝟏|𝑥,𝑦,𝑡)∫𝑧

𝑧=0𝜌0𝐶𝑝𝜃(𝑥,𝑦,𝑧,𝑡)𝑑𝑧)𝑑𝑥𝑑𝑦

FIGURE 2
Plot A: 2002-2015 time mean probabilities 
of the subpolar class (#1 from Fig. 1). Plot B: 
2002-2015 monthly variance of the subpolar 
class probabilities. Plot C: Detrended low-
frequency variability of the 0-2000m OHC for 
the subpolar region with blue: total (Eq.1), 
red: due to class contour variations (Eq.2), 
green: due to class temperature variations 
(Eq.3).

PROFILE CLASSIFICATION MODELS

50



NEMO-SHELF, TOWARDS  
OPERATIONAL OCEANOGRAPHY # 55 MERCATOR OCEAN JOURNAL

APRIL 2017

Figure 2-C shows the subpolar gyre heat content variability 
driven by local temperature variations in green, Eq.(2), and 
by the gyre horizontal extent variations in red, Eq.(3). One 
can clearly see how the total heat content of the gyre, blue 
curve - Eq.(1), is driven by this later term while temperature 
variations appear to be anti-correlated. This means that when 
the gyre shrinks it also gets warmer and vice versa. We will 
show elsewhere how this is consistent with the diabatic 
and adiabatic atmospheric forcing patterns. One could 
furthermore show that the gyre extent defined through the 
class contour is consistent with the one diagnosed using the 
surface embedded within a fixed Sea Surface Height contour 
(not shown), demonstrating the relevance of the method 
presented here to delineate the gyre contours.

Structure of frontal regions

 The PCM used in Maze et al (2017) is probabilistic, meaning 
that the transition between a class and another is not a step 
function but rather fuzzy, allowing for ambiguous profiles to 
be taken into account. A metric can be derived to interpret 
how robust is the classification of a profile. When mapped 
in space, robust classifications are found for profiles located 
in the core of the region they define (see their Fig.12). But 
one striking result is that highly robust classifications also 
appear to be located along frontal regions. This simply means 

that a PCM easily differentiates profiles from both sides of 
a front. 

 This is illustrated in Figure 3. We trained a 3-class PCM from 
temperature profiles of an eddy-resolving model simulation 
at 1/12° resolution in the Gulf Stream region (the DRAKKAR 
simulation referenced as NATL12-BAMT20, used by Maze 
et al, 2013 to study subtropical mode water formation).  
Figure 3-A shows the median and spread of class profiles. 
One can see how the PCM distinguishes the cold northern 
flank waters (blue profiles, class #a, without a clear vertical 
structure but the surface spread due to the seasonal cycle) 
from warm southern flank waters (orange profiles, class #c 
with almost no spread at 300m indicating the depth of the 
homogeneous Eighteen Degree Mode Water located above the 
permanent pycnocline with a larger spread). The remaining 
class (#b, in green) has a large spread almost throughout 
the water column. When mapped in space for the 5-days 
period centered on May 20th, 2003 (Figure 3-B), the class 
distribution is coherently revealing the horizontal distribu-
tion of the vertical structures identified by the PCM, i.e. the 
northern flank (class #a), the core of the front (class #b) and 
the southern flank (class #c) of the Gulf Stream. Figure 3-C 
and D with interior temperature and surface relative vorticity 
furthermore illustrates the accurate distinction being made 
by the PCM between these regions. 

FIGURE 3
Demonstration with a 5-days averaged 
model output (1/12o resolution) that a PCM 
can distinguish the Gulf Stream front (class 
#b) from its flank water masses (classes #a 
and #c) only with ocean interior data. Plot 
A: 5-50-95% percentile class profiles. Plot 
B: Class attributed to profiles for May 20th, 
2003. Plots C-D: interior temperature and 
surface relative vorticity superimposed with 
class contours (black) for the same date.

It is also of high interest to note that geographical incursions 
of a given class into the other coincide with meso-scale 
eddies. In fact, if one increases the number of classes, one 
could even distinguish cyclonic from anticyclonic eddies 
into separate classes (not shown). This PCM property will 
be exploited in the LEFE GMMC/IMAGO project «SOMOVAR» 
over the next 3 years. 

