DELAYED MODE QUALITY CONTROL
AND OXYGEN CORRECTION
OF OVIDE ARGO DATA
FLOAT WMO 5902297

Auteurs : Lagadec Catherine
Thierry Virginie
Cabanes Cécile
DELAYED MODE QUALITY CONTROL
AND OXYGEN CORRECTION OF OVIDE ARGO DATA
FLOAT WMO 5902297

Internal Report LOPS 17-04

C. Lagadec - V. Thierry - C. Cabanes

June 28, 2017

Float WMO 5902297
1 Presentation and DMQC summary

<table>
<thead>
<tr>
<th>Number</th>
<th>Deployment (cycle OD)</th>
<th>Last cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cycle OD</td>
<td></td>
</tr>
<tr>
<td>Provor WMO 5902297</td>
<td>27/06/2010</td>
<td>228</td>
</tr>
<tr>
<td></td>
<td>23h11</td>
<td></td>
</tr>
<tr>
<td>CTS3 DO 9</td>
<td>N 59.432</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W 37.0478</td>
<td></td>
</tr>
<tr>
<td>Date of control</td>
<td>Float status</td>
<td>Last cycle</td>
</tr>
<tr>
<td>Jan/April 2013</td>
<td>Active</td>
<td>102</td>
</tr>
<tr>
<td>Coriolis transmission</td>
<td>27/05/2013</td>
<td></td>
</tr>
<tr>
<td>Date of control</td>
<td>Float status</td>
<td>Last cycle</td>
</tr>
<tr>
<td>October 2015</td>
<td>Active</td>
<td>1/10/15</td>
</tr>
<tr>
<td>Coriolis transmission</td>
<td>15/10/2015</td>
<td></td>
</tr>
<tr>
<td>Date of control</td>
<td>Float status</td>
<td>Last cycle</td>
</tr>
<tr>
<td>May 2017</td>
<td>dead</td>
<td>25/09/16</td>
</tr>
<tr>
<td>Coriolis transmission</td>
<td>15/05/2017</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Status of the float

Warning: Note that all the figures are plotted with the latest QC flag values (the modifications mentioned in table 2 are taken into account).

1.1 QC flag checks and interesting profiles

Warning: the resolution is equal to 10 dbar from the surface to 500 dbar, then 25 dbar from 500 to 2000 dbar. Salinity data between 0 and 5 dbar are suspicious because they are acquired when the pump of the CTD is turned off.

1.2 Salinity correction from the OW method

We cannot see any evidence of a drift or bias in the salinity measurement. We thus conclude that it is not necessary to correct the salinity data. Errors bars are maximum value between 0.01 and those determined from the OW method with parameters from the OW configuration 129.

2 Data
<table>
<thead>
<tr>
<th>Cycle</th>
<th>Parameter</th>
<th>Vertical level</th>
<th>Old flag</th>
<th>New flag</th>
<th>Comments</th>
<th>Coriolis transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>26A</td>
<td>TEMP</td>
<td>1.2</td>
<td>4</td>
<td>1</td>
<td></td>
<td>07/01/13</td>
</tr>
<tr>
<td>41A</td>
<td>PSAL</td>
<td>0 to 539 dbar</td>
<td>1</td>
<td>4</td>
<td></td>
<td>07/01/13</td>
</tr>
<tr>
<td>53A</td>
<td>TEMP</td>
<td>1.2</td>
<td>4</td>
<td>1</td>
<td></td>
<td>07/01/13</td>
</tr>
<tr>
<td>54A</td>
<td>TEMP</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td></td>
<td>07/01/13</td>
</tr>
<tr>
<td>68A</td>
<td>TEMP</td>
<td>1.2</td>
<td>4</td>
<td>1</td>
<td></td>
<td>07/01/13</td>
</tr>
<tr>
<td>72A</td>
<td>PSAL</td>
<td>1200m</td>
<td>3</td>
<td>1</td>
<td></td>
<td>07/01/13</td>
</tr>
<tr>
<td>all profiles (except 0D,0A,1A,2A)</td>
<td>DOXY</td>
<td>entire profile</td>
<td>1</td>
<td>4</td>
<td></td>
<td>24/04/13</td>
</tr>
<tr>
<td>110A</td>
<td>PSAL</td>
<td></td>
<td></td>
<td></td>
<td>interesting</td>
<td>oct 2015</td>
</tr>
<tr>
<td>203A</td>
<td>PSAL</td>
<td>60.61</td>
<td>4</td>
<td>1</td>
<td></td>
<td>may 2017</td>
</tr>
<tr>
<td>203A</td>
<td>TEMP</td>
<td>60.63</td>
<td>4</td>
<td>1</td>
<td></td>
<td>may 2017</td>
</tr>
</tbody>
</table>

Table 2: Float 5902297. Summary of the modifications of the real-time QC flags and of the interesting or suspicious data.

