Effects of warming rate, acclimation temperature and ontogeny on the critical thermal maximum of temperate marine fish larvae

Type Article
Date 2017-07
Language English
Author(s) Moyano Marta1, Candebat Caroline1, Ruhbaum Yannick1, Alvarez-Fernandez Santiago2, Claireaux Guy3, Zambonino-Infante Jose-LuisORCID4, Peck Myron A.1
Affiliation(s) 1 : Univ Hamburg, Inst Hydrobiol & Fisheries Sci, Ctr Earth Syst Res & Sustainabil CEN, Olbersweg 24, Hamburg, Germany.
2 : Alfred Wegener Inst Helmholtz Zentrum Polar & Mee, Biol Anstalt Helgoland, Helgoland, Germany.
3 : Univ Bretagne Occidentale, Ctr Ifremer Bretagne, LEMAR UMR 6539, Unite PFOM ARN, Plouzane, France.
4 : IFREMER, Ctr Ifremer Bretagne, LEMAR UMR 6539, Unite PFOM ARN, Plouzane, France.
Source Plos One (1932-6203) (Public Library Science), 2017-07 , Vol. 12 , N. 7 , P. e0179928 (1-23)
DOI 10.1371/journal.pone.0179928
WOS© Times Cited 60
Abstract

Most of the thermal tolerance studies on fish have been performed on juveniles and adults, whereas limited information is available for larvae, a stage which may have a particularly narrow range in tolerable temperatures. Moreover, previous studies on thermal limits for marine and freshwater fish larvae (53 studies reviewed here) applied a wide range of methodologies (e.g. the static or dynamic method, different exposure times), making it challenging to compare across taxa. We measured the Critical Thermal Maximum (CTmax) of Atlantic herring (Clupea harengus) and European seabass (Dicentrarchus labrax) larvae using the dynamic method (ramping assay) and assessed the effect of warming rate (0.5 to 9°C h-1) and acclimation temperature. The larvae of herring had a lower CTmax (lowest and highest values among 222 individual larvae, 13.1–27.0°C) than seabass (lowest and highest values among 90 individual larvae, 24.2–34.3°C). At faster rates of warming, larval CTmax significantly increased in herring, whereas no effect was observed in seabass. Higher acclimation temperatures led to higher CTmax in herring larvae (2.7 ± 0.9°C increase) with increases more pronounced at lower warming rates. Pre-trials testing the effects of warming rate are recommended. Our results for these two temperate marine fishes suggest using a warming rate of 3–6°C h-1: CTmax is highest in trials of relatively short duration, as has been suggested for larger fish. Additionally, time-dependent thermal tolerance was observed in herring larvae, where a difference of up to 8°C was observed in the upper thermal limit between a 0.5- or 24-h exposure to temperatures >18°C. The present study constitutes a first step towards a standard protocol for measuring thermal tolerance in larval fish.

Full Text
File Pages Size Access
Publisher's official version 23 2 MB Open access
S1 Fig. Effect of body size on Critical Thermal Maxima (CTmax) for Atlantic herring larvae. 1 72 KB Open access
S1 Table. Significance of terms for the generalized linear model (GLM) on the impact of warming rate and acclimation temperature on Critical Thermal Maximum (CTmax) in Atlantic herring larvae; and ... 1 13 KB Open access
Top of the page

How to cite 

Moyano Marta, Candebat Caroline, Ruhbaum Yannick, Alvarez-Fernandez Santiago, Claireaux Guy, Zambonino-Infante Jose-Luis, Peck Myron A. (2017). Effects of warming rate, acclimation temperature and ontogeny on the critical thermal maximum of temperate marine fish larvae. Plos One, 12(7), e0179928 (1-23). Publisher's official version : https://doi.org/10.1371/journal.pone.0179928 , Open Access version : https://archimer.ifremer.fr/doc/00395/50590/