Profile selection for QC in frontal regions

 One can also make use of the frontal region PCM performance 
to improve the selection of reference profiles for Quality 
Control. This is illustrated in Figure 4. Again, let’s take the 
Gulf Stream Extension region as an example. We trained a 
3-class PCM from temperature profiles of the Argo reference 
database3. This is the reference database used in standard 

 3 http://www.argodatamgt.org/Reference-data-base/Latest-Argo-Reference-DB
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QC methods, such as OW (Cabanes et al, 2016). Figure 4-A 
shows the median and spread of class profiles and Figure 
4-B shows the regional distribution of the class attributed 
to each profiles. Like in the previous case with the eddy re-
solving simulation, we again can distinguish the front from 
its flank waters. On the map we indicated the climatological 
location of the Gulf Stream core (black dashed line, deter-
mined from AVISO Sea Surface Height data as the latitude 
of the maximum zonal geostrophic velocity) to emphasize 
the appropriate results of the PCM. 

 Now imagine that we’d like to quality control a new Argo 
float set of profiles. A classic approach would be to take the 
reference collection and to compare float data with statistics 
from the reference. This is illustrated Figure 4-C and F for 
profiles #78 and #80 of the Argo float with WMO 4900136 for 
which the locations, and trajectory, are shown in Figure 4-E 
and H. From the reference database, we computed at each 
depth the distance weighted mean and standard deviation of 

temperature (for the same season as the profile to validate) 
using 300km and 150km decorrelation length scales in the 
zonal and meridional directions (results are qualitatively 
similar if one reduces these scales by a factor of 2). This 
standard reference envelop is shown in blue in Figure 4-C 
and F, while the float profiles are shown in red. For profile 
#78, data are out of the standard range from -100m to -600m 
depth. For profile #80, data are out of the standard range 
from -100m down to the bottom of the profile. Thus, using 
the standard reference envelop, these profiles would look 
suspicious and would create false alarm from automatic QC 
procedures. 

 The PCM method can, in this case, provides useful information 
to compare float data to the appropriate reference statis-
tics. But first, let’s examine the dynamical context of these 
profiles. In Figure 4-E and H we show the AVISO absolute 
dynamic ocean surface topography (based on all-satellites 
in delayed-time) for the same days as the profiles. On the 

FIGURE 4
Argo-based PCM with 3 classes in the Gulf Stream Extension region. Plot A: 5-50-95% percentiles of the class temperature profiles. Plot 
B: Location of the profiles attributed to each class superimposed with the climatological Gulf Stream core position determined from AVISO 
altimetry data (black dashed). Plot C and F: Argo float 4900136 profiles #78 and #80 (in red) superimposed with the standard reference 
envelop (blue). Plot D and G: Argo float 4900136 profiles #78 and #80 (in red) superimposed with the PCM-based reference envelop (blue). Plot 
E and H: Argo float 4900136 trajectory in red with profiles #78 and #80 (red circle) superimposed with the AVISO map of Absolute Dynamic 
Topography height (contours every 0.1m) and climatological Gulf Stream position (black dashed). See text for details of reference envelops.
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one hand, this surface dynamical context helps us to localize 
the profile #78 within the realm of a warm anti-cyclonic eddy 
located to the North of the Gulf Stream core. Using the PCM 
shown in Figure 4-A/B the float profile #78 was attributed 
to class #3, the frontal class, which is coherent with its dy-
namical context shown Figure 4-E. On the other hand, the 
float profile #80 is localized on the warm flank of the Gulf 
Stream that, for this particular date, is further north than 
its climatological position (black dashed line, Figure 4-H). 
Interestingly, despite the profile being localized close to the 
Gulf Stream core and flanked to the South by a cyclonic cold 
eddy, the PCM appropriately attributed it to the class #1 of 
southern warm waters.

