The North Atlantic Eddy Heat Transport and Its Relation with the Vertical Tilting of the Gulf Stream Axis

Type Article
Date 2017-06
Language English
Author(s) Treguier Anne-Marie1, Lique CamilleORCID4, Deshayes Julie2, Molines J. M.3
Affiliation(s) 1 : CNRS IFREMER IRD UBO, IUEM, Lab Oceanog Phys & Spatiale, Plouzane, France.
2 : Sorbonne Univ UPMC, CNRS, IRD, MNHN,LOCEAN Lab, Paris, France.
3 : Univ Grenoble Alpes, CNRS, Lab Glaciol & Geophys Environm, Grenoble, France.
Source Journal Of Physical Oceanography (0022-3670) (Amer Meteorological Soc), 2017-06 , Vol. 47 , N. 6 , P. 1281-1289
DOI 10.1175/JPO-D-16-0172.1
WOS© Times Cited 11
Note This article is included in the In Honor of Bach-Lien Hua: Ocean Scale Interactions special collection.

Correlations between temperature and velocity fluctuations are a significant contribution to the North Atlantic meridional heat transport, especially at the northern boundary of the subtropical gyre. In satellite observations and in a numerical model at 1/12 degrees resolution, a localized pattern of positive eddy heat flux is found northwest of the Gulf Stream, downstream of its separation at Cape Hatteras. It is confined to the upper 500 m. A simple kinematic model of a meandering jet can explain the surface eddy flux, taking into account a spatial shift between the maximum velocity of the jet and the maximum cross-jet temperature gradient. In the Gulf Stream such a spatial shift results from the nonlinear temperature profile and the vertical tilting of the velocity profile with depth. The numerical model suggests that the meandering of the Gulf Stream could account, at least in part, for the large eddy heat transport (of order 0.3 PW) near 36 degrees N in the North Atlantic and for its compensation by the mean flow.

Full Text
File Pages Size Access
Publisher's official version 9 904 KB Open access
Top of the page