Gene-centromere mapping in meiotic gynogenetic European seabass

Type Article
Date 2017-06
Language English
Author(s) Oral Munevver1, Colleter Julie2, 3, Bekaert Mich1, Taggart John B.1, Palaiokostas Christos1, McAndrew Brendan J.1, Vandeputte Marc3, 4, Chatain Beatrice3, Kuhl Heiner5, Reinhardt Richard6, Peruzzi Stefano7, Penman David J.1
Affiliation(s) 1 : Univ Stirling, Inst Aquaculture, Sch Nat Sci, Stirling FK9 4LA, Scotland.
2 : Cirad, Persyst, UMR Intrepid, Campus Int Baillarguet, F-34398 Montpellier, France.
3 : IFREMER, F-34250 Palavas Les Flots, France.
4 : Univ Paris Saclay, INRA, GABI, AgroParisTech, F-78350 Jouy En Josas, France.
5 : Leibniz Inst Freshwater Biol & Inland Fisheries, Muggelseedamm 310, D-12587 Berlin, Germany.
6 : Max Planck Genome Ctr Cologne, Max Planck Inst Plant Breeding, Carl von LinnA Weg 10, D-50829 Cologne, Germany.
7 : Univ Tromso, Fac Biosci Fisheries & Econ, Dept Arctic & Marine Biol, N-9037 Tromso, Norway.
Source Bmc Genomics (1471-2164) (Biomed Central Ltd), 2017-06 , Vol. 18 , N. 1 , P. 449 (1-12)
DOI 10.1186/s12864-017-3826-z
WOS© Times Cited 8
Keyword(s) Dicentrarchus labrax, Meiotic gynogenesis, Isogenic lines, ddRAD seq, Genetic map, Gene-Centromere map, Aquaculture
Abstract

Background

Fully isogenic lines in fish can be developed using “mitotic” gynogenesis (suppression of first zygotic mitosis following inactivation of the sperm genome). However, genome-wide verification of the steps in this process has seldom been applied. We used ddRADseq to generate SNP markers in a meiotic gynogenetic family of European seabass (Dicentrarchus labrax): (i) to verify the lack of paternal contribution in a meiotic gynogenetic family; (ii) to generate a gene-centromere map from this family; (iii) to identify telomeric markers that could distinguish mitotic gynogenetics from meiotic gynogenetics, which sometimes arise spontaneously in mitotic gynogenetic families.

Results

From a single meiotic gynogenetic family consisting of 79 progeny, 42 million sequencing reads (Illumina, trimmed to 148 bases) resolved 6866 unique RAD-tags. The 340 male-informative SNP markers that were identified confirmed the lack of paternal contribution. A gene-centromere map was constructed based on 804 female-informative SNPs in 24 linkage groups (2n = 48) with a total length of 1251.02 cM (initial LG assignment was based on the seabass genome assembly, dicLab v1). Chromosome arm structure could be clearly discerned from the pattern of heterozygosity in each linkage group in 18 out of 24 LGs: the other six showed anomalies that appeared to be related to issues in the genome assembly.

Conclusion

Genome-wide screening enabled substantive verification of the production of the gynogenetic family used in this study. The large number of telomeric and subtelomeric markers with high heterozygosity values in the meiotic gynogenetic family indicate that such markers could be used to clearly distinguish between meiotic and mitotic gynogenetics.

Full Text
File Pages Size Access
Publisher's official version 12 1 MB Open access
Gene-centromere mapping in meiotic gynogenetic European seabass 19 KB Open access
Gene-centromere mapping in meiotic gynogenetic European seabass 2 5 KB Open access
Gene-centromere mapping in meiotic gynogenetic European seabass 3 27 KB Open access
Gene-centromere mapping in meiotic gynogenetic European seabass 4 1 KB Open access
Gene-centromere mapping in meiotic gynogenetic European seabass 5 2 MB Open access
Gene-centromere mapping in meiotic gynogenetic European seabass 6 132 KB Open access
Gene-centromere mapping in meiotic gynogenetic European seabass 7 45 KB Open access
Gene-centromere mapping in meiotic gynogenetic European seabass 8 484 bytes Open access
Gene-centromere mapping in meiotic gynogenetic European seabass 9 3 KB Open access
Top of the page

How to cite 

Oral Munevver, Colleter Julie, Bekaert Mich, Taggart John B., Palaiokostas Christos, McAndrew Brendan J., Vandeputte Marc, Chatain Beatrice, Kuhl Heiner, Reinhardt Richard, Peruzzi Stefano, Penman David J. (2017). Gene-centromere mapping in meiotic gynogenetic European seabass. Bmc Genomics, 18(1), 449 (1-12). Publisher's official version : https://doi.org/10.1186/s12864-017-3826-z , Open Access version : https://archimer.ifremer.fr/doc/00388/49901/