 This illustrates how appropriate is the PCM attribution of 
profiles to group with similar vertical structures, whatever 
their location in space. Thus, in Figure 4-D and G are shown 
the PCM-based reference envelop (in blue) for which the dis-
tance weighted mean and standard deviations were computed 
only with profiles of the reference collection attributed to 
the same class as the Argo float profiles to be validated. The 
difference with the standard reference envelops is striking. 
Both profiles #78 and #80 are now within the bounds of the 
reference statistics and would no longer raise false alarms. 

 One can note that these results are robust to the decorre-
lation length scales and to the number of profiles used to 
compute the standard deviation (also note that we used the 
same number of reference profiles to compute the standard 
and PCM-based statistics).

Model Evaluation

 A PCM also represents an elegant method to synthesize the 
structural information of a profile collection. Then a PCM 
trained with observations can be used to evaluate numerical 
model realism by comparing the space/time distribution of 
the classes. We could also compare the two optimal PCMs 
trained with observations on the one hand and the numerical 
model on the other hand (e.g. Fig.3-A from a model compared 
to Fig.4-A from observations). But let’s illustrate a simpler 
first case here. We used the Argo-based PCM of Maze et al 
(2017) for the North-Atlantic to evaluate a state of the art 
global ¼° resolution configuration of a NEMO simulation. 
Figure 4-A and B show the distribution of the classes attri-
buted to model temperature profiles for the first year of the 
simulation (1958) and for the entire run period (1958-2015). 
This distribution should be compared with Fig.1 insets or 
Fig.11 in Maze et al (2017).  

 This evaluation indicates that, although the class distribution 
is correct at the beginning of the run (no spin-up was perfor-
med, so the first year remains close to the initial conditions 
based on observations), the model dynamics clearly modi-
fies the stratification structure (not shown), which leads to 
a re-arrangement of the classes in space. With regard to 
this method, the model performs well in most of the North 
Atlantic Ocean, except over the Western subtropical region, 
south of the Gulf Stream, where class #3 (cyan) takes over 
class #8 (brown) that, in turn, considerably shrinks. This is 
due to the model dynamics in the Gulf Stream region that 
erodes the vertical stratification structure (the mode water 
and underlying permanent pycnocline, Feucher et al, 2016) 
and sustains a more vertically uniform structure, thus the 
new state is more like class #3 than class #8 (see Fig.1).
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In this letter, we briefly presented a data mining statistical 
method recently proposed by Maze et al (2017) for physi-
cal oceanographic studies. This method is coined «Profile 
Classification Model» or PCM. It is based on a state of the 
art un-supervised classification method, a Gaussian Mixture 
Model, being applied to ocean profiles. They proposed several 
PCM applications, four are illustrated here.

 In Maze et al (2017), a PCM is derived from Argo tempera-
ture profiles in the North Atlantic Ocean. They showed that 
8 classes of profiles capture the diversity of all possible 
vertical structures (Figure 1). It is worth noting that this 
vertical structure is not only defined by a vertical mean 
profile but also by a square covariance matrix that contains 

information about mode waters (no spread, homogeneity), 
thermoclines - or any other vertical gradients of the tracer 
used (large spread) or lack of vertical coherence throughout 
the class (frontal regions). 

 Maze et al (2017) showed that, although no spatial information 
is used to train the PCM, each of the 8 classes is co-localized 
in space, defining regions of the ocean with a unique vertical 
structure. We thus illustrated a possible application of such 
natural region contouring for the North Atlantic subpolar gyre 
(Figure 2). We furthermore examined the decomposition of 
its integrated heat content variability into the component 
driven by local temperature variations and the component 
driven by the gyre expansion and contraction. We found that, 

FIGURE 5
Distribution of the locally most 
frequent classes attributed to 
a GCM run, for the first year 
of the simulation, 1958 (left) 
and for the entire time series, 
1958-2015 (right). The PCM used 
is the one trained with Argo 
data for which the structure 
and distribution are shown in 
Figure 1.

CONCLUSION

In this letter, we briefly presented a data mining statistical method recently proposed by Maze et al (2017) for physical 
oceanographic studies. This method is coined «Profile Classification Model» or PCM. It is based on a state of the art 
un-supervised classification method, a Gaussian Mixture Model, being applied to ocean profiles. They proposed several 
PCM applications, four are illustrated here.

