### Table S1.
Hydraulic requirement parameters of the 57 invertebrate taxa sampled in spring and autumn. Inertia = total variability; OMI = outlying mean index. P number of random permutations (out of 1000) that yielded a higher value than the observed marginality (OMI, WitOMIG or WitOMIGK) (the value in bold characters are significant, P < 0.05). Tol = tolerance, Rtol = residual tolerance. I. = inertia; G (G_I) are the subset marginality WitOMIG (WitOMIGK) ; = NA. The WitOMI cannot be calculated when the OMI is not significant (See Discussion for further details). The species is the one use as example for Figure 3D, 3E, and 3F (Species code in Appendix S2; Table S3).

<table>
<thead>
<tr>
<th>Species</th>
<th>All</th>
<th>Spring</th>
<th>Autumn</th>
<th>Spring</th>
<th>Autumn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFLU</td>
<td>5.54</td>
<td>1.63</td>
<td>1.16</td>
<td>2.75</td>
<td>0.05</td>
</tr>
<tr>
<td>GOL</td>
<td>6.26</td>
<td>2.86</td>
<td>0.48</td>
<td>2.92</td>
<td>0.01</td>
</tr>
<tr>
<td>ASPL</td>
<td>5.26</td>
<td>0.77</td>
<td>1.94</td>
<td>2.54</td>
<td>0.10</td>
</tr>
<tr>
<td>BAP5</td>
<td>4.95</td>
<td>0.15</td>
<td>0.92</td>
<td>3.88</td>
<td>0.00</td>
</tr>
<tr>
<td>BAMI</td>
<td>6.44</td>
<td>2.67</td>
<td>1.22</td>
<td>2.56</td>
<td>0.07</td>
</tr>
<tr>
<td>BFAS</td>
<td>5.52</td>
<td>1.63</td>
<td>0.82</td>
<td>3.06</td>
<td>0.00</td>
</tr>
<tr>
<td>CFS3</td>
<td>4.75</td>
<td>2.09</td>
<td>0.70</td>
<td>1.96</td>
<td>0.00</td>
</tr>
<tr>
<td>TESP</td>
<td>5.99</td>
<td>1.36</td>
<td>1.74</td>
<td>2.89</td>
<td>0.14</td>
</tr>
<tr>
<td>CERA</td>
<td>5.24</td>
<td>0.44</td>
<td>1.56</td>
<td>3.24</td>
<td>0.07</td>
</tr>
<tr>
<td>CLEP</td>
<td>5.03</td>
<td>0.44</td>
<td>1.38</td>
<td>3.21</td>
<td>0.00</td>
</tr>
<tr>
<td>CMAR</td>
<td>5.30</td>
<td>2.09</td>
<td>1.10</td>
<td>2.10</td>
<td>0.00</td>
</tr>
<tr>
<td>CHIR</td>
<td>4.44</td>
<td>0.49</td>
<td>1.52</td>
<td>3.42</td>
<td>0.12</td>
</tr>
<tr>
<td>CPLIC</td>
<td>5.51</td>
<td>2.83</td>
<td>0.52</td>
<td>2.16</td>
<td>0.00</td>
</tr>
<tr>
<td>DRSP</td>
<td>4.50</td>
<td>1.07</td>
<td>1.90</td>
<td>1.52</td>
<td>0.04</td>
</tr>
<tr>
<td>DUPS</td>
<td>5.33</td>
<td>0.14</td>
<td>1.74</td>
<td>3.45</td>
<td>0.05</td>
</tr>
<tr>
<td>ECSP</td>
<td>5.35</td>
<td>0.33</td>
<td>1.47</td>
<td>3.55</td>
<td>0.00</td>
</tr>
<tr>
<td>ECTE</td>
<td>5.46</td>
<td>3.09</td>
<td>0.12</td>
<td>2.25</td>
<td>0.12</td>
</tr>
<tr>
<td>ELEMA</td>
<td>3.18</td>
<td>0.79</td>
<td>0.04</td>
<td>2.35</td>
<td>0.86</td>
</tr>
<tr>
<td>EPEO</td>
