TP156: INSIGHTS FROM THE SPATIAL AND TEMPORAL DISTRIBUTIONS OF MERCURY SPECIES AND ISOTOPES IN BIVALVES FROM THE FRENCH COASTLINE

Briant N.1, Knorly J.2, Chouvelon T.1, Brach-Papa C.1, Chiffoleau J-F.1, Savoye N.3, Sonke J. E.1

1 Laboratoire de Biogéochimie des Contaminants Métalliques (IFREMER Centre Atlantique, F-44311, Nantes Cedex 3, France)
2 Université Bordeaux, EPOC, UMR 5181, F-33400 Talence, France
3 Observatoire Midi-Pyrénées, laboratoire Géosciences Environnement Toulouse, CNRS/IRD/Univ. Paul-Sabatier, Toulouse, France

Introduction

Mercury (Hg) is a contaminant of particular environmental concern, being toxic towards most organisms. It presents a strong affinity for both dissolved and organic matter, and is bioaccumulated and biomagnified through food webs mainly under its organic form methyl-Hg (MeHg). Besides, for a long time, bivalves have been used as a biomonitoring tool of coastal chemical contamination. Although they accumulate contaminants from both dissolved and particulate phases, the trophic pathway (particles) dominates the medium to long-term intake of metals. In addition, the stable isotope composition of carbon and nitrogen (δ13C and δ15N values) of filter-feeding bivalves has been proven useful for identifying the composition of the particulate organic matter (POM) assimilated by coastal primary consumers.

In this context, we aim at tracing the origin of the bioaccumulated Hg in the coastal environment, using several parameters including total Hg (THg), MeHg, δ13C and δ15N and Hg stable isotopes determined in the δ13C and δ15N values point to local specificities for assimilated POM sources (Fig. 2b).

Results & Discussion

Spatial distribution (Fig. 2)

- δ15N values differentiate oligotrophic (Mediterranean Sea) and meso- to eutrophic ecosystems (Channel and Atlantic Ocean seaboards) (Fig. 2a).
- δ13C values point to local specificities for assimilated POM sources (Fig. 2b).
- No significant relationships between either THg or MeHg concentrations and δ15N or δ13C values (Spearman correlation coefficient tests, all p > 0.05).

Materials & Methods

Bivalves from the environmental sample bank ROCCH: Mussels (M. edulis, M. galloprovincialis) and oysters (C. gigas) that were collected in February and March 2014

- THg and MeHg concentrations co-varied (Spearman test, r2 = 0.525, p-value < 0.001; Fig. 2c & d).
- Yet unexplained local "hotspots" (i.e., high THg/MeHg ratio) were revealed (Fig. 2d).

Conclusions

- Trophic status of coastal ecosystems explains the spatial variation of bivalve δ13C and δ15N.
- Multi-decadal THg and MeHg concentrations time series show no decrease since 1987.
- Bivalve Hg species, C and N isotopes don’t allow to determine specific ecosystems signatures and trace the source of Hg to individual sites.
- Can Hg isotopes be used for this purpose?

See companion poster TP041 dealing with spatial and temporal series in selected sites to assess the evolution of their isotopes ratios, and an examination of bivalve signature from various ecosystems.

Acknowledgments:
We gratefully acknowledge funding of this study obtained from Ifremer, Région Pays de la Loire (Descos) and NéAIS/IFREMER.