<table>
<thead>
<tr>
<th>OW CONFIGURATION</th>
<th>129</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIG_MAX_CASTS</td>
<td>250</td>
</tr>
<tr>
<td>MAP_USE_PV</td>
<td>1</td>
</tr>
<tr>
<td>MAP_USE_PV_ELLIPSE</td>
<td>1</td>
</tr>
<tr>
<td>MAP_USE_FACTEUR</td>
<td>1</td>
</tr>
<tr>
<td>MAPSCALE_LONGITUDE_LARGE</td>
<td>3.2</td>
</tr>
<tr>
<td>MAPSCALE_LONGITUDE_SMALL</td>
<td>0.8</td>
</tr>
<tr>
<td>MAPSCALE_LATITUDE_LARGE</td>
<td>2</td>
</tr>
<tr>
<td>MAPSCALE_LATITUDE_SMALL</td>
<td>0.5</td>
</tr>
<tr>
<td>MAPSCALE_PHI_LARGE</td>
<td>0.1</td>
</tr>
<tr>
<td>MAPSCALE_PHI_SMALL</td>
<td>0.02</td>
</tr>
<tr>
<td>MAPSCALE_AGE</td>
<td>0.69</td>
</tr>
<tr>
<td>MAP_P_EXCLUDE</td>
<td>500</td>
</tr>
<tr>
<td>MAP_P_DELTA</td>
<td>250</td>
</tr>
<tr>
<td>Reference data base</td>
<td>CTD and ARGO</td>
</tr>
</tbody>
</table>

Table 3: Parameters of the OW method.
Figure 1: Profiles position and relationship between cycle number, date and color.

Figure 2: Battery Voltage and Surface Pressure
Figure 3: θ/S diagrams. (Left panel) Flags are not taken into account. (Right panel) Quality flags are taken into account.

Figure 4: Temperature section along the float trajectory. Quality flags are not taken into account.
Figure 5: Salinity section along the float trajectory. Quality flags are not taken into account.
Figure 6: Pressure as a function of cycle number and vertical level index along the float trajectory. Quality flags are taken into account.
Figure 7: Potential temperature, salinity and potential density sections along the float trajectory (interpolated on standard levels). Quality flags are taken into account.
Figure 8: Salinity, Potential Temperature and Potential Density profiles. Quality flags are taken into account.
3 Comparison to the OVIDE 2010 nearest CTD profile

Figure 9: Comparison of the cycle 0A with the nearest CTD profile done after the float deployment.
4 Cycle 41 - Comparison to the nearest historical CTD profiles

Figure 10: Flotueur 5902297, cycle 41. Upper panel: Position of the analysed CTD profile (red) and of the nearest CTD profiles (black). The nearest CTD profile in time is in magenta while the nearest CTD profile in space is in blue. Lower panels: Temperature, salinity and potential density as function of pressure for the analysed CTD profile (stars) and for the nearest CTD profile in time (magenta line) and for the nearest CTD profile in space (blue line). The color of the analysed CTD profile represents the QC flag (green for a QC=1; blue for a QC=2; orange for a QC=3 and red for a QC=4).
Figure 11: Float 5902297, cycle 41. The analysed CTD profile (stars) is compared to the nearest CTD profiles (black line) and to two specific profiles: the nearest CTD profile in time (magenta) and the nearest CTD profile in space (blue). The color of the analysed CTD profile represents the QC flag (green for a QC=1; blue for a QC=2; orange for a QC=3 and red for a QC=4). (Upper panels) Temperature (left panel), salinity (middle panel) and potential density (right panel) as function of pressure. (Lower panels) θ/S diagrams.
5 Cycle 41A - Comparison to the nearest ARGO profiles

Figure 12: Flotteur 5902297, cycle 41A. Upper panel: Position of the analysed Argo profile (red) and of the nearest Argo profiles (black). The nearest Argo profile in time is in magenta while the nearest CTD profile in space is in blue. Lower panels: Temperature, salinity and potential density as function of pressure for the analysed Argo profile (stars) and for the nearest Argo profile in time (magenta line) and for the nearest Argo profile in space (blue line). The color of the analysed Argo profile represents the QC flag (green for a QC=1; blue for a QC=2; orange for a QC=3 and red for a QC=4).
Figure 13: Float 5902297, cycle 41A. The analysed Argo profile (stars) is compared to the nearest Argo profiles (black line) and to two specific profiles: the nearest Argo profile in time (magenta) and the nearest Argo profile in space (blue). The color of the analysed Argo profile represents the QC flag (green for a QC=1; blue for a QC=2; orange for a QC=3 and red for a QC=4). (Upper panels) Temperature (left panel), salinity (middle panel) and potential density (right panel) as function of pressure. (Lower panels) θ/S diagrams.
6 Cycle 110 - Comparison to the nearest historical CTD profiles