This method is coined «Profile Classification Model» or PCM. 
It is based on a state of the art un-supervised classification 
method, a Gaussian Mixture Model, being applied to ocean 

profiles. 
 In Maze et al (2017), a PCM is derived from Argo tempera-
ture profiles in the North Atlantic Ocean. They showed that 

8 classes of profiles capture the diversity of all possible 
vertical structures (Figure 1). It is worth noting that this 
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at the interannual time scale, the expansion component drives 
the gyre heat content while the temperature component is 
anti-correlated.

 We also illustrated how a PCM can shed a new light on 
turbulent Western Boundary Current regions through the 
identification and grouping of the possible vertical structures. 
Using a 1/12° numerical model simulation from the DRAK-
KAR group (Barnier et al, 2014), we trained a PCM based on 
temperature data in the Gulf Stream Extension. We showed 
that, despite the strong seasonality of the profiles, a 3-class 
PCM is able to disentangle the horizontal complexity of the 
frontal region structure with a remarkable simplicity (Figure 
3). This result will be further investigated and developed in 
the 2017-2019 INSU LEFE GMMC/IMAGO funded project «SO-
MOVAR» (LOPS, Telecom Bretagne, CERFACS). In particular, 
the project aims to use the PCM method for the detection of 
low-frequency variability and to develop a new product of 
in-situ gridded data in turbulent Western Boundary Current 
regions.

 For observation data center, this latter result has a powerful 
direct application: a more appropriate selection of reference 
data for quality control procedures. This was illustrated in 
the Gulf Stream region for the hypothetic validation of two 
Argo float profiles located near the front (Figure 4). When 
statistics were computed (using a trivial approach of distance 
weighting and seasonal colocation) from a reference database 
to evaluate the Argo float profiles, we found the profiles to 
be outside of the standard reference envelop, hence raising 
a false alarm. But when the statistics were computed using 
only reference profiles with the same PCM class of the Argo 
float to be validated, then we found the profiles to be within 
the PCM-based reference envelop. The dynamical context 
of the profiles was provided by the AVISO altimetry data.  
It showed that profiles were too close to the front or within 
an eddy for the standard approach to be able not to bias 

low the reference envelop. Obviously, this can be avoided if 
the QC operator uses altimetry for context or more complex 
method, such as OW, working along isopycnal surfaces. But 
the PCM method, simple, automatic and in the depth/pressure 
space can surely help QC procedures.

 Last, another application of the PCM method for model evalua-
tion was illustrated. Indeed, a PCM is a reduced representation 
of the statistical properties of a collection of profiles. It thus 
provides the opportunity to compare two collections or to 
assess one with regard to the properties of the other. First 
case could be achieved for instance by comparing Fig.3-A 
from an eddy resolving simulation with Fig.4-A from Argo 
data. Here, we simply illustrated the later scenario in Figure 
5. Using the Argo-based PCM of temperature profiles from 
Maze et al (2007), we classified a 1958-2015 time series 
of a global circulation model experiment at ¼° resolution 
(ORCA025, 75 vertical levels, referenced by the DRAKKAR 
group as GJM189). We found the model initial state to be 
close to observations (as expected, because the model had 
no spin-up) but to drift away from a realistic stratification in 
the Southern recirculation region of the Gulf Stream, while 
the other regions were stable and remained realistic. This 
synthetic metric provides an elegant way to assess the 
realism of the model state.

 Our group is currently working on the PCM applications 
illustrated here. But, obviously, this approach can be used 
with other data (e.g. salinity, both temperature and salinity, 
density, stratification...), in other frontal regions (e.g. the 
ACC) and with other datasets (e.g. CORA4.2, high resolu-
tion model outputs). To foster such possible applications 
we made available online the Argo-based PCM (http://doi.
org/10.17882/47106) and a toolbox to easily train a PCM and 
classify new data (https://github.com/obidam/pcm) from a 
collection of profiles or gridded datasets.
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