<td>5.68</td>
<td>1.27</td>
<td>0.75</td>
<td>3.66</td>
<td>0.26</td>
</tr>
<tr>
<td>EVIR</td>
<td>5.30</td>
<td>0.34</td>
<td>1.28</td>
<td>3.68</td>
<td>0.04</td>
</tr>
<tr>
<td>EPAR</td>
<td>269</td>
<td>3.93</td>
<td>0.14</td>
<td>0.80</td>
<td>3.00</td>
</tr>
<tr>
<td>EPYG</td>
<td>4.77</td>
<td>0.14</td>
<td>1.02</td>
<td>3.01</td>
<td>0.02</td>
</tr>
<tr>
<td>ESSP</td>
<td>4.86</td>
<td>0.14</td>
<td>0.86</td>
<td>3.66</td>
<td>0.00</td>
</tr>
<tr>
<td>EGEN</td>
<td>5.05</td>
<td>1.91</td>
<td>0.86</td>
<td>2.28</td>
<td>0.00</td>
</tr>
<tr>
<td>GASP</td>
<td>5.96</td>
<td>0.36</td>
<td>1.17</td>
<td>4.06</td>
<td>0.05</td>
</tr>
<tr>
<td>HXRO</td>
<td>5.22</td>
<td>0.38</td>
<td>1.25</td>
<td>3.60</td>
<td>0.00</td>
</tr>
<tr>
<td>HPEL</td>
<td>5.24</td>
<td>0.36</td>
<td>1.20</td>
<td>3.69</td>
<td>0.00</td>
</tr>
<tr>
<td>HYDR</td>
<td>3.57</td>
<td>1.48</td>
<td>0.42</td>
<td>1.67</td>
<td>0.06</td>
</tr>
<tr>
<td>HYS2</td>
<td>5.42</td>
<td>0.34</td>
<td>1.01</td>
<td>4.07</td>
<td>0.00</td>
</tr>
<tr>
<td>HYDS</td>
<td>6.18</td>
<td>2.75</td>
<td>0.83</td>
<td>2.59</td>
<td>0.03</td>
</tr>
<tr>
<td>LEPT</td>
<td>5.34</td>
<td>2.74</td>
<td>0.47</td>
<td>2.13</td>
<td>0.16</td>
</tr>
<tr>
<td>LESP</td>
<td>4.42</td>
<td>0.33</td>
<td>0.90</td>
<td>3.21</td>
<td>0.04</td>
</tr>
<tr>
<td>LOPAa</td>
<td>4.97</td>
<td>1.20</td>
<td>1.97</td>
<td>1.79</td>
<td>0.01</td>
</tr>
<tr>
<td>LOPala</td>
<td>4.57</td>
<td>0.48</td>
<td>1.25</td>
<td>2.85</td>
<td>0.00</td>
</tr>
<tr>
<td>MPW7</td>
<td>5.77</td>
<td>2.11</td>
<td>1.53</td>
<td>2.47</td>
<td>0.29</td>
</tr>
<tr>
<td>MUPA</td>
<td>5.90</td>
<td>3.30</td>
<td>2.18</td>
<td>0.58</td>
<td>0.24</td>
</tr>
<tr>
<td>ORHE</td>
<td>5.68</td>
<td>1.47</td>
<td>0.79</td>
<td>2.02</td>
<td>0.00</td>
</tr>
<tr>
<td>ONSP</td>
<td>5.18</td>
<td>1.10</td>
<td>1.47</td>
<td>2.54</td>
<td>0.06</td>
</tr>
<tr>
<td>ORTH</td>
<td>5.12</td>
<td>0.23</td>
<td>1.26</td>
<td>3.63</td>
<td>0.00</td>
</tr>
<tr>
<td>ORTP</td>
<td>5.12</td>
<td>0.23</td>
<td>1.26</td>
<td>3.63</td>
<td>0.00</td>
</tr>
<tr>
<td>OTROd</td>
<td>5.32</td>
<td>0.32</td>
<td>0.79</td>
<td>2.41</td>
<td>0.02</td>
</tr>
<tr>
<td>OTROa</td>
<td>5.52</td>
<td>0.23</td>
<td>1.21</td>
<td>4.08</td>
<td>0.06</td>
</tr>
<tr>
<td>PIS</td>
<td>4.43</td>
<td>0.37</td>
<td>0.13</td>
<td>2.94</td>
<td>0.77</td>
</tr>
<tr>
<td>POLY</td>
<td>6.09</td>
<td>1.16</td>
<td>2.02</td>
<td>2.91</td>
<td>0.07</td>
</tr>
<tr>
<td>PBIF</td>
<td>6.95</td>
<td>3.46</td>
<td>0.59</td>
<td>2.90</td>
<td>0.01</td>
</tr>
<tr>
<td>PPUS</td>
<td>5.23</td>
<td>0.14</td>
<td>0.91</td>
<td>0.80</td>
<td>0.15</td>
</tr>
<tr>
<td>RASP</td>
<td>4.76</td>
<td>0.13</td>
<td>0.81</td>
<td>3.82</td>
<td>0.97</td>
</tr>
<tr>
<td>RHPH</td>
<td>6.91</td>
<td>1.62</td>
<td>0.52</td>
<td>0.27</td>
<td>0.00</td>
</tr>
<tr>
<td>RHYP</td>
<td>5.93</td>
<td>1.93</td>
<td>1.14</td>
<td>2.86</td>
<td>0.00</td>
</tr>
<tr>
<td>SIGN</td>
<td>5.51</td>
<td>0.53</td>
<td>1.71</td>
<td>3.26</td>
<td>0.00</td>
</tr>
<tr>
<td>SARG</td>
<td>5.69</td>
<td>0.24</td>
<td>1.27</td>
<td>4.19</td>
<td>0.02</td>
</tr>
<tr>
<td>SIMU</td>
<td>5.34</td>
<td>0.51</td>
<td>1.24</td>
<td>3.59</td>
<td>0.00</td>
</tr>
<tr>
<td>STEN</td>
<td>6.27</td>
<td>0.57</td>
<td>1.59</td>
<td>4.11</td>
<td>0.38</td>
</tr>
<tr>
<td>SCMN</td>
<td>6.36</td>
<td>1.40</td>
<td>1.36</td>
<td>3.86</td>
<td>0.00</td>
</tr>
<tr>
<td>TANG</td>
<td>5.34</td>
<td>0.17</td>
<td>1.32</td>
<td>3.85</td>
<td>0.03</td>
</tr>
<tr>
<td>TFLU</td>
<td>6.94</td>
<td>2.03</td>
<td>1.56</td>
<td>3.62</td>
<td>0.11</td>
</tr>
</tbody>
</table>
Table S2. Physical habitat preference parameters of the 12 fish taxa sampled in ten Mediterranean tributaries of the Rhône River. Inertia = total variability; OMI = outlying mean index. $P$ number of random permutations (out of 1000) that yielded a higher value than the observed marginality (OMI, WitOMIG or WitOMIG$_K$) (the value in **bold** characters are significant, $P < 0.05$). Tol = tolerance, Rtol = residual tolerance. I. = inertia; $G$ ($G_k$) are the subset marginality WitOMIG (WitOMIG$_K$). − = NA. The WitOMI cannot be calculated when the OMI is not significant(See Discussion for further details). The species is the one use as example for Figure 4D, 4E, and 4F (Species code in Table S4 in appendix S2).

<table>
<thead>
<tr>
<th>Altitude</th>
<th>All</th>
<th>Upstream</th>
<th>Downstream</th>
<th>Upstream</th>
<th>Downstream</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>I.</td>
<td>OMI</td>
<td>Tol</td>
<td>Rtol</td>
<td>P</td>
</tr>
<tr>
<td>SCU</td>
<td>5.50</td>
<td>2.15</td>
<td>1.50</td>
<td>1.85</td>
<td>0.08</td>
</tr>
<tr>
<td>OTR</td>
<td>5.71</td>
<td>0.08</td>
<td>2.43</td>
<td>3.21</td>
<td><strong>0.00</strong></td>
</tr>
<tr>
<td>YTR</td>
<td>5.77</td>
<td>0.26</td>
<td>1.69</td>
<td>3.81</td>
<td><strong>0.00</strong></td>
</tr>
<tr>
<td>MIN</td>
<td>5.32</td>
<td>0.45</td>
<td>2.52</td>
<td>2.35</td>
<td><strong>0.00</strong></td>
</tr>
<tr>
<td>STO</td>
<td>5.91</td>
<td>0.77</td>
<td>2.41</td>
<td>2.73</td>
<td><strong>0.00</strong></td>
</tr>
<tr>
<td>BLA</td>
<td>4.99</td>
<td>0.46</td>
<td>2.27</td>
<td>2.26</td>
<td><strong>0.00</strong></td>
</tr>
<tr>
<td>SBA</td>
<td>3.71</td>
<td>0.07</td>
<td>0.51</td>
<td>3.13</td>
<td>0.77</td>
</tr>
<tr>
<td>SON</td>
<td>6.38</td>
<td>4.89</td>
<td>0.75</td>
<td>0.75</td>
<td><strong>0.03</strong></td>
</tr>
<tr>
<td>NAS</td>
<td>12.60</td>
<td>10.20</td>
<td>1.62</td>
<td>0.78</td>
<td><strong>0.00</strong></td>
</tr>
<tr>
<td>GUD</td>
<td>8.43</td>
<td>4.31</td>
<td>0.95</td>
<td>3.17</td>
<td><strong>0.00</strong></td>
</tr>
<tr>
<td>CHU</td>
<td>5.58</td>
<td>1.58</td>
<td>1.69</td>
<td>2.31</td>
<td><strong>0.00</strong></td>
</tr>
<tr>
<td>STR</td>
<td>9.92</td>
<td>5.28</td>
<td>1.19</td>
<td>3.46</td>
<td><strong>0.00</strong></td>
</tr>
<tr>
<td>BAR</td>
<td>8.34</td>
<td>3.83</td>
<td>1.30</td>
<td>3.21</td>
<td><strong>0.00</strong></td>
</tr>
</tbody>
</table>
**Table S3.** Invertebrate code from Mérigoux and Dolédec (2004).

<table>
<thead>
<tr>
<th>Species</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ancylus fluviatilis Müller</td>
<td>AFLU</td>
</tr>
<tr>
<td>Antocha sp.</td>
<td>ANTO</td>
</tr>
<tr>
<td>Athripsodes sp.</td>
<td>ATSP</td>
</tr>
<tr>
<td>Baetis sp.</td>
<td>BASP</td>
</tr>
<tr>
<td>Bidessus minutissimus</td>
<td>BIMI</td>
</tr>
<tr>
<td>Blepharicera fasciata (Westwood)</td>
<td>BFAS</td>
</tr>
<tr>
<td>Caenis sp.</td>
<td>CASP</td>
</tr>
<tr>
<td>Ceraclea sp.</td>
<td>CESP</td>
</tr>
<tr>
<td>Ceratopogoninae</td>
<td>CERA</td>
</tr>
<tr>
<td>Cheumatopsyche lepida (Pictet)</td>
<td>CLEP</td>
</tr>
<tr>
<td>Chimarra marginata (Linnaeus)</td>
<td>CMAR</td>
</tr>
<tr>
<td>Chironomini</td>
<td>CHIR</td>
</tr>
<tr>
<td>Choroterpes picteti Eaton</td>
<td>CPIC</td>
</tr>
<tr>
<td>Dryops sp.</td>
<td>DRSP</td>
</tr>
<tr>
<td>Dugesia sp.</td>
<td>DUSP</td>
</tr>
<tr>
<td>Ecdyonurus sp.</td>
<td>ECSP</td>
</tr>
<tr>
<td>Ecnomus tenellus</td>
<td>ECTE</td>
</tr>
<tr>
<td>Elmis naugetti (l)</td>
<td>ELMA</td>
</tr>
<tr>
<td>Epeorus sp.</td>
<td>EPEO</td>
</tr>
<tr>
<td>Ephoron virgo (Olivier)</td>
<td>EVIR</td>
</tr>
<tr>
<td>E. parallelepipedus (a)</td>
<td>EPAR</td>
</tr>
<tr>
<td>Esolus spp. (l)</td>
<td>ESSP</td>
</tr>
<tr>
<td>E. pygmaeus (a) (Ph. Müller)</td>
<td>EPYG</td>
</tr>
<tr>
<td>Euleuctra geniculata Stephens</td>
<td>EGEN</td>
</tr>
<tr>
<td>Gammarus spp.</td>
<td>GASP</td>
</tr>
<tr>
<td>Hydropsycha spp.</td>
<td>HYSP</td>
</tr>
<tr>
<td>H. exocellata Dufour</td>
<td>HEXO</td>
</tr>
<tr>
<td>H. pellucidula (Curtis)</td>
<td>HPEL</td>
</tr>
<tr>
<td>Hydra sp.</td>
<td>HYDR</td>
</tr>
<tr>
<td>Hydroptila sp.</td>
<td>HYDS</td>
</tr>
<tr>
<td>Leptocerus tineiformis</td>
<td>LEPT</td>
</tr>
<tr>
<td>Leuctra sp.</td>
<td>LESP</td>
</tr>
<tr>
<td>Limnius opacus (a) Ph. Müller</td>
<td>LOPAad</td>
</tr>
<tr>
<td>L. opacus (l) Ph. Müller</td>
<td>LOPAla</td>
</tr>
<tr>
<td>Micronecta poweri</td>
<td>MPOW</td>
</tr>
<tr>
<td>Mystacides azurea</td>
<td>MYSA</td>
</tr>
<tr>
<td>Oligoneuriella rhenana (Imhoff)</td>
<td>ORHE</td>
</tr>
<tr>
<td>Onychogomphus sp.</td>
<td>ONSP</td>
</tr>
<tr>
<td>Orthocladiinae</td>
<td>ORTH</td>
</tr>
<tr>
<td>Orthotrichia sp.</td>
<td>ORSP</td>
</tr>
<tr>
<td>Oulimnius troglodytes (a) (Gyllenhall)</td>
<td>OTROad</td>
</tr>
<tr>
<td>O. troglodytes (l)</td>
<td>OTROla</td>
</tr>
<tr>
<td>Pisidium sp.</td>
<td>PISI</td>
</tr>
<tr>
<td>Polycentrus flavomaculatus</td>
<td>POLY</td>
</tr>
<tr>
<td>Procloeon bifidum (Bengtsson)</td>
<td>PBIF</td>
</tr>
<tr>
<td>Psychomyia pusilla</td>
<td>PPUS</td>
</tr>
<tr>
<td>Radix sp.</td>
<td>RASP</td>
</tr>
<tr>
<td>Rhacyphila sp.</td>
<td>RHYP</td>
</tr>
<tr>
<td>Rhithrogena sp.</td>
<td>RHP</td>
</tr>
<tr>
<td>Serratella ignita (Poda)</td>
<td>SIGN</td>
</tr>
<tr>
<td>Setodes argentipunctellus McLachlan</td>
<td>SARG</td>
</tr>
<tr>
<td>Simuliidae</td>
<td>SIMU</td>
</tr>
<tr>
<td>Stenelmis canaliculata (a)</td>
<td>STEN</td>
</tr>
<tr>
<td>S. canaliculata (l)</td>
<td>SCAN</td>
</tr>
<tr>
<td>Tanypodinae</td>
<td>TANYP</td>
</tr>
<tr>
<td>Tanytarsini</td>
<td>TANYT</td>
</tr>
<tr>
<td>Theodoxus fluviatilis</td>
<td>TFLU</td>
</tr>
</tbody>
</table>
**Table S4.** Fish code from Dolédec et al. (2000);† Young of the year.

<table>
<thead>
<tr>
<th>Species</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sculpin (Cottus gobio)</td>
<td>SCU</td>
</tr>
<tr>
<td>Older trout (Salmo trutta)</td>
<td>OTR</td>
</tr>
<tr>
<td>Y-O-Y† trout (Salmo trutta)</td>
<td>YTR</td>
</tr>
<tr>
<td>Minnow (Phoxinus phoxinus)</td>
<td>MIN</td>
</tr>
<tr>
<td>Stone loach (Nemacheilus barbatulus)</td>
<td>STO</td>
</tr>
<tr>
<td>Blageon (Telestes soufia)</td>
<td>BLA</td>
</tr>
<tr>
<td>Southwestern barbel (Barbus meridionalis)</td>
<td>SBA</td>
</tr>
<tr>
<td>Southwestern nase (Chondrostoma toxostoma)</td>
<td>SON</td>
</tr>
<tr>
<td>Nase (Chondrostoma nasus)</td>
<td>NAS</td>
</tr>
<tr>
<td>Gudgeon (Gobio gobio)</td>
<td>GUD</td>
</tr>
<tr>
<td>Chub (Leuciscus cephalus)</td>
<td>CHU</td>
</tr>
<tr>
<td>Streambleak (Alburnoides bipunctatus)</td>
<td>STR</td>
</tr>
<tr>
<td>Barbel (Barbus barbus)</td>
<td>BAR</td>
</tr>
</tbody>
</table>

**REFERENCES**