Figure 14: Flotteur 5902297, cycle 110. Upper panel: Position of the analysed CTD profile (red) and of the nearest CTD profiles (black). The nearest CTD profile in time is in magenta while the nearest CTD profile in space is in blue. Lower panels: Temperature, salinity and potential density as function of pressure for the analysed CTD profile (stars) and for the nearest CTD profile in time (magenta line) and for the nearest CTD profile in space (blue line). The color of the analysed CTD profile represents the QC flag (green for a QC=1; blue for a QC=2; orange for a QC=3 and red for a QC=4).
Figure 15: Float 5902297, cycle 110. The analysed CTD profile (stars) is compared to the nearest CTD profiles (black line) and to two specific profiles: the nearest CTD profile in time (magenta) and the nearest CTD profile in space (blue). The color of the analysed CTD profile represents the QC flag (green for a QC=1; blue for a QC=2; orange for a QC=3 and red for a QC=4). (Upper panels) Temperature (left panel), salinity (middle panel) and potential density (right panel) as function of pressure. (Lower panels) θ/S diagrams.
7 Cycle 110A - Comparison to the nearest ARGO profiles

Figure 16: Flotteur 5902297, cycle 110A. Upper panel: Position of the analysed Argo profile (red) and of the nearest Argo profiles (black). The nearest Argo profile in time is in magenta while the nearest CTD profile in space is in blue. Lower panels: Temperature, salinity and potential density as function of pressure for the analysed Argo profile (stars) and for the nearest Argo profile in time (magenta line) and for the nearest Argo profile in space (blue line). The color of the analysed Argo profile represents the QC flag (green for a QC=1; blue for a QC=2; orange for a QC=3 and red for a QC=4).
Figure 17: Float 5902297, cycle 110A. The analysed Argo profile (stars) is compared to the nearest Argo profiles (black line) and to two specific profiles: the nearest Argo profile in time (magenta) and the nearest Argo profile in space (blue). The color of the analysed Argo profile represents the QC flag (green for a QC=1; blue for a QC=2; orange for a QC=3 and red for a QC=4). (Upper panels) Temperature (left panel), salinity (middle panel) and potential density (right panel) as function of pressure. (Lower panels) θ/S diagrams.
8 Cycle 203 - Comparison to the nearest historical CTD profiles

Figure 18: Flotteur 5902297, cycle 203. Upper panel: Position of the analysed CTD profile (red) and of the nearest CTD profiles (black). The nearest CTD profile in time is in magenta while the nearest CTD profile in space is in blue. Lower panels: Temperature, salinity and potential density as function of pressure for the analysed CTD profile (stars) and for the nearest CTD profile in time (magenta line) and for the nearest CTD profile in space (blue line). The color of the analysed CTD profile represents the QC flag (green for a QC=1; blue for a QC=2; orange for a QC=3 and red for a QC=4).
Figure 19: Float 5902297, cycle 203. The analysed CTD profile (stars) is compared to the nearest CTD profiles (black line) and to two specific profiles: the nearest CTD profile in time (magenta) and the nearest CTD profile in space (blue). The color of the analysed CTD profile represents the QC flag (green for a QC=1; blue for a QC=2; orange for a QC=3 and red for a QC=4). (Upper panels) Temperature (left panel), salinity (middle panel) and potential density (right panel) as function of pressure. (Lower panels) θ/S diagrams.
9 Cycle 203A - Comparison to the nearest ARGO profiles

Figure 20: Flotteur 5902297, cycle 203A. Upper panel: Position of the analysed Argo profile (red) and of the nearest Argo profiles (black). The nearest Argo profile in time is in magenta while the nearest CTD profile in space is in blue. Lower panels: Temperature, salinity and potential density as function of pressure for the analysed Argo profile (stars) and for the nearest Argo profile in time (magenta line) and for the nearest Argo profile in space (blue line). The color of the analysed Argo profile represents the QC flag (green for a QC=1; blue for a QC=2; orange for a QC=3 and red for a QC=4).
Figure 21: Float 5902297, cycle 203A. The analysed Argo profile (stars) is compared to the nearest Argo profiles (black line) and to two specific profiles: the nearest Argo profile in time (magenta) and the nearest Argo profile in space (blue). The color of the analysed Argo profile represents the QC flag (green for a QC=1; blue for a QC=2; orange for a QC=3 and red for a QC=4). (Upper panels) Temperature (left panel), salinity (middle panel) and potential density (right panel) as function of pressure. (Lower panels) θ/S diagrams.
Figure 22: Figures from the OW method. (Left) Position of the historical and float data. (Right) Comparison, on various θ levels, between the float data and the historical data interpolated at the float position.

Figure 23: Figures from the OW method. Comparison of the θ/S diagram of the float with the historical database. (left) raw data; (right) corrected data using the OW correction.
Figure 24: Figures from the OW method. Salinity anomaly: (left) raw data; (right) corrected data using the OW correction.

Figure 25: Correction proposed by the OW method.
Figure 26: Chosed levels by the OW method.
1 Oxygen correction with LOCODOX

<table>
<thead>
<tr>
<th>Number</th>
<th>Deployment (cycle OD)</th>
<th>Last cycle</th>
<th>Cycle OD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provor WMO 5902297</td>
<td>27/06/2010 23h11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTS3 DO 9</td>
<td>N 59.432 W 37.0478</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date of DOXY control</th>
<th>Float status</th>
<th>Last cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 2017</td>
<td>DEAD</td>
<td>25/09/2016</td>
</tr>
</tbody>
</table>

Coriolis transmission 15/05/2017

This software is used to correct Oxygen data (parameter DOXY) contained in the files BR(real time) and/or BD(Delayed Mode) associated to files R (Real Time T/S) and/or D(Delayed Mode T/S).

PI suggests: The Oxygen corrections have been done only when Salinity and Temperature were available in Delayed Mode (D files). Theoretically, the corrections should be done from adjusted values (TEMP and PSAL). However, when there is a few bad values in salinity (of about few tens of PSU), and if there is no bias in salinity (OW method), PSAL data can be used instead of PSAL_ADJUSTED, because the impact of those values on the oxygen correction is not significant.

To correct Oxygen data, LOCODOX software gives 3 choices to work:
- from a reference profile
- from WOA climatology
- from in air measurements

The reference profile for this float is the station 79 of Ovide 2010 cruise.

This float is in the Oxygen grey list, only 3 DOXY good profiles

LOPS options are:

<table>
<thead>
<tr>
<th>Options</th>
<th>Choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit DOXY</td>
<td>Mumol/kg</td>
</tr>
<tr>
<td>Suppress hooks</td>
<td>YES</td>
</tr>
<tr>
<td>Drift correction with</td>
<td>PRES</td>
</tr>
<tr>
<td>Vertical scale</td>
<td>PRES</td>
</tr>
<tr>
<td>Apply drift correction</td>
<td>NO</td>
</tr>
<tr>
<td>Correction using :</td>
<td>PSAT</td>
</tr>
<tr>
<td>kind of error</td>
<td>RELATIVE</td>
</tr>
</tbody>
</table>

Table 1: LOCODOX Options

Applied DOXY correction

PSAT=f(DOXY); PSAT_ADJUSTED=A*PSAT+B; DOXY_ADJUSTED=f(PSAT_ADJUSTED)

with A=1.250; B=-15.997

Percent saturation corrected as a linear function of PSAT; Comparison to a single reference profile (isobaric match as in Takeshita et al. (2013)) on cycle 0; PSAT converted from DOXY and DOXY_ADJUSTED converted from PSAT_ADJUSTED.
Figure 1: QC controls of Pressure, Temperature and Salinity. No bias in salinity for this float. Correction done with PSAL.

Figure 2: The first 50 meters from the bottom are suppressed because data are uncertain; Only data in cyan are taken for the correction.
Float 5902299 was corrected based on a comparison of the first ascending profile of the float with an in situ reference profile acquired at float deployment. The correction is done in considering the percentage of saturation (PSAT).

Upper panels: The three panels show the regression between the Argo profile and the reference profile.

Middle left panels: PSAT in the upper 10m from the raw data (black curve) and the corrected data (red curves). PSAT estimated from the World Ocean Atlas at the float position is also provided for comparison (blue curves).

Middle center panel: PSAT values from the raw data (black curves), the adjusted data (red curves) and the reference profile (blue curve).

Middle right panel: Same as the center panel but for dissolved oxygen concentration value (DOXY et DOXY_ADJUSTED) in mumol/kg.

Lower panels: Same as the middle panels but when LOCODOX proposes a constant correction.

Figure 3: Plots produced by LOCODOX
Figure 4: Comparison in the deeper levels (below 1500m) between the float data and WOA data interpolated at the float position (horizontal and vertical). The temporal evolution of the difference is used to estimate a possible sensor drift.

Figure 5: Profiles float 5902297 (black), O2 hydro reference (blue), O2 float cycle 0 (red)
1.1 Corrected data float

Figure 6: Oxygen section along the float trajectory (interpolated on standard levels). Quality flags are taken into account. Left plot: Raw data - Right plot: corrected data

Figure 7: PSAT section along the float trajectory (interpolated on standard levels). Quality flags are taken into account. Left plot: Raw data - Right plot: corrected data
1.2 Examples of corrected profiles with LOCODOX

Figure 8: Oxygen profiles. Left plot: Raw data - Right plot: corrected data

Figure 9: Float 5902297: Corrected